Genetic Concepts on the Formation of the Austrian Magnesite and Siderite Mineralizations in the Eastern Alps of Austria Walter Prochaska

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Concepts on the Formation of the Austrian Magnesite and Siderite Mineralizations in the Eastern Alps of Austria Walter Prochaska www.geologia-croatica.hr Genetic concepts on the formation of the Austrian magnesite and siderite mineralizations in the Eastern Alps of Austria Walter Prochaska University of Leoben, Department of Geological Sciences, A-8700 Leoben, Austria 31-38 9 Figs. doi: 10.4154/gc.2016.03 ABSTRACT Article history: A consanguineous origin of the sparry siderite and magnesite mineralizations of the Eastern Received October 15, 2015 Alps has been repeatedly discussed in the past, often without the back-up of sound scien- Revised and accepted January 21, 2016 tific arguments. Here, it is shown that the characteristics of these mineralizations including Avaliable online February 29, 2016 structures, fluid parameters, timing etc. are amazingly similar suggesting in fact the genetic linkage of these deposits. The siderite as well as the magnesite mineralizations of the Eastern Alps exhibit metaso- matic-epigenetic structures of lens-shaped orebodies with dolomitic alteration rims as domi- nant features. The basic chemical characteristics of the ore forming fluids in these mineraliza- tions are those of highly fractionated hypersaline fluids exhibiting all the features of residual bittern brines. Fluid invasion and mineralization structures strictly depend on the original li- thology of the host rocks, mainly carbonatic sedimentary rocks. In Late Triassic times, these buried evaporitic brines were mobilized either by magmatic/metamorphic processes in the underlying crystalline units or by the superimposed sedimentary upload of the Triassic plat- form carbonates thus leading to magnesite formation. Initially these residual, bittern brines were completely free of Fe and rich in Mg suitable for the formation of magnesite. Deeper Keywords: siderite, magnesite, and more extensive circulation of these fluids and their interaction with the host-rock, re- mineralizing fluids sulted in the uptake of Fe and the formation of siderite. 1. INTRODUCTION 750.000 tpa (ranked 5th worldwide) and is mined from 10 diffe- Numerous magnesite and siderite mineralizations of various rent deposits. sizes can be observed in the Eastern Alps of Austria (Fig. 1), Similar mineralizations occur in Upper Carboniferous strata some of them were of considerable economic importance and of the Gemeric units of Slovakia, which can be directly com- were exploited. The minerogenetic map of Austria exhibits pared to the Greywacke Zone. The discussion about the genesis their locations. of these magnesite and siderite mineralizations throughout pre- Today, only one siderite mine, the Erzberg siderite deposit, vious decades is very similar to the controversial views of the situated in the province of Styria, is in operation. The present Austrian examples and reflects the changing opinions concern- Austrian iron production is about 750.000 tpa (Fe-content) and ing these mineralizations throughout the history of their investi- is exclusively produced from this mine. gation. The well-developed Austrian magnesite industry is of world- It is beyond the scope here to give a complete review of the wide importance, and is to a large extent still based on the Aus- innumerable publications on the siderite and magnesite deposits trian mines. Magnesite production in Austria is approximately of the Eastern Alps, so only a brief summary is given. However, Figure 1. Part of the minerogenetic map of Austria showing the Fe- and magnesite mineralizations of the Greywacke Zone (WEBER, 1997). Vol. 69/1 during recent decades some considerable progress was made in 1995; PROCHASKA, 1997). These authors generally postulate the understanding of these mineralizations