I the Mutant-Prevention Concentration (MPC)

Total Page:16

File Type:pdf, Size:1020Kb

I the Mutant-Prevention Concentration (MPC) The Mutant-Prevention Concentration (MPC): Ideas for restricting the development of fluoroquinolone resistance A Thesis Submitted to the College of Graduate Studies and Research in partial fulfillment of the requirements for the Doctoral Degree of Science in the Department of Microbiology and Immunology University of Saskatchewan Saskatoon By Glen T. Hansen Keywords: Antimicrobial resistance, Fluoroquinolone, Mutant-prevention concentration, Pseudomonas aeruginosa, Streptococus pneumoniae, © Copyright Glen Hansen, March, 2005. All rights reserved i PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the Libraries of the University may make it freely available for inspection. I further agree that permission to copy this thesis in any way, in whole or in part, for scholarly purposes only may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department of Microbiology and Immunology or the Dean of the College of Graduate Studies and Research. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without written permission. It is a also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any materials in my thesis. All requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Microbiology and Immunology University of Saskatchewan Saskatoon, Saskatchewan S7N 5E5 ii ABSTRACT The mutant-prevention concentration (MPC) is a novel susceptibility measurement defined by a concentration threshold that would require cells to contain two concurrent resistance mutations for growth. Pneuococcal pneumonia, infections caused by Pseudomonas aeruginosa, and urinary tract infections caused by Gram- negative bacilli represent three distinct clinical situations for which fluoroquinolone- resistance occurs. MPC results were defined and measured for fluoroquinolones against clinical isolates of Citrobacter freundii, Enterobacter cloacae, Escherichia. coli, Klebsiella pneumoniae, P. aeruginosa, and Streptococus pneumoniae. Against clinical isolates of S. pneumoniae, MPC results for six fluoroquinolones were measured. Based on their potential for restricting the selection of resistant mutants, the six fluoroquinolones, in descending order, were found to be gemifloxacin > moxifloxacin > trovafloxacin > gatifloxacin > grepafloxacin > levofloxacin. For several compounds, 90% of clinical isolates that lacked a known resistance mutation had a MPC value that was close to or below the serum levels that could be attained with a dosing regimen recommended by the manufacturers. These data identify gemifloxacin, moxifloxacin and gatifloxacin as good candidates for determining whether MPC can be used as a guide for choosing and eventually administering fluoroquinolones to significantly reduce the development of fluoroquinolone –resistant S. pneumoniae. MPC90 results for 155 clinical isolates of P. aeruginosa against ciprofloxacin and levofloxacin were 4 and 16 μg/ml, respectively. Serum drug concentrations reported iii previously for standard doses were above MPC90 for 5.5 hr for ciprofloxacin and 0 hr for levofloxacin. These data suggest that superior clinical performance of ciprofloxacin correlates with activity against resistant mutant subpopulations measured in vitro. MPC results were compared with minimum inhibitory concentrations (MIC) measurements preformed by agar dilution, and microbroth dilution and minimal inhibitory concentrations (MBC) for 100 clinical isolates of C. freundii (n=20), E. cloacae (n=20), E. coli (n=20), K. pneumoniae (n=20), and P. aeruginosa (n=20) for ciprofloxacin, levofloxacin and garenoxacin. MPC results were 2-to-8 fold higher than MIC or MBC results. Ciprofloxacin MPC results for E.coli, C. freundii, E. cloacae, K. pneumoniae, and P. aeruginosa were 0.5, 2, 1, 1, and 4 