Chapter 1: Introducing the Protea Family

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1: Introducing the Protea Family > BACK TO CONTENTS PAGE CHAPTER 1: INTRODUCING THE PROTEA FAMILY There are around 1700 species and 79 genera of plants in the Proteaceae (Protea) family, and most are indigenous to the southern hemisphere. Around half of these species come from Australia and a quarter from southern Africa. Protea is internationally, one of the best-known and most widely grown genera from the Proteaceae family. Proteas originate in southern Africa and many species are known and grown for their large colourful flower heads. This book focuses mostly on Proteas, but also considers some of the other Proteaceae genera that are more widely cultivated. History & include Central and South America which have about 90 species. The New Guinea Distribution islands have about 45 species. A smaller number of species are found in South The name ‘Protea’ was first published East Asia, New Caledonia and New in 1735 by the famous botanist Carl Zealand, and mainland New Guinea. Linnaeus who referred to the genus now known as Leucadendron. Linnaeus was Many Australian native genera belong impressed by the diversity of these plants to the Proteaceae family including: and named them after the Greek sea god Grevillea, Hakea, Banksia, Dryandra, Proteus who was believed to be able to Stenocarpus, Dryandra, Isopogon, change his form at will. The Proteaceae Persoonia, Conospermum, Franklandia, family includes many prized garden plants. and Petrophile. South African Proteaceae plants are Closely related South African genera mostly from the Cape Province region, are often included when people talk but also come from north to central loosely about the Protea, including Africa extending to tropical areas. Leucospermum and Leucadendron. These are commonly grown alongside The genus ‘Protea’ consists of around Proteas by nurseries which specialise 100 species of shrubs and small trees. in growing Proteas, or Protea cut-flower growers, due to their similar cultural Other regions of the southern hemisphere requirements. However, strictly speaking where Proteaceae plants may be found they are not Proteas. page 6 > BACK TO CONTENTS PAGE leucospermum cordifolium page 7 > BACK TO CONTENTS PAGE Characteristics normally arranged alternately (rarely opposite) or scattered on the stem. Most Proteaceae family members share the following characteristics: ■ Most grow continuously all year round in mild climates (some have a ■ Flowers are tetramerous (i.e. made short dormant period over summer). up of four similar parts or segments). ■ Most have proteoid roots (these ■ What usually appears to be a single are a type of root which is able to flower is actually a combination absorb nutrients from soils which of many small flowers clustered have very low levels of nutrients together to create a flower head. where other types of roots would There are therefore individual not be able to absorb nutrients). flowers within each flower head. Proteaceae plants will grow on relatively infertile soils, and in fact ■ Individual flowers typically have the some do not tolerate fertile soils. following components: ■ There tends to be a great deal 1. Four tepals – these are outer of variation within a species in segments of a flower that may terms of the appearance of the appear like a petal but in reality flower, foliage and growth habit. cannot be distinguished between Proteaceae plants include ground being either a petal or sepal. cover plants, through to small and large shrubs and tall trees. 2. The tepals are enclosed in a valvate bud (valvate is where the ■ Molecular analysis shows that edges of the scales enclosing Proteaceae is closely related to the the bud are butting up to each family Platanaceae (Plane Trees). other without overlapping). 3. Four basifixed stamens. Naming of 4. A single carpel (i.e. female Proteaceae Plants structure) in each flower. Occasionally, you may discover that the ■ In some species, male and female same plant appears to have two different parts can be on separate plants. scientific names. If there is a good argument for both being valid, whether ■ Leaves are thick and leathery - in the past or present, the two names this type of foliage allows them to may be considered to be synonyms (i.e. withstand water stress better than they are interchangeable because they many other types of plants. They refer to the same plant species). A plant are likely to be wind-resistant and synonym may sometimes be written tolerant of dry air conditions (i.e. using the abbreviation “syn.” in brackets low humidity). Leaf shape can vary after the plant name e.g. Protea aurea from genus to genus but leaves are (syn. P. longifolia). page 8 > BACK TO CONTENTS PAGE There are a number of official bodies, Herbariums are centres where plant each with arguable credibility, that