using modern scien- an epigenetic origin, nevertheless there is no unanimous opinion tific methods. Therefore the main focus of this paper is to dis- concerning the most important metallogenetic features, the tim- cuss the results obtained by the investigation and characteriza- ing of the hydrothermal event, and the origin of the hydrother- tion of the chemistry of the fluid inclusions forming these mine- mal fluids. ralizations. Furthermore, direct radiometric age determination Similarly, there is no consensus on the genetic model and not of the carbonate minerals of the hydrothermal events during re- even about the principal mechanisms for magnesite mineraliza- cent years contributed substantially to the revised models of ore- tion. Starting soon after the discovery of the world´s first mag- formation. nesite deposits in the Eastern Alps after 1850, syngenetic Finally, on the basis of these new results, an attempt is made models (e.g. RUMPF, 1873; LEITMEIER, 1917) and epigenetic to demonstrate that there is a genetic link between the carbo- models (e.g. KOCH, 1893; VACEK, 1903; REDLICH, 1907) nate-hosted sparry magnesite and the siderite mineralizations of were published. Starting in the 1950s, a general trend towards the Eastern Alps. The arguments are mainly based on the inves- syngenetic and early diagenetic models can be observed (De tigations of the fluid chemistry from inclusions that allow chara- LLARENA, 1953; LEITMEIER & SIEGL, 1954). NIEDER- cterization of the ore forming fluids showing an overall evapo- MAYR (1989) argued for synsedimentary or early diagenetic ritic signature of the hydrothermal fluids responsible for these genesis for magnesite mineralization in the Permian series of the mineralizations. Another crucial aspect for the genesis of both Eastern Alps and extended this model to the alpine sparry mag- siderite and magnesite deposits is the timing of the mineralizing nesites. event. POHL & SIEGL presented an extensive overview of the The focus of this paper is on the magnesite and siderite mine- magnesite mineralizations of the Eastern Alps in 1986. ralizations of the Palaeozoic series of the Eastern Alps. The im- MÖLLER (1989) edited a monograph on magnesite summariz- portant siderite/haematite iron-ore province of Hüttenberg- ing the recent geochemical and mineralogical facts on the “mag- Waldenstein in the Austroalpine Crystalline Complex is not dis- nesite problem”. During more recent years, new fluid inclusion cussed in this paper. This iron-ore province is related to hydro- and isotope data for the sparry magnesite deposit of the Eastern thermal processes in connection to young tectonic activity with- Greywacke Zone provide strong evidence for formation of the out any relation to the mineralizations in the Palaeozoic series magnesite deposits by metasomatic replacement due to infiltrat- discussed here. ing salinar residual brines which originated in the Upper Perm- ian/Lower Triassic (e.g. PROCHASKA, 2000; PROCHASKA, 2. GENETIC MODELS PROPOSED IN THE PAST 2001; PROCHASKA & HENJES-KUNST, 2007). These obser- vations are considered to be of fundamental importance not only It is far beyond the scope of this chapter even to list the enor- for the genetic aspects of carbonate-hosted sparry magnesite mous amount of papers, published on the Austrian siderite and deposits but also hinting towards a consanguineous origin of the magnesite mineralizations since the start of modern geoscien- magnesite and siderite deposits of the Eastern Alps in general. tific investigation in approximately 1850. Therefore only the Very recent results obtained by radiometric age dating of the general trend in the genetic opinion is referred to and discussed. carbonate formation provide proof for Triassic ore formation Opinions concerning the genesis of the siderite mineraliza- (HENJES-KUNST et al., 2014; PROCHASKA & HENJES- tions of the Greywacke Zone are inconsistent (cum. cit. TOLL- KUNST, 2009). MANN, 