μg/ml, respectively. Levofloxacin, MPC results were were 1, 2, 4, 1, and 16 μg/ml, respectively. Garenoxacin, MPC were 1, 8, >8, 4, and >32 μg/ml, respectively. Garenoxacin had the highest MIC and MPC results and was the least active compound tested against isolates of C. freundii, E. cloacae, and P. aeruginosa. These data support the rational use of quinolones in the treatments of urinary tract infections and suppression of resistance. Incorporation of the MPC measurement into dosing strategies may preserve the longevity of antimicrobial compounds for future infectious diseases. iv ACKNOWLEDGEMENTS As with any major undertaking there are many individuals and organizations that have contributed to my thesis, to my education, and to my life, and it is now my great pleasure to take this opportunity to thank them. To be given an opportunity to answer a question and then to be entrusted with the confidence and support to find the answer is truly all that can be asked for by a graduate student of a supervisor. I am at a loss to express my gratitude to Dr. Joe Blondeau for the support, kindness, and education that I received under your leadership and realize that this help came during a very busy time in your career. I feel fortunate to have had a supervisor with the ability, willingness, and insight to help me reach my goals. I have been presented with unique opportunities during my graduate carrer which I will always be indebted to you for, I (and Conrad Hilton) appreciate the faith you showed in me, thank you! Finally I am grateful to you for your understanding and support in allowing me to leave the University during the final stages of my program to purse a clinical post-doctoral fellowship opportunity. I’m confident that your kindness will not go unrewarded. I would like to thank Drs. Deneer, Potter, Sanche, and Ziola for their assistance and advice. Committee members have suffered along with me during the writing stage of my thesis and their help was gratefully appreciated, the text itself has been significantly improved by their reviews. There is little doubt that I have “leaned” hard on my supervisor and committee members during this process and I would like to thank v those members who demonstrated understanding and patience along the way, I could not have realized my own objectives without the assistance of this group. I wish to thank Dr. Harry Deneer, and Dr Steve Sanche who also served as referees for me. My appreciation is also extended to Karl Drlica, Xilin Zhao and members of PHRI. Conversations, time and friendship extended to me throughout my program including time spent in New York were extremely helpful to me and influenced my research experience. I am grateful to Bayer, Bristol-Myers Squibb, Glaxco-SmithKline, and the College of Medicine at the University of Saskatchewan for provided financial support for research and travel to international meetings. I am especially grateful to Glenn Tillotson, Allan Westwood and Kathlene Gravelle for their help and support. Thanks also to the many students I have seen excel through the ranks, especially Leslie and Landon, for their “scientific input”, comic relief, and fun times. Thanks to my lab mates Shantelle, Deb, Marnie, Peter, Kelli as well as Mary Woodsworth and Karen Mochoruk. A special thanks is extended to Brad Cookson, Feric Fang, and Ajit Limaye at the University of Washington for “putting up with me” and for their understanding during this time. Finally I wish to thank my family especially my parents, for their unconditional support and absolute confidence in me and to Bina who was a constant friend. Their support of me made it possible for me to achieve success and for that I will be forever grateful. vi TABLE OF CONTENTS Page ii Permission to Use iii Abstract v Acknowledgements vii Table of Contents xiii List of Tables xv List of Figures xviii Abbreviations Used 1 1.0 