control naming is managed. These are often the naming of Proteaceae species and, in attached to botanic gardens and tend some cases, other plants. to operate with authority from their government to manage plant naming in These various bodies may authorise new that jurisdiction. names when a new species or cultivar is encountered and, sometimes, they may Major horticultural bodies such as the authorise a change in an existing plant Royal Horticultural Society in the UK, or name. These bodies do largely agree nursery industry associations, also have with each other, but not always. a great deal of influence upon what plant names are used and promoted within You may sometimes encounter what their area of influence. Sometimes these appears to be a conflict in plant naming bodies might not adopt changes to plant within literature that was written in names made by academics. the past or which was written by plant experts who are not fully up to date Despite the apparent potential for with taxonomic changes. Conflicts may confusion in the world of plant names also arise where one plant naming there is, in reality, a great deal of authority opposes a name alteration that agreement amongst the majority of is accepted by another. These various these authorities most of the time. It authorities include: is however important to appreciate that there can be, and always will be, ■ The International Proteaceae occasional conflicts in naming plants. Register and Checklist - a body that If you are able to appreciate these operates out of South Africa and difficulties, then it ought to mean that which deals with all Proteaceae one should never be too pedantic about plants that are not indigenous to the subject. Australia. ■ The Australian Cultivar Registration Culture Authority - an Australian based body dealing with all plants indigenous to Australia, including Proteaceae. There are a range of things that are generally common to Proteaceae plants. ■ The International Botanical These include: Congress (IBC) - manages the naming of plants amongst botanists ■ Most need good drainage and can around the world. be susceptible to poor drainage. ■ The International Horticultural ■ Many are good as cut flowers. Congress - manages the naming of plants amongst horticulturists ■ Many have a lot of nectar produced internationally, and sometimes in the flowers; which in turn makes comes into conflict with the IBC. them attractive to birds, insects and some other wildlife. page 9 > BACK TO CONTENTS PAGE ■ Many can be pruned relatively hard, and if healthy will grow back strongly. ■ In appropriate conditions, most Proteaceae will live well beyond fifteen years - some, although only a minority, will live beyond 100 years. ■ Many will grow well without a high level of soil fertility - but there are exceptions. ■ Most will propagate from seed - many will also propagate from cuttings. Protea Christine Protea CV Bushfire page 10.
Recommended publications
  • PROTEACEAE – It's All About Pollination
    PROTEACEAE – it’s all about pollination …….Gail Slykhuis Illustration Philippa Hesterman, images Ellinor Campbell & Marg McDonald A predominantly southern hemisphere plant family, Proteaceae is well represented in Australia, particularly in the West, but we do have our own equally special local representatives, some of which are outlined below. A characteristic feature of many genera within this plant family is the ‘pollen presenter’, which is a fascinating mechanism by which the pollen, which would otherwise be difficult to access for potential pollination vectors such as bees, birds and nectarivorous mammals, is positioned on the extended style of the flower, facilitating cross- pollination. The stigma, which is part of the style, is not mature at this time, thus avoiding self-pollination. A hand lens would enable you to clearly see pollen presenters on the following local representatives: Banksia marginata, Grevillea infecunda, Hakea spp., Isopogon ceratophyllus and Lomatia illicifolia. It is interesting to note that both Victorian Smoke-bush Conospermum mitchellii and Prickly Geebung Persoonia juniperina, also found in our district, do not have pollen presenters. Silver Banksia Banksia marginata This shrub or small tree is readily recognisable when flowering (Feb – July) by the conspicuous yellow pollen presenters, which are an obvious floral part of the banksia flower. These flowers then slowly mature into our iconic woody banksia cones. It is interesting to observe the changes in the nature of the pollen presenters as the flower develops. The white undersides of the leathery leaves provide a clue to the choice of common name with their tip being characteristically blunt or truncate. Anglesea Grevillea Grevillea infecunda One of our endemic plants, the Anglesea Grevillea was first named in 1986 and is Anglesea Grevillea found in several locations north west of Anglesea.