1977), and discussion about this topic is a longstanding Earlier workers, especially PETRASCHECK (1926, 1932) in tradition. Different genetic models, including a synsedimentary his classic work on the metallogenetic zonation in the Eastern origin or an eoalpine vein-type and a metasomatic mineraliza- Alps, already mentioned a consanguineous origin of the alpine tion type have been proposed in the past. Early workers (e.g. sparry magnesite mineralizations and the siderite deposits as SCHOUPPE, 1854; VACEK, 1903) on this topic favoured syn- proposed here. Also other early investigators (REDLICH, 1907, genetic models, and at the turn of the century epigenetic models 1909; CLAR, 1956; FRIEDRICH, 1959, etc.) generally argued for the Erzberg type mineralization were proposed. for hydrothermal fluids of different origin like magmatic or More recent research concentrated on the investigation of metamorphic fluids of alpine (Neogene) age. Nevertheless these structural and geochemical features and also on comparative concepts never gained general acceptance at that time. studies (e.g. POHL, 1986) of the siderite mineralizations. In the 1970s, syngenetic models were favoured for the Erzberg mine- ralizations mainly because of the findings of minor banded ore 3. GEOLOGIC POSITION AND STRUCTURAL structures that were interpreted as primary sedimentary ore FEATURES OF THE MAGNESITE AND bands (BERAN, 1973, 1975, 1977, 1979a, 1979b; BERAN & SIDERITE MINERALIZATIONS THALMANN, 1977, 1978). Following these arguments The magnesite and siderite mineralizations occur in the SCHULZ et al. (1997) described ore textures of the Erzberg de- Greywacke Zone, which is the Palaeozoic basement of the posit and postulated a marine-synsedimentary origin for the Mesozoic platform carbonates of the Upper Austroalpine mineralization. Recently an epigenetic genesis for siderite mine- nappe. Fundamental overviews of the geology and tec- ralization in the Greywacke Zone was reintroduced
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Large-Scale Hydrothermal Zoning Reflectedin The
    Canadian Mineralogist Vol. 27, pp. 383-400 (1989) LARGE-SCALE HYDROTHERMAL ZONING REFLECTED IN THE TETRAHEDRITE-FREIBERGITE SOLID SOLUTION, KENO HILL Ag-Pb-Zn DISTRICT, YUKON J.V. GREGORY LYNCH* Department of Geology, The University of Alberta, Edmonton, Alberta T6G 2E3 ABSTRACT en argent se distinguent aussi par une augmentation dans Ie nombre de cations dans leur formule chimique. Le rap- The zoned Keno Hill vein system of central Yukon port Sb/ As demeure uniformement eleve. extends laterally from a Cretaceous plutonic-metamorphic center and surrounding quartz-feldspar veins, to (Traduit par la Redaction) carbonate-Ag-Pb-Zn deposits, and further to peripheral veins having epithermal characteristics. Seven distinct Mots-cles: zonation hydrothermale, nappe aquifere, tetra- mineralogical zones are recognized, and the entire sequence edrite, solution solide, plutonique, epithermal, altera- is continuous from east to west in a 4O-km belt. The fault- tion, district de Keno Hill, Yukon. and fracture-controlled veins are stratabound to the brit- tle moderately dipping Keno Hill Quartzite unit, of Mis- INTRODUCTION sissippian age. The unit is graphitic and appears to have acted as a large-scale hydrothermal aquifer, restricting fluid This paper concerns the large-scale nature of the flow during minera1ization and" development of zoning predominantly to the lateral direction. Tetrahedrite is dis- Keno Hill hydrothermal system. A broad and con- tributed along a 25-km-Iong portion of the system, and is tinuous sequence of mineral zoning can be the principal ore mineral of Ag. Both Ag/Cu and Fe/Zn documented within veins distributed along an exten- values in tetrahedrite are highest at the outer extremity of sive portion of the Keno Hill Quartzite, which is the the system, where freibergite dominates over tetrahedrite; main host rock to the ore in the area.