Introduction 1 1.1 Quinolone Antibiotics 2 1.2 History and Development of Quinolone Agents: Structure-Activity Relationships 11 1.3 Intracellular Quinolone Targets and Quinolone Action 13 1.4 Mechanisms of Quinolone Action 14 1.5 Mechanisms of Quinolone Resistance 17 1.6 Reduced Intracellular Concentration 18 1.7 Key Pharmacokinetic and Pharmacodynamic Factors for Fluorouinolone Antibioitcs 25 1.8 The Mutant-Prevention Concentraton (MPC): In vitro Measurement of the MPC and Experimental Determination of the Mutant-Selection Window 37 2.0 Materials and Methods vii 37 2.1 Standard Laboratory Methods 37 2.1.1 Isolate Collection and Identification 38 2.1.2 Storage of the Bacterial Isolates 39 2.2 Susceptibility Testing 39 2.2.1 Broth Microdilution 40 2.2.2 Broth Microdilution using CCCP 41 2.2.3 MBC Testing 41 2.2.4 E-Test 42 2.2.5 Vitek Results 43 2.2.6 Agar Dilution 43 2.3 Mutant-Prevention Concentration (MPC) 43 2.3.1 Inoculum Preparation and MPC Testing Procedure 47 2.3.2 Mutant Selection Curves 47 2.3.3 Viable Counts 48 2.4 Characterization of First-step Mutants 48 2.4.1 DNA Isolation, Amplification and Nucleotide Sequence Determination for S. pneumoniae 50 2.4.2 DNA Isolation, Amplification and Nucleotide Sequence Determination for Recovered Mutants of P. aeruginosa 51 2.4.3 Primer Preparation and Storage 51 2.4.4 Analysis of PCR Products 51 2.5 Pulsed-Field Gel Electrophoresis (PFGE) for Clinical Isolates of P. aeruginosa viii 51 2.5.1 DNA Extraction 51 2.5.2 Cell Disruption 52 2.5.3 Proteinase K Treatment 52 2.5.4 Inactivation of Proteinase K 52 2.5.5 Storage of Plugs 53 2.5.6 Restriction Endonuclease Digestion 53 2.5.7 Preparation of the Gels 53 2.5.8 Staining Procedure 54 2.6 Killing of S. pneumoniae by Fluoroquinolones Assessed with Conventional Kill Curves 55 2.7 Killing of P. aeruginosa by Ciprofloxacin and Levofloxacin Assessed with MPC-based Kill Curve Experiments 56 2.8 Ciprofloxacin and Levofloxacin Efficacy in a Rat Abscess Model of P.
Recommended publications
  • TROVAN® Tablets(Trovafloxacin Mesylate)
    TROVAN- trovafloxacin mesylate tablet, film coated TROVAN- trovafloxacin mesylate injection, solution, concentrate Roerig ---------- TROVAN® Tablets (trovafloxacin mesylate) TROVAN® I.V. (alatrofloxacin mesylate injection) For Intravenous Infusion TROVAN® HAS BEEN ASSOCIATED WITH SERIOUS LIVER INJURY LEADING TO LIVER TRANSPLANTATION AND/OR DEATH. TROVAN-ASSOCIATED LIVER INJURY HAS BEEN REPORTED WITH BOTH SHORT-TERM AND LONG-TERM DRUG EXPOSURE. TROVAN USE EXCEEDING 2 WEEKS IN DURATION IS ASSOCIATED WITH A SIGNIFICANTLY INCREASED RISK OF SERIOUS LIVER INJURY. LIVER INJURY HAS ALSO BEEN REPORTED FOLLOWING TROVAN RE- EXPOSURE. TROVAN SHOULD BE RESERVED FOR USE IN PATIENTS WITH SERIOUS, LIFE- OR LIMB-THREATENING INFECTIONS WHO RECEIVE THEIR INITIAL THERAPY IN AN IN-PATIENT HEALTH CARE FACILITY (I.E., HOSPITAL OR LONG-TERM NURSING CARE FACILITY). TROVAN SHOULD NOT BE USED WHEN SAFER, ALTERNATIVE ANTIMICROBIAL THERAPY WILL BE EFFECTIVE. (SEE WARNINGS.) TROVAN is available as TROVAN Tablets (trovafloxacin mesylate) for oral administration and as TROVAN I.V. (alatrofloxacin mesylate injection), a prodrug of trovafloxacin, for intravenous administration. DESCRIPTION TROVAN Tablets TROVAN Tablets contain trovafloxacin mesylate, a synthetic broad-spectrum antibacterial agent for oral administration. Chemically, trovafloxacin mesylate, a fluoronaphthyridone related to the fluoroquinolone antibacterials, is (1α, 5α, 6α)-7-(6-amino-3-azabicyclo[3.1.0]hex-3-yl)-1-(2,4- difluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, monomethanesulfonate. Trovafloxacin mesylate differs from other quinolone derivatives by having a 1,8-naphthyridine nucleus. The chemical structure is: Its empirical formula is C20H15F3N4O3•CH3SO3H and its molecular weight is 512.46. Trovafloxacin mesylate is a white to off-white powder.