    [Show full text]
  • Persoonia Levis Broad-Leaved Geebung
    Persoonia levis Broad-leaved Geebung Geebung is an unusual name derived from Aboriginal languages: geebung is the name used by the Dharuk in the Sydney Region, and Jibbong by the Wiradjuri1. The genus name Persoonia, to our ears, is also unusual until you find out that it is named after a Dutch mycologist (someone who studies fungi), Christiaan Hendrik Persoon. Geebungs are endemic to Australia and there are almost 100 species which, for the most part, are found in eastern Australia, and in the SW corner of Western Australia. They are mostly small trees or shrubs. This particular species, Persoonia levis, common in Sydney bushland, grows along the central and north coast of NSW, and in the SE corner of NSW and NE corner of Victoria. We are accustomed to the subtle olives, blues, greys and yellowish greens of the foliage of the Australian bush but the Broad-leaved Geebung is quite a contrast with bright, apple green foliage. The fruits, too, are unusual, round and succulent, bright green colouring to purple, very different from the dry, hard fruits of other genera in the same (Proteaceae) family, for example, Needle Bush (Hakea), Telopea (Waratah), Grevillea and Woodly Pear (Xylomelum). Geebungs are also unusual in that they have seven chromosomes that are much larger than those of other Proteaceae2. Broad-leaved Geebung has papery bark that provides some protection from bushfires. Peel back the superficial burnt bark and you will find glorious, rich crimson beneath the blackened exterior. This species also has the potential to resprout after fires, and regenerate from seed.
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Blushing Bride FAMILY NAME: Proteaceae Species and Cultivars Of
    Plant Profile Botanical Name: Serruria florida Common Name: Blushing Bride FAMILY NAME: Proteaceae Species and cultivars of special interest: Serruria florida hybrids and cvv. such as ‘Sugar ’n’ Spice’, ‘Pretty in Pink’, ‘Super Blush’, ‘Carmen’ Origin: South Africa Availability: May to October Foliage Characteristics: Stem length is 30- 60 cm. They have papery white bracts or floral leaves surrounding the flower. The sugar and spice variety has pink on the white bracts too. 5- 10 stems per bunch. Floral Characteristics: Blushing bride have feathery tufts of white to pinkish flowers. Sugar and spice variety has pink flowers. Special features and characteristics of special interest: It is thought that blushing bride got its name because of its traditional use in Africa as bridal bouquets. The species was near extinction due to being over exploited until conservation measures in the 1960s and 70s kicked in. Botanical name given in honour of James Serrurier, an 18th century professor of Botany at the Unisversity of Utrecht. Maintenance, Cultural requirements and Post Harvest Treatments: Blushing Bride is grown on large bushes in plantations across Australia. They are also grown in South Africa, Israel and the US. Handle blushing brides gently as flowers dry out quickly. They can have floral preservative. It is unknown whether it is Ethylene sensitive. When stored in cool storage keep at at 2- 4 degrees. Strip leaves from water level down. Pest and Diseases: The pedicels are vulnerable to Botrytis infection, which causes them to collapse. They do not suffer from leaf blackening like protea species do but the leaves may turn black if submerged in buckets of solution or if held for too long.
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Nectar Distribution and Nectarivorous Bird Foraging Behaviour at Different Spatial Scales
    Nectar distribution and nectarivorous bird foraging behaviour at different spatial scales by Anina Coetzee Dissertation presented for the Degree of Doctor of Philosophy in the Faculty of Science, at Stellenbosch University Supervisor: Prof. Anton Pauw Co-supervisor: Dr. Phoebe Barnard March 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2016 Copyright © 2016 Stellenbosch University of Stellenbosch All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract While foraging strategies of animals may be shaped by the distribution of their food resources, these strategies in turn also affect the ecology and evolution of their resources. In this regard, African systems, of all the different bird-pollination systems worldwide, have been least studied. I investigated the relationships between these aspects at population, community and landscape levels in the bird-pollination systems of the Cape Floristic Region. This biodiversity hotspot in the southwest of South Africa contains an unusually high number of bird-pollinated plant species relative to the number of pollinating bird species. Chapter 2 describes how I experimentally tested which nectar resource traits affect sunbird foraging behaviour at the small scale within populations. Sunbirds’ behaviour was largely determined by visual signals and distances between nectar resources. The birds showed flower colour preferences, but no flower constancy (selective foraging only on one flower type).