    [Show full text]
  • Chemical Oxides Analysis from Azara Baryte
    African Journal of Pure and Applied Chemistry Vol. 1 (2), pp. 015-017, November 2007 Available online at http://www.academicjournals.org/AJCAB ISSN 1996 - 0840 © 2007 Academic Journals Short Communication Chemical oxides analysis from Azara Baryte Hauwa Isa Department of Science Laboratory Technology School of Applied Sciences, Nuhu Bamalli Polytechnic, Zaria Nigeria. E- mail: [email protected] Accepted 26 September, 2007 Physical and chemical analysis of the two samples A and B of Azara baryte were conducted, such as moisture content, loss on ignition and elemental composition by the use of atomic absorption spectrophotometer(ASS) and flame photometer. The oxides values in 1.000 g sample of each element were obtained. Sample A (lower layer): moisture content = 0.020, loss on ignition = 0.060, Na2O = 0.250, K2O = 0.015, CaO = 0.014, MgO = 0.018, Fe2O3 = 0.029, SiO2 = 9.310, BaO = 89.630, Al2O3 = 6.200 Sample B (upper layer): moisture content = 0.030, loss on ignition = 0.040, Na2O = 0.030, K2O = 0.001, CaO = 0.006, MgO = 0.030, Fe2O3 = 0.028, SiO2 =18.12, BaO = 65.020, Al2O3 = 16.120. The result of the analysis revealed that the Azara baryte could use as source of inorganic chemical oxides and for the production of some laboratory chemicals such as barium sulphate and aluminum oxides Key words: Azara Baryte,Chemical oxides,analysis INTRODUCTION Baryte (BaSO4) – Barium sulphate is found naturally in mineral collector's market (RMRDC, 2005) Natural bary- the form of witherite (Othmer, 1964). It has various tes are chemically stable and highly temperature-resis- colours but mostly yellow, isomorphous orthorhombic tant.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Experimental Determination of Siderite (Iron Carbonate) Stability Under Moderate Pressure-Temperature Conditions, and Application to Martian Carbonate Parageneses
    Lunar and Planetary Science XXX 1226.pdf EXPERIMENTAL DETERMINATION OF SIDERITE (IRON CARBONATE) STABILITY UNDER MODERATE PRESSURE-TEMPERATURE CONDITIONS, AND APPLICATION TO MARTIAN CARBONATE PARAGENESES. Andrea M. Koziol. Department of Geology, The University of Dayton, 300 College Park, Dayton, OH 45469-2364, USA; e-mail: [email protected]. Introduction: Siderite (FeCO3) occurs in fugacity of the experiments is defined to be on metamorphosed iron formations, altered igne- the hematite-magnetite buffer at that pressure ous rocks, and as a solid solution component and temperature. This is an appropriate fO2 in Fe-Mg carbonates that are found in car- value for application of the results to Earth bonatites [1, 2] . Its stability is controlled in parageneses as well as Martian carbonates. part by O2 fugacity and CO2 fugacity. Experimental Method: Experiments on Siderite therefore is of interest as a monitor reaction (2) were made in a piston-cylinder phase of these parameters. apparatus, using procedures similar to those An unusual extraterrestrial occurrence of described in [6] . Samples consisted of ho- carbonate has also focused attention on siderite mogenized powders of synthetic siderite, and Fe-Mg carbonates. The carbonate glob- hematite, and a natural magnetite, sealed in 1 ules in ALH84001 that have intrigued the sci- mm diameter Pt tube segments with weighed entific community are magnesite-siderite solid amounts of silver oxalate (Ag2C2O4) as the solutions with variable Ca content [3 - 5] . CO2 source. These piston-cylinder experi- Compositional zoning generally varies from ments were performed with the samples buff- Ca-rich cores, to magnesite-rich rims. In ered with hematite + magnetite mixtures.
    [Show full text]
  • (Sedex) Deposits
    The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits DAVID R. COOKE,† STUART W. BULL, ROSS R. LARGE, AND PETER J. MCGOLDRICK Centre for Ore Deposit Research, Geology Department, University of Tasmania, GPO Box 252-79, Hobart, Tasmania 7001, Australia Abstract A two-fold subdivision for stratiform sediment-hosted Pb-Zn (sedimentary exhalative, sedex) deposits is proposed, based on fundamental differences in the chemistry of the mineralizing brines. The type of sedimentary basin from which the ore fluids are derived, and the lithologies contained within the basin, control these differences in fluid chemistry. The two discrete brine types capable of transporting Zn and Pb are oxidized brines and reduced, acidic brines. McArthur-type deposits (e.g., McArthur River, 2-- Mount Isa, Hilton) precipitate from oxidized (SO4 predominant), acidic to near-neutral brines that evolve from sedimentary basins dominated by carbonates, evaporites, and hematitic sandstones and shales. Selwyn-type deposits (e.g., Sullivan, Rammelsberg, sedex deposits of the Selwyn basin) precipitate from acidic, reduced (H2S-predominant) connate brines that evolved in reduced siliciclastic and shale basins. Temperature decrease and dilution (fluid mixing), addition of H2S, and pH increase can all be effective depositional processes for Zn and Pb from reduced (Selwyn-type) brines. In contrast, sulfate reduction and/or addition of H2S (via fluid mixing or interaction with earlier formed pyrite) may be the important processes for sphalerite and galena deposition from oxidized (McArthur-type) brines. McArthur-type sedex deposits are intimately associated with siderite or ferroan carbonate alteration halos and most likely precipitate from lower temperature brines than Selwyn-type deposits.