    [Show full text]
  • Exploiting the Potential of Transforming Anti-Bacterial Xacins
    SCIOL BIOTECHNOLOGY ISSN: 2631-4061 RESEARCH ArtiCLE Exploiting the Potential of Transforming Anti- Bacterial Xacins into Anti-Tumor Hit Compounds Zhi-Gang Sun1,2*, Qing Yuan1 and Yu-Shun Yang1* 1School of Life Sciences, Nanjing University, Nanjing 210023, China 2Central Laboratory, Linyi Central Hospital, Linyi 276400, Shandong, China *Correspondence to: Abstract Zhi-Gang Sun and Yu-Shun Yang Objectives: Exploit the possibility of turning anti-bacterial drugs, xacins, into anti-tumor hit compounds. Citation: Zhi-Gang S, Yuan Q, Yu-Shun Y (2018) Exploiting Materials and methods: Data of xacins were collected. The energy minimization and mo- the Potential of Transform- lecular overlay were conducted to evaluate the consistency in conformation. Docking sim- ulation into topoisomerases was performed to develop possible inhibitors from the usual ing Anti-Bacterial Xacins into anti-bacterial drugs. Anti-Tumor Hit Compounds. SCIOL Biotechnol 2018;1:83- Results: The energy minimization and molecular overlay showed good consistency. The 88 binding situations were available for developing prodrugs for Topo II and Topo III from the xacins. Alatrofloxacin was the top hit into both Topo II and Topo III. Accepted: December 12, 2018 Published: December 14, 2018 Conclusions: The traditional anti-bacterial xacins were potential hit compounds for devel- oping Human Topo II and Topo III inhibitors. Introduction Along with the development of the modern society, the risk of suffering from cancer has become a worldwide and urgent problem with increasing occurrence [1]. Though researchers have achieved tremendous progress on novel agents and therapeutic methods, more and more drugs and techniques in medicinal chemistry are still in emergency 2[ ].
    [Show full text]
  • CPT / HCPCS Code Drug Description Approximate Cost Share
    The information listed here is for our most prevalent plan. The amount you pay for a covered drug will depend on your plan’s coverage. Please refer to your Medical Plan GTB for more information. To find out the cost of your drugs, please contact HMSA Customer Service at 1-800-776-4672. If you receive services from a nonparticipating provider, you are responsible for a copayment plus any difference between the actual charge and the eligible charge. Legend $0 = no cost share $ = $100 and under $$ = over $100 to $250 $$$ = over $250 to $500 $$$$ = over $500 to $1000 $$$$$ = over $1000 1 = Please call HMSA Customer Service 1-800-776-4672 for cost share information. 2 = The cost share for this drug is dependent upon the diagnosis. Please call HMSA Customer Service at 1-800-772-4672 for more information. 3 = Cost share information for these drugs is dependent upon the dose prescribed. Please call HMSA Customer Service at 1- 800-772-4672 for more information. CPT / HCPCS approximate Code Drug Description cost share J0129 Abatacept Injection $$$$ J0130 Abciximab Injection 3 J0131 Acetaminophen Injection $ J0132 Acetylcysteine Injection $ J0133 Acyclovir Injection $ J0135 Adalimumab Injection $$$$ J0153 Adenosine Inj 1Mg $ J0171 Adrenalin Epinephrine Inject $ J0178 Aflibercept Injection $$$ J0180 Agalsidase Beta Injection 3 J0200 Alatrofloxacin Mesylate 3 J0205 Alglucerase Injection 3 J0207 Amifostine 3 J0210 Methyldopate Hcl Injection 3 J0215 Alefacept 3 J0220 Alglucosidase Alfa Injection 3 J0221 Lumizyme Injection 3 J0256 Alpha 1 Proteinase Inhibitor
    [Show full text]