    [Show full text]
  • Endogenous Gibberellin Levels During Early Fruit Development of Macadamia
    African Journal of Agricultural Research Vol. 6(20), pp. 4785-4788, 26 September, 2011 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.902 ISSN 1991-637X ©2011 Academic Journals Full Length Research Paper Endogenous gibberellin levels during early fruit development of macadamia Stephen J. Trueman Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC 4558, Australia. E-mail: [email protected]. Tel: +61 7 54565033. Accepted 12 August, 2011 Gibberellins play a key role in flower and fruit development, and fruits often contain high gibberellin concentrations. This study quantified endogenous gibberellins in flowers and immature fruits of the macadamia cultivars, H2 and 246, to assist in developing growth-regulator treatments for improving fruit set. GA 1, GA 3, GA 8, GA 9 and GA 20 was detected in flowers or fruits of both cultivars, and GA 4 were detected in flowers of cultivar 246. The timing of gibberellin accumulation was consistent between cultivars but total concentrations were very low (< 7 pmol g -1 fresh weight). Low gibberellin levels are consistent with the inability of the gibberellin-synthesis inhibitor, paclobutrazol, to influence fruit retention in macadamia. Key words: Abscission, fruit drop, kernel, nut, paclobutrazol, plant growth regulators, Proteaceae. INTRODUCTION Macadamia ( Macadamia integrifolia , Macadamia development (Wilkie et al., 2008; de Jong et al., 2009), tetraphylla and hybrids) is a subtropical evergreen tree and fruits often contain high levels of endogenous that is grown in plantations in South Africa, Australia, gibberellins (Zhang et al., 2007; Ayele et al., 2010). This Hawaii and Brazil. Macadamia trees produce masses of paper describes the identification and quantification of racemes in spring, each bearing 100 to 300 flowers gibberellins in developing macadamia fruits, and (Trueman and Turnbull, 1994a; Olesen et al., 2011).
    [Show full text]
  • Plant Rarity: Species Distributional Patterns, Population Genetics, Pollination Biology, and Seed Dispersal in Persoonia (Proteaceae)
    University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year Plant rarity: species distributional patterns, population genetics, pollination biology, and seed dispersal in Persoonia (Proteaceae) Paul D. Rymer University of Wollongong Rymer, Paul D, Plant rarity: species distributional patterns, population genetics, pollination biology, and seed dispersal in Persoonia (Proteaceae), PhD thesis, School of Biological Sciences, University of Wollongong, 2006. http://ro.uow.edu.au/theses/634 This paper is posted at Research Online. http://ro.uow.edu.au/theses/634 1 Plant rarity: species distributional patterns, population genetics, pollination biology, and seed dispersal in Persoonia (Proteaceae). PhD Thesis by Paul D. Rymer B.Sc. (Hons) – Uni. of Western Sydney School of Biological Sciences UNIVERSITY OF WOLLONGONG 2006 2 DECLARATION This thesis is submitted, in accordance with the regulations of the University of Wollongong, in fulfilment of the requirements of the degree of Doctor of Philosophy. The work described in this thesis was carried out by me, except where otherwise acknowledged, and has not been submitted to any other university or institution. 3 “Yes, Duckie, you’re lucky you’re not Herbie Hart who has taken his Throm-dim-bu-lator apart” (Dr. Seuss 1973) 4 Abstract An understanding of rarity can provide important insights into evolutionary processes, as well as valuable information for the conservation management of rare and threatened species. In this research, my main objective was to gain an understanding of the biology of rarity by investigating colonization and extinction processes from an ecological and evolutionary perspective. I have focused on the genus Persoonia (family Proteaceae), because these plants are prominent components of the Australian flora and the distributional patterns of species vary dramatically, including several that are listed as threatened.