    [Show full text]
  • Inorganic Synthesis of Fe–Ca–Mg Carbonates at Low Temperature
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 73 (2009) 5361–5376 www.elsevier.com/locate/gca Inorganic synthesis of Fe–Ca–Mg carbonates at low temperature Christopher S. Romanek a,b,*, Concepcio´n Jime´nez-Lo´pez c,*, Alejandro Rodriguez Navarro d, Monica Sa´nchez-Roma´n a,b, Nita Sahai e, Max Coleman f a NASA Astrobiology Institute and Department of Geology, University of Georgia, Athens, GA 30602, USA b Savannah River Ecology Laboratory, Aiken, SC 29802, USA c Departamento de Microbiologia, Facultad de Ciencias, Universidad de Granada, Granada, Spain d Departamento de Mineralogı´a y Petrologı´a, Facultad de Ciencias, Universidad de Granada, Granada, Spain e NASA Astrobiology Institute and Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W. Dayton St., Madison, WI 53706, USA f NASA Astrobiology Institute and Jet Propulsion Laboratory, California Institute of Technology, M/S 183-301, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Received 14 January 2009; accepted in revised form 26 May 2009; available online 11 June 2009 Abstract A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solu- tion at 25 and 70 °C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 °C which are not predicted from the extrap- olation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite–siderite and dolomite solid solutions. A calcite–siderite solid solution precipitated at 25 °C, with the per- centage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content.
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry ' * Chapter W. Chemistry of the Iron-rich Sedimentary Rocks GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Data of Geochemistry MICHAEL FLEISCHER, Technical Editor Chapter W. Chemistry of the Iron-rich Sedimentary Rocks By HAROLD L. JAMES GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Chemical composition and occurrence of iron-bearing minerals of sedimentary rocks, and composition, distribution, and geochemistry of ironstones and iron-formations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Page Face Abstract. _ _______________________________ Wl Chemistry of iron-rich rocks, etc. Continued Introduction. _________ ___________________ 1 Oxide facies Continued Iron minerals of sedimentary rocks __ ______ 2 Hematitic iron-formation of Precambrian age__ W18 Iron oxides __ _______________________ 2 Magnetite-rich rocks of Mesozoic and Paleozoic Goethite (a-FeO (OH) ) and limonite _ 2 age___________-__-._____________ 19 Lepidocrocite (y-FeO(OH) )________ 3 Magnetite-rich iron-formation of Precambrian Hematite (a-Fe2O3) _ _ _ __ ___. _ _ 3 age._____-__---____--_---_-------------_ 21 Maghemite (7-Fe203) __ __________ 3 Silicate facies_________________________________ 21 Magnetite (Fe3O4) ________ _ ___ 3 Chamositic ironstone____--_-_-__----_-_---_- 21 3 Silicate iron-formation of Precambrian age_____ 22 Iron silicates 4 Glauconitic rocks__-_-____--------__-------- 23 4 Carbonate facies______-_-_-___-------_---------- 23 Greenalite. ________________________________ 6 Sideritic rocks of post-Precambrian age._______ 24 Glauconite____ _____________________________ 6 Sideritic iron-formation of Precambrian age____ 24 Chlorite (excluding chamosite) _______________ 7 Sulfide facies___________________________ 25 Minnesotaite.