  • CLOSED PODS Information Sheets
    SUMMIT COUNTY PUBLIC HEALTH CLOSED PODS Information Sheets Generic Names of Doxycycline, Ciprofloxacin, and AmoxicillinDOXYCYCLINE / TETRACYCLINE Achromycin Minocin Adoxa Minocycline Arestin Monodox Atridox Myrac Declomycin Oracea Demeclocycline Periodox Doryx Solodyn Doxy Sumycin Doxycycline Tetracycline Dynacin Tigecycline Tygacil Vibramycin Vibra-tabs CIPROFLOXACIN / QUINOLONE / FLUOROQUINOLONE Avelox Maxaquin Cinobac Moxifloxacin HCL Cinoxacin Nalidixic Acid Cipro NegGram Ciprofloxacin Norfloxacin Factive Noroxin Floxin Ofloxacin Gemifloxacin Mesylate Proquin XR Levaquin Sparfloxacin Levofloxacin Trovafloxacin/Alatrofloxacin Mesylate Lomefloxacin HCL Trovan Zagam AMOXICILLIN / PENICILLIN Amoclan Cefotan Keflex Tazicef Amoxicillin Cefotaxime Maxipime Tazidime Amoxicillin/Clavulanate Cefotetan Mefoxin Tazocin Amoxil Cefoxitin Moxatag Ticar Ampicillin Cefpodoxime Nafcil Ticarcillin Ampicillin/Sulbactam Cefprozil Nafcillin Ticarcillin/Clavulanate Augmentin Ceftazidime Omnicef Timentin Bactocill Ceftibuten Oxacillin Trimox Bicillin CR Ceftin Pen VK Unasyn Bicillin LA Ceftizoxime Pencillin G Vantin Carbenicillin Indanyl Sodium Ceftriaxone Penicillin V Veetids Ceclor Cefuroxime Permapen Wycillin Cedax Cefzil PfizerPen Zinacef Cefaclor Cephalexin Piperacillin Zosyn Cefadroxil Cephazolin Piperacillin/Tazobactam Cefazolin Ceptaz Pipracil Cefdinir Claforan Principen Cefditoren Pivoxil Diclox Raniclor Cefepime HCL Dicloxacillin Rocephin Cefixime DisperMox Spectracef Cefizox Duricef Suprax Cefobid Fortaz Cefoperazone Geocillin Sample Information
    [Show full text]
  • Standing Order for Tularemia Prophylaxis
    OREGON HEALTH AUTHORITY PUBLIC HEALTH DIVISION ACUTE AND COMMUNICABLE DISEASE PREVENTION SECTION Tularemia Prophylaxis I. OREGON MODEL PROTOCOL 1. Follow the nursing assessment of individuals presenting for prophylactic treatment to a known or potentially harmful biological agent. 2. Provide patient information about tularemia and the preventive antibiotics prior to administration, answering any questions 3. Dispense antibiotic prophylaxis in accordance with prophylactic treatment guidelines (Table 1) and within the restrictions of the guidelines of the Strategic National Stockpile program. ________________________________________________________ Signature, Health Officer Date II. Persons for whom prophylaxis may be dispensed The World Health Organization recommends post-exposure prophylaxis in the following settings: 1. Exposure of laboratory personnel to Francisella tularensis in the absence of proper infection control measures; 2. Exposure to an aerosolized release of Francisella tularensis. Tularemia Page 2 of 15 Table 1 Recommendations for Treatment of Patients with Tularemia in a Mass Casualty Setting and for Post-exposure Prophylaxis a Preferred Choices Adults Doxycycline, 100 mg orally twice daily b Ciprofloxacin, 500 mg orally twice daily Preferred Choices Doxycycline; if ≥45 kg, give 100 mg orally twice daily; Children Doxycycline, if <45 kg, give 2.2 mg/kg orally twice daily; Ciprofloxacin, 10–15 mg/kg orally twice daily c Preferred Choices Pregnant women Ciprofloxacin, 500 mg orally twice daily b Doxycycline, 100 mg orally twice daily a One antibiotic, appropriate for patient age, should be chosen from among alternatives. The duration of all recommended therapies in Table 1 is 14 days. b Not a US Food and Drug Administration–approved use. c Ciprofloxacin dosage should not exceed 1g/d in children.