    [Show full text]
  • Species of Botryosphaeriaceae Occurring on Proteaceae
    Persoonia 21, 2008: 111–118 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X372387 Species of Botryosphaeriaceae occurring on Proteaceae S. Marincowitz1, J.Z. Groenewald 2, M.J. Wingfield1, P.W. Crous1,2 Key words Abstract The Botryosphaeriaceae includes several species that are serious canker and leaf pathogens of Pro-­ teaceae. In the present study, sequence data for the ITS nrDNA region were used in conjunction with morphological Botryosphaeria observations to resolve the taxonomy of species of Botryosphaeriaceae associated with Proteaceae. Neofusicoccum Fusicoccum luteum was confirmed from Buckinghamia and Banksia in Australia, and on Protea cynaroides in South Africa. Neofusicoccum A major pathogen of Banksia coccinea in Australia was shown to be N. australe and not N. luteum as previously Saccharata reported. Neofusicoccum protearum was previously reported on Proteaceae from Australia, Madeira, Portugal and South Africa, and is shown here to also occur in Hawaii and Tenerife (Canary Islands). Furthermore, several previous records of N. ribis on Proteaceae were shown to be N. parvum. Saccharata capensis is described as a new species that is morphologically similar to S. proteae. There is no information currently available regarding its potential importance as plant pathogen and pathogenicity tests should be conducted with it in the future. Article info Received: 4 September 2008; Accepted: 25 September 2008; Published: 1 October 2008. INTRODUCTION recently added lineage representing the anamorph genus Aplosporella (Damm et al. 2007b). Botryosphaeria spp. and The Proteaceae (proteas) is a prominent Southern Hemisphere similar species are prevalent on proteas under environmental plant family consisting of approximately seven subfamilies, 60 stress, causing stem cankers, dieback or leaf blight (Crous et genera and 1 400 species (Rebelo 2001).
    [Show full text]
  • Western Australian Natives Susceptible to Phytophthora Cinnamomi
    Western Australian natives susceptible to Phytophthora cinnamomi. Compiled by E. Groves, G. Hardy & J. McComb, Murdoch University Information used to determine resistance to P. cinnamomi : 1a- field observations, 1b- field observation and recovery of P.cinnamomi; 2a- glasshouse inoculation of P. cinnamomi and recovery, 2b- field inoculation with P. cinnamomi and recovery. Not Provided- no information was provided from the reference. PLANT SPECIES COMMON NAME ASSESSMENT RARE NURSERY REFERENCES SPECIES AVALABILITY Acacia campylophylla Benth. 1b 15 Acacia myrtifolia (Sm.) Willd. 1b A 9 Acacia stenoptera Benth. Narrow Winged 1b 16 Wattle Actinostrobus pyramidalis Miq. Swamp Cypress 2a 17 Adenanthos barbiger Lindl. 1a A 1, 13, 16 Adenanthos cumminghamii Meisn. Albany Woolly Bush NP A 4, 8 Adenanthos cuneatus Labill. Coastal Jugflower 1a A 1, 6 Adenanthos cygnorum Diels. Common Woolly Bush 2 1, 7 Adenanthos detmoldii F. Muell. Scott River Jugflower 1a 1 Adenanthos dobagii E.C. Nelson Fitzgerald Jugflower NP R 4,8 Adenanthos ellipticus A.S. George Oval Leafed NP 8 Adenanthos Adenanthos filifolius Benth. 1a 19 Adenanthos ileticos E.C. George Club Leafed NP 8 Adenanthos Adenanthos meisneri Lehm. 1a A 1 Adenanthos obovatus Labill. Basket Flower 1b A 1, 7 14,16 Adenanthos oreophilus E.C. Nelson 1a 19 Adenanthos pungens ssp. effusus Spiky Adenanthos NP R 4 Adenanthos pungens ssp. pungens NP R 4 Adenanthos sericeus Labill. Woolly Bush 1a A 1 Agonis linearifolia (DC.) Sweet Swamp Peppermint 1b 6 Taxandria linearifolia (DC.) J.R Wheeler & N.G Merchant Agrostocrinum scabrum (R.Br) Baill. Bluegrass 1 12 Allocasuarina fraseriana (Miq.) L.A.S. Sheoak 1b A 1, 6, 14 Johnson Allocasuarina humilis (Otto & F.