    [Show full text]
  • The Iron-Ore Resources of Europe
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 706 THE IRON-ORE RESOURCES OF EUROPE BY MAX ROESLER WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. Page. Preface, by J. B. Umpleby................................................. 9 Introduction.............................................................. 11 Object and scope of report............................................. 11 Limitations of the work............................................... 11 Definitions.........................:................................. 12 Geology of iron-ore deposits............................................ 13 The utilization of iron ores............................................ 15 Acknowledgments...................................................... 16 Summary................................................................ 17 Geographic distribution of iron-ore deposits within the countries of new E urope............................................................. 17 Geologic distribution................................................... 22 Production and consumption.......................................... 25 Comparison of continents.............................................. 29 Spain..................................................................... 31 Distribution, character, and extent of the deposits....................... 31 Cantabrian Cordillera............................................. 31 The Pyrenees....................................................
    [Show full text]
  • Case Study at Lokop, Dairi, Latong, Tanjung Balit and Tuboh)
    INDONESIAN MINING JOURNAL Vol. 17, No. 3, October 2014 : 122 - 133 MINERALIZATION OF THE SELECTED BASE METAL DEPOSITS IN THE BARISAN RANGE, SUMATERA, INDONESIA (CASE STUDY AT LOKOP, DAIRI, LATONG, TANJUNG BALIT AND TUBOH) MINERALISASI CEBAKAN LOGAM DASAR TERPILIH DI BUKIT BARISAN, SUMATERA - INDONESIA (STUDI KASUS DI LOKOP, DAIRI, LATONG, TANJUNG BALIT DAN TUBOH) HAMDAN Z. ABIDIN and HARRY UTOYO Geological Survey Centre Jalan Diponegoro 57 Bandung, Indonesia e-mail: [email protected] ABSTRACT Three types of base metal occurrences discovered along the Barisan Range, Sumatera are skarn, sedex and hydrothermal styles. The skarn styles include Lokop, Latong and Tuboh, while Dairi and Tanjung Balit belong to sedex and hydrothermal deposits, respectively. The Lokop deposit is dominated by galena with minor pyrite and is hosted within interbedded meta-sandstone, slate, phyllite, hornfels and quartzite of the Kluet Forma- tion. The Skarn Latong deposit consists of galena with minor sphalerite and chalcopyrite with skarn minerals of magnetite, garnet and calcite. It is hosted within the meta-limestone of the Kuantan Formation. The Skarn Tuboh deposit is dominated by sphalerite with minor galena, pyrite, manganese, hematite and magnetite. It is hosted within interbedded meta-sandstone and meta-limestone of the Rawas Formation. The Dairi deposit belongs to the sedimentary exhalative (sedex) type. It is hosted within the sedimentary sequence of the Kluet Formation. Two ore types known are Julu and Jehe mineralization. The Julu mineralization referring to as sediment exhalative (sedex), was formed syngenetically with carbonaceous shale. Ore mineralogies consist of galena, sphalerite and pyrite. The deposit was formed within the temperature range of 236-375°C with salinity ranges from 9,3-23% wt.NaCl.
    [Show full text]
  • Formation of Diagenetic Siderite in Modern Ferruginous Sediments Aurèle Vuillemin1,2*, Richard Wirth1, Helga Kemnitz1, Anja M
    https://doi.org/10.1130/G46100.1 Manuscript received 25 September 2018 Revised manuscript received 26 March 2019 Manuscript accepted 27 March 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online XX Month 2019 Formation of diagenetic siderite in modern ferruginous sediments Aurèle Vuillemin1,2*, Richard Wirth1, Helga Kemnitz1, Anja M. Schleicher1, André Friese1, Kohen W. Bauer3, Rachel Simister3, Sulung Nomosatryo1,4, Luis Ordoñez5, Daniel Ariztegui5, Cynthia Henny4, Sean A. Crowe3, Liane G. Benning1,6,7, Jens Kallmeyer1, James M. Russell8, Satria Bijaksana9, Hendrik Vogel10 and the Towuti Drilling Project Science Team† 1GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany 2Present address: Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Richard-Wagner-Str. 10, 80333 Munich, Germany 3Department of Earth, Ocean, and Atmospheric Sciences, and of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada 4Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor, Cibinong, Bogor, West Java 16911, Indonesia 5Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, 1205 Geneva, Switzerland 6Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 7School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 8Department of
    [Show full text]