Defining the Location of the Adductor Canal Using Ultrasound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compiled for Lower Limb
Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m. -
Abdominal Muscles. Subinguinal Hiatus and Ingiunal Canal. Femoral and Adductor Canals. Neurovascular System of the Lower Limb
Abdominal muscles. Subinguinal hiatus and ingiunal canal. Femoral and adductor canals. Neurovascular system of the lower limb. Sándor Katz M.D.,Ph.D. External oblique muscle Origin: outer surface of the 5th to 12th ribs Insertion: outer lip of the iliac crest, rectus sheath Action: flexion and rotation of the trunk, active in expiration Innervation:intercostal nerves (T5-T11), subcostal nerve (T12), iliohypogastric nerve Internal oblique muscle Origin: thoracolumbar fascia, intermediate line of the iliac crest, anterior superior iliac spine Insertion: lower borders of the 10th to 12th ribs, rectus sheath, linea alba Action: flexion and rotation of the trunk, active in expiration Innervation:intercostal nerves (T8-T11), subcostal nerve (T12), iliohypogastric nerve, ilioinguinal nerve Transversus abdominis muscle Origin: inner surfaces of the 7th to 12th ribs, thoracolumbar fascia, inner lip of the iliac crest, anterior superior iliac spine, inguinal ligament Insertion: rectus sheath, linea alba, pubic crest Action: rotation of the trunk, active in expiration Innervation:intercostal nerves (T5-T11), subcostal nerve (T12), iliohypogastric nerve, ilioinguinal nerve Rectus abdominis muscle Origin: cartilages of the 5th to 7th ribs, xyphoid process Insertion: between the pubic tubercle and and symphysis Action: flexion of the lumbar spine, active in expiration Innervation: intercostal nerves (T5-T11), subcostal nerve (T12) Subingiunal hiatus - inguinal ligament Subinguinal hiatus Lacuna musculonervosa Lacuna vasorum Lacuna lymphatica Lacuna -
Medial Compartment of Thigh
Prof. Ahmed Fathalla Ibrahim Professor of Anatomy College of Medicine King Saud University E-mail: [email protected] OBJECTIVES At the end of the lecture, students should: ▪ List the name of muscles of anterior compartment of thigh. ▪ Describe the anatomy of muscles of anterior compartment of thigh regarding: origin, insertion, nerve supply and actions. ▪ List the name of muscles of medial compartment of thigh. ▪ Describe the anatomy of muscles of medial compartment of thigh regarding: origin, insertion, nerve supply and actions. ▪ Describe the anatomy of femoral triangle & adductor canal regarding: site, boundaries and contents. The thigh is divided into 3 compartments by 3 intermuscular septa (extending from deep fascia into femur) Anterior Compartment Medial Compartment ❑Extensors of knee: ❑Adductors of hip: Quadriceps femoris 1. Adductor longus ❑Flexors of hip: 2. Adductor brevis 1. Sartorius 3. Adductor magnus 2. Pectineus (adductor part) 3. psoas major 4. Gracilis 4. Iliacus ❖Nerve supply: ❖Nerve supply: Obturator nerve Femoral nerve Posterior Compartment ❑Flexors of knee & extensors of hip: Hamstrings ❖Nerve supply: Sciatic nerve ANTERIOR COMPARTMENT OF THIGH NERVE SUPPLY: I PM Femoral nerve P S V L RF Quadriceps femoris Vastus Intermedius (deep to rectus femoris) V M SARTORIUS ORIGIN Anterior superior iliac spine INSERTION S Upper part of medial S surface of tibia ACTION (TAILOR’S POSITION) ❑Flexion, abduction & lateral rotation of hip joint ❑Flexion of knee joint PECTINEUS ORIGIN: Superior pubic ramus INSERTION: P P Back -
Clinical Anatomy of the Lower Extremity
Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p. -
Reviewing Morphology of Quadriceps Femoris Muscle