    [Show full text]
  • Appendix C Medication Tables
    Appendix C Medication Tables Note: The medication tables are not meant to be inclusive lists of all available therapeutic agents. Approved medication tables will be updated regularly. Discrepancies must be reported. See Resource Section of this manual for additional contact information. Release Notes: Aspirin Table Version 1.0 Table 1.1 Aspirin and Aspirin-Containing Medications Acetylsalicylic Acid Acuprin 81 Alka-Seltzer Alka-Seltzer Morning Relief Anacin Arthritis Foundation Aspirin Arthritis Pain Ascriptin Arthritis Pain Formula ASA ASA Baby ASA Baby Chewable ASA Baby Coated ASA Bayer ASA Bayer Children's ASA Buffered ASA Children's ASA EC ASA Enteric Coated ASA/Maalox Ascriptin Aspergum Aspir-10 Aspir-Low Aspir-Lox Aspir-Mox Aspir-Trin Aspirbuf Aspircaf Aspirin Aspirin Baby Aspirin Bayer Aspirin Bayer Children's Aspirin Buffered Aspirin Child Aspirin Child Chewable Aspirin Children's Aspirin EC Aspirin Enteric Coated Specifications Manual for National Appendix C-1 Hospital Quality Measures Table 1.1 Aspirin and Aspirin-Containing Medications (continued) Aspirin Litecoat Aspirin Lo-Dose Aspirin Low Strength Aspirin Tri-Buffered Aspirin, Extended Release Aspirin/butalbital/caffeine Aspirin/caffeine Aspirin/pravachol Aspirin/pravastatin Aspirtab Bayer Aspirin Bayer Aspirin PM Extra Strength Bayer Children’s Bayer EC Bayer Enteric Coated Bayer Low Strength Bayer Plus Buffered ASA Buffered Aspirin Buffered Baby ASA Bufferin Bufferin Arthritis Strength Bufferin Extra Strength Buffex Cama Arthritis Reliever Child’s Aspirin Coated Aspirin
    [Show full text]
  • Aminoglycosides) – Inhibition of Transpeptidation (Chloramphenicol) – Inhibition of Trna Translocation (Erythromycin) Resistance
    Antibiotics Antibiotics – mode of action • Interference with of bacterial wall synthesis - (betalactams, glycopeptides) • Interference with DNA synthesis - (gyrase inhibitors) • Antimetabolites - (sulfonamides, trimethoprim) • Interference with proteosynthesis on various levels – prevention of tRNA link (tetracycline) – mRNA reading failure (aminoglycosides) – Inhibition of transpeptidation (chloramphenicol) – Inhibition of tRNA translocation (erythromycin) Resistance • Natural (target structure not present) • Acquired – Chromosomal - mutations - rare – Extra chromosomal - plasmids - frequent • plasmids – segments of DNA with ability of independent replication carrying gens coding resistence – Transfer – conjugation of bacteria - plasmids – Transduction by means of fags – Transposes - plasmid/plasmid, plasmid/chromosome and vice versa – Transformation - DNA Antibiotics - biochemical mechanisms of resistance • Production of inactivating enzymes – betalactamases - (penicillins, cefalosporins) – acetyltransferases - (chloramphenicol) – kinases - (aminoglycosides) – methylases - (tetracyclines) • Alteration of binding site - (betalactams, macrolides, aminoglycosides) • Reduction of antibiotic uptake - (tetracyclines) • Alteration of dihydrofolat reductase - (sulfonamides) • Efflux pumps - (more groups of antibiotics) • Change in bacterial wall permeability - (betalactams) Bacterial wall: G+ bacteria Bacterial wall: G- bacteria Penetration of IV. generation cephalosporins accross bacterial wall in G- bacteria Penetration of antibiotics across
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Fluoroquinolones Reported Hepatotoxicity