    [Show full text]
  • Product:Blushing Bride Botanical Name:Serruria Florida
    ride B Product: Blushing Bride lushing Botanical name: Serruria florida B Quality specifications for Australian wildflowers Product: Product: Botanical name: name: Botanical The common name ‘Blushing Bride’ Serruria is a fast growing, erect shrub Blushing Bride Blushing well suits this delicate member of with soft, fern-like leaves. High yields per the South African Proteaceae. bush are achievable. However, plants are particularly susceptible to Phytophthora Each stem produces between 1 and root rot and need to be grown in well Serruria florida Serruria 8 terminal, nodding flower heads. drained soils. Some growers have Each has delicate, papery, white bracts successfully grown Serruria in bags or flushed with pink, surrounding a central pots of potting mix on raised benches. fluffy mass of delicate florets. Initially Plants will tolerate only light frosts. Plants these florets are white and joined tend to become straggly and need to together, but as the head matures each be pruned to encourage strong, straight floret separates, and the colour changes flowering stems. They generally have a to pink. The unopened flower heads are shorter productive life than proteas. also very attractive. A common failing of Serruria is weak Several South African tales explain stems which cannot support the blooms. the origin of the common name. In one version, a young man gives the Serruria flowers dry out very quickly girl he is courting a flower: the deeper and need to be handled and packed the flower’s shade of pink, the more accordingly. The pedicels are thin, imminent the marriage proposal, and if they dehydrate too much causing the girl to blush.
    [Show full text]
  • Norrie's Plant Descriptions - Index of Common Names a Key to Finding Plants by Their Common Names (Note: Not All Plants in This Document Have Common Names Listed)
    UC Santa Cruz Arboretum & Botanic Garden Plant Descriptions A little help in finding what you’re looking for - basic information on some of the plants offered for sale in our nursery This guide contains descriptions of some of plants that have been offered for sale at the UC Santa Cruz Arboretum & Botanic Garden. This is an evolving document and may contain errors or omissions. New plants are added to inventory frequently. Many of those are not (yet) included in this collection. Please contact the Arboretum office with any questions or suggestions: [email protected] Contents copyright © 2019, 2020 UC Santa Cruz Arboretum & Botanic Gardens printed 27 February 2020 Norrie's Plant Descriptions - Index of common names A key to finding plants by their common names (Note: not all plants in this document have common names listed) Angel’s Trumpet Brown Boronia Brugmansia sp. Boronia megastigma Aster Boronia megastigma - Dark Maroon Flower Symphyotrichum chilense 'Purple Haze' Bull Banksia Australian Fuchsia Banksia grandis Correa reflexa Banksia grandis - compact coastal form Ball, everlasting, sago flower Bush Anemone Ozothamnus diosmifolius Carpenteria californica Ozothamnus diosmifolius - white flowers Carpenteria californica 'Elizabeth' Barrier Range Wattle California aster Acacia beckleri Corethrogyne filaginifolia - prostrate Bat Faced Cuphea California Fuchsia Cuphea llavea Epilobium 'Hummingbird Suite' Beach Strawberry Epilobium canum 'Silver Select' Fragaria chiloensis 'Aulon' California Pipe Vine Beard Tongue Aristolochia californica Penstemon 'Hidalgo' Cat Thyme Bird’s Nest Banksia Teucrium marum Banksia baxteri Catchfly Black Coral Pea Silene laciniata Kennedia nigricans Catmint Black Sage Nepeta × faassenii 'Blue Wonder' Salvia mellifera 'Terra Seca' Nepeta × faassenii 'Six Hills Giant' Black Sage Chilean Guava Salvia mellifera Ugni molinae Salvia mellifera 'Steve's' Chinquapin Blue Fanflower Chrysolepis chrysophylla var.
    [Show full text]