Review article http://dx.doi.org/10.4322/jms.053513 Reviewing morphology of Quadriceps femoris muscle CHAVAN, S. K.* and WABALE, R. N. Department of Anatomy, Rural Medical College, Pravara Institute of Medical Sciences, At.post: Loni- 413736, Tal.: Rahata, Ahmednagar, India. *E-mail: [email protected] Abstract Purpose: Quadriceps is composite muscle of four portions rectus femoris, vastus intermedius, vastus medialis and vatus lateralis. It is inserted into patella through common tendon with three layered arrangement rectus femoris superficially, vastus lateralis and vatus medialis in the intermediate layer and vatus intermedius deep to it. Most literatures do not take into account its complex and variable morphology while describing the extensor mechanism of knee, and wide functional role it plays in stability of knee joint. It has been widely studied clinically, mainly individually in foreign context, but little attempt has been made to look into morphology of quadriceps group. The diverse functional aspect of quadriceps group, and the gap in the literature on morphological aspect particularly in our region what prompted us to review detail morphology of this group. Method: Study consisted dissection of 40 lower limbs (20 rights and 20 left) from 20 embalmed cadavers from Department of Anatomy Rural Medical College, PIMS Loni, Ahmednagar (M) India. Results: Rectus femoris was a separate entity in all the cases. Vastus medialis as well as vastus lateralis found to have two parts, as oblique and longus. Quadriceps group had variability in fusion between members of the group. The extent of fusion also varied greatly. The laminar arrangement of Quadriceps group found as bilaminar or trilaminar. -
Proximal Versus Distal Continuous Adductor Canal Blocks
Proximal Versus Distal Continuous Adductor Canal Blocks: Does Varying Perineural Catheter Location Influence Analgesia? A Randomized, Subject-Masked, Controlled Clinical Trial Jacklynn F. Sztain, MD, Bahareh Khatibi, MD, Amanda M. Monahan, MD, Engy T. Said, MD, 06/24/2018 on HRKGxsQg0SuoZn4utVXOmk5z97Ja58gACMhy7Bn6J3AP6ghkXyb1tI+UeqR7yrM9qMCtumnaZizf7u+BFX+JxKfAaCZ2GwhaiucBBv+CqffnLy74g548/g== by https://journals.lww.com/anesthesia-analgesia from Downloaded Wendy B. Abramson, MD, Rodney A. Gabriel, MD, MAS, John J. Finneran IV, MD, Richard H. Bellars, MD,* Patrick L. Nguyen, MD,* Scott T. Ball, MD, Francis† B. Gonzales, MD,* Downloaded Sonya S. Ahmed, MD, Michael* C. Donohue, PhD, Jennifer*‡ A. Padwal, BS, and *‡ Brian M. Ilfeld, MD, MS *(Clinical Investigation) * § § from § ∥ ¶ https://journals.lww.com/anesthesia-analgesia BACKGROUND: A continuous adductor canal*‡ block provides analgesia after surgical procedures of the knee. Recent neuroanatomic descriptions of the thigh and knee led us to speculate that local anesthetic deposited in the distal thigh close to the adductor hiatus would provide superior analgesia compared to a more proximal catheter location. We therefore tested the hypothesis that during a continuous adductor canal nerve block, postoperative analgesia would be improved by placing the perineural catheter tip 2–3 cm cephalad to where the femoral artery descends posteri- orly to the adductor hiatus (distal location) compared to a more proximal location at the midpoint between the anterior superior iliac spine and the superior border of the patella (proximal location). by HRKGxsQg0SuoZn4utVXOmk5z97Ja58gACMhy7Bn6J3AP6ghkXyb1tI+UeqR7yrM9qMCtumnaZizf7u+BFX+JxKfAaCZ2GwhaiucBBv+CqffnLy74g548/g== METHODS: Preoperatively, subjects undergoing total knee arthroplasty received an ultrasound- guided perineural catheter inserted either in the proximal or distal location within the adductor canal in a randomized, subject-masked fashion. -
Anomalous Tendinous Contribution to the Adductor Canal by the Adductor Longus Muscle
SHORT COMMUNICATION Anomalous tendinous contribution to the adductor canal by the adductor longus muscle Devon S Boydstun, Jacob F Pfeiffer, Clive C Persaud, Anthony B Olinger Boydstun DS, Pfeiffer JF, Persaud CC, et al. Anomalous tendinous Methods: During routine dissection, one specimen was found to have an contribution to the adductor canal by the adductor longus muscle. Int J Anat abnormal tendinous contribution to the adductor canal. Var. 2017;10(4): 83-84. Results: This tendon arose from the distal portions of adductor longus and ABSTRACT created part of the roof of the canal. Introduction: Classically the adductor canal is made from the fascial Conclusions: The clinical consequences of such an anomaly may include contributions from sartorius, adductor longus, adductor magnus and vastus conditions such as saphenous neuritis, adductor canal compression medialis muscles. The contents of the adductor canal include femoral syndrome, as well as paresthesias along the saphenous nerve distribution. artery, femoral vein, and saphenous nerve. While the femoral artery and vein continue posteriorly through the adductor hiatus, the saphenous nerve Key Words: Adductor Canal; Anomalous tendon; Compressions syndrome; travels all the way through the adductor canal and exits the inferior opening Saphenous neuralgia of the adductor canal. INTRODUCTION he adductor canal is a cone shaped tunnel between the anterior and Tmedial compartments of the thigh through which the femoral artery, femoral vein, and saphenous nerve travel in the distal thigh (1-3). It is bordered anteromedially by the vastoadductor membrane and the Sartorius muscle, anterolaterally by the vastus medialis muscle, and posteriorly by the adductor longus and adductor magnus muscles (3). -
Adductor Release for Athletic Groin Pain
40 Allied Drive Dedham, MA 02026 781-251-3535 (office) www.bostonsportsmedicine.com ADDUCTOR RELEASE FOR ATHLETIC GROIN PAIN THE INJURY The adductor muscles of the thigh connect the lower rim of the pelvic bone (pubis) to the thigh-bone (femur). These muscles exert high forces during activities such as soccer, hockey and football when powerful and explosive movements take place. High stresses are concentrated especially at the tendon of the adductor longus tendon where it attaches to the bone. This tendon can become irritated and inflamed and be the source of unrelenting pain in the groin area. Pain can also be felt in the lower abdomen. THE OPERATION Athletic groin pain due to chronic injury to the adductor longus muscle-tendon complex usually can be relieved by releasing the tendon where it attaches to the pubic bone. A small incision is made over the tendon attachment and the tendon is cut, or released from its attachment to the bone. The tendon retracts distally and heals to the surrounding tissues. The groin pain is usually relieved since the injured tendon is no longer anchored to the bone. It takes several weeks for the area to heal. Athletes can often return to full competition after a period of 8-12 weeks of rehabilitation, but it may take a longer period of time to regain full strength and function. RISKS OF SURGERY AND RESULTS As with any operation, there are potential risks and possible complications. These are rare, and precautions are taken to avoid problems. The spermatic cord (in males) is close to the operative area, but it is rarely at risk. -
The Nerves of the Adductor Canal and the Innervation of the Knee: An
REGIONAL ANESTHESIA AND ACUTE PAIN Regional Anesthesia & Pain Medicine: first published as 10.1097/AAP.0000000000000389 on 1 May 2016. Downloaded from ORIGINAL ARTICLE The Nerves of the Adductor Canal and the Innervation of the Knee An Anatomic Study David Burckett-St. Laurant, MBBS, FRCA,* Philip Peng, MBBS, FRCPC,†‡ Laura Girón Arango, MD,§ Ahtsham U. Niazi, MBBS, FCARCSI, FRCPC,†‡ Vincent W.S. Chan, MD, FRCPC, FRCA,†‡ Anne Agur, BScOT, MSc, PhD,|| and Anahi Perlas, MD, FRCPC†‡ pain in the first 48 hours after surgery.3 Femoral nerve block, how- Background and Objectives: Adductor canal block contributes to an- ever, may accentuate the quadriceps muscle weakness commonly algesia after total knee arthroplasty. However, controversy exists regarding seen in the postoperative period, as evidenced by its effects on the the target nerves and the ideal site of local anesthetic administration. The Timed-Up-and-Go Test and the 30-Second Chair Stand Test.4,5 aim of this cadaveric study was to identify the trajectory of all nerves that In recent years, an increased interest in expedited care path- course in the adductor canal from their origin to their termination and de- ways and enhanced early mobilization after TKA has driven the scribe their relative contributions to the innervation of the knee joint. search for more peripheral sites of local anesthetic administration Methods: After research ethics board approval, 20 cadaveric lower limbs in an attempt to preserve postoperative quadriceps strength. The were examined using standard dissection technique. Branches of both the adductor canal, also known as the subsartorial or Hunter canal, femoral and obturator nerves were explored along the adductor canal and has been proposed as one such location.6–8 Early data suggest that all branches followed to their termination. -
Anatomy and Clinical Implications of the Ultrasound-Guided Subsartorial Saphenous Nerve Block
Regional Anesthesia & Pain Medicine: first published as 10.1097/AAP.0b013e318220f172 on 1 June 2011. Downloaded from ULTRASOUND ARTICLE Anatomy and Clinical Implications of the Ultrasound-Guided Subsartorial Saphenous Nerve Block Theodosios Saranteas, MD, PhD,* George Anagnostis, MD,* Tilemachos Paraskeuopoulos, PhD,Þ Dimitrios Koulalis, MD,þ Zinon Kokkalis, MD,þ Mariza Nakou, MD,* Sofia Anagnostopoulou, PhD,Þ and Georgia Kostopanagiotou, PhD* landmark, whereas Krombach and Gray7 described a more dis- Background: We evaluated the anatomic basis and the clinical results tal approach, 5 to 7 cm proximal to the popliteal crease and of an ultrasound-guided saphenous nerve block close to the level of the performed a trans-sartorial approach to saphenous nerve block. nerve’s exit from the inferior foramina of the adductor canal. Manickam et al8 also performed a descriptive study to evaluate Methods: The anatomic study was conducted in 11 knees of formalin- the efficacy of an ultrasound-guided saphenous nerve block tech- preserved cadavers in which the saphenous nerve was dissected from nique at the distal part of adductor canal. The authors identified the near its exit from the inferior foramina of the adductor canal. The clinical saphenous nerve within the adductor canal and found that with study was conducted in 23 volunteers. Using a linear probe, the femoral this technique the nerve was blocked successfully in all 20 of vessels and the sartorius muscle were depicted in short-axis view at the their patients. level where the saphenous nerve exits the inferior foramina of the ad- The adductor canal is an aponeurotic tunnel in the middle ductor canal. -
Femoral Nerve Block Versus Adductor Canal Block for Analgesia After Total Knee Arthroplasty
Review Article Knee Surg Relat Res 2017;29(2):87-95 https://doi.org/10.5792/ksrr.16.039 pISSN 2234-0726 · eISSN 2234-2451 Knee Surgery & Related Research Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty In Jun Koh, MD1,2, Young Jun Choi, MD1,2, Man Soo Kim, MD1,2, Hyun Jung Koh, MD3, Min Sung Kang, MD1, and Yong In, MD1,2 1Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, Seoul; 2Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul; 3Department of Anesthesia and Pain Medicine, Seoul St. Mary's Hospital, Seoul, Korea Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA. -
EMG Evaluation of Hip Adduction Exercises for Soccer Players
Downloaded from http://bjsm.bmj.com/ on November 8, 2017 - Published by group.bmj.com Original article EMG evaluation of hip adduction exercises for soccer players: implications for exercise selection in prevention and treatment of groin injuries Andreas Serner,1,2 Markus Due Jakobsen,3 Lars Louis Andersen,3 Per Hölmich,1,2 Emil Sundstrup,3 Kristian Thorborg1 1Arthroscopic Centre Amager, ABSTRACT potential in both the prevention and treatment of Copenhagen University Introduction Exercise programmes are used in the groin injuries. Hospital, Copenhagen, Denmark prevention and treatment of adductor-related groin Currently, no studies have been able to demon- 2Aspetar Sports Groin Pain injuries in soccer; however, there is a lack of knowledge strate a reduction in the number of groin injuries in – Centre, Aspetar, Qatar concerning the intensity of frequently used exercises. soccer.12 14 Various explanations for this have been – Orthopaedic and Sports Objective Primarily to investigate muscle activity of proposed, such as insufficient compliance,12 14 over- Medicine Hospital, Doha, Qatar 12 3 adductor longus during six traditional and two new hip optimistic effect sizes and inadequate exercise National Research Centre for 12 the Working Environment, adduction exercises. Additionally, to analyse muscle intensity. Physical training has proven effective in Copenhagen, Denmark activation of gluteals and abdominals. the treatment of long-standing adductor-related groin Materials and methods 40 healthy male elite soccer pain,15 which is supported