    Pharmacology & Pharmacy, 2012, 3, 328-336 http://dx.doi.org/10.4236/pp.2012.33044 Published Online July 2012 (http://www.SciRP.org/journal/pp) Fluoroquinolones Reported Hepatotoxicity Elias Adikwu*, Oputiri Deo Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria. Email: *[email protected] Received March 4th, 2012; revised April 10th, 2012; accepted May 4th, 2012 ABSTRACT Fluoroquinolones are known to be safe and well tolerated. They are said to have the widest clinical acceptability when compared with other antibiotics. Their reported side effects include gastrointestinal tract, central nervous system effect and blood disorder. Rare side effects include phototoxicity, hypersensitivity, convulsion, psychosis, tendinitis, hypo- glycemia, cardiotoxicity and nephrotoxicity. Some of these side effects have led to the withdrawal of some fluoroqui- nolones like travofloxacin from clinical use in some countries. Of recent fluoroquinolones induce cardiotoxicity and hepatotoxicity has gain attention. Due to increasing reports on fluoroquinolones associated hepatotoxicity in experi- mental Animal studies and clinical experience. This study reviews reported hepatotoxicity associated with clinically used fluoroquinolones and their safety profile on liver function. It was observed that some fluoroquinolones may have hepatotoxic potential. Reported fluoroquinolones induce hepatotoxicity manifested as hepatitis, pancreatis, jaundice, liver injury and hepatic failure. Most reported cases of fluoroquinolones induced hepatotoxicity were marked by ele- vated levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, direct bilirubin, total bilirubin and prolong prothrobin time. In some reported cases liver biopsy revealed hepatocellular damage, necrosis and degeneration. Mixed inflammatory infiltrates containing eosinophils, portal edema, bile ductular proliferation and lobu- lar cholestasis were also observed in some cases.
    [Show full text]
  • Page 1 FINLANDS FÖRFATTNINGSSAMLING Utgiven I Helsingfors
    FINLANDS FÖRFATTNINGSSAMLING MuuMnrovvvvBeslutom läkemedelsförteckning asia av Säkerhets- och utvecklingscentret för läkemedelsområdet Utgiven i Helsingfors den 23 mars 2016 201/2016 Beslut av Säkerhets- och utvecklingscentret för läkemedelsområdet om läkemedelsförteckning Säkerhets- och utvecklingscentret för läkemedelsområdet har med stöd av 83 § i läke- medelslagen av den 10 april 1987 (395/1987) beslutat fastställa följande läkemedelsför- teckning: 1§ Förteckningens syfte Föreliggande beslut innehåller en förteckning över ämnen och droger som används medicinskt i Finland. Läkemedelsförteckningen upprättas med beaktande av bestämmel- serna i 3 och 5 § i läkemedelslagen. Med läkemedel avses ett preparat eller ämne vars ändamål är att vid invärtes eller ut- värtes bruk bota, lindra eller förebygga sjukdomar eller sjukdomssymtom hos människor eller djur. Som läkemedel betraktas också ett sådant ämne eller en sådan kombination av ämnen för invärtes eller utvärtes bruk som kan användas för att genom farmakologisk, im- munologisk eller metabolisk verkan återställa, korrigera eller modifiera fysiologiska funk- tioner eller utröna hälsotillståndet eller sjukdomsorsaker hos människor eller djur. Läkemedelsförteckningen är inte uttömmande. Till läkemedel räknas även sådana äm- nen och droger som inte nämns i denna förteckning men som uppfyller definitionen av lä- kemedel i läkemedelslagen. Utöver fastställande av läkemedelsförteckningen beslutar Säkerhets- och utvecklings- centret för läkemedelsområdet med stöd av 6 § i läkemedelslagen vid behov om ett ämne eller ett preparat ska betraktas som ett läkemedel. Centret beslutar separat i respektive fall om ett preparat som innehåller ett ämne i förteckningen ska betraktas som ett läkemedel med beaktande av produktens framställningssätt, sammansättning, dess farmakologiska egenskaper, hur det används, dess spridning, hur känt det är hos konsumenterna och de ris- ker som kan vara förenade med dess användning.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom Et Al
    USOO8383154B2 (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom et al. (45) Date of Patent: Feb. 26, 2013 (54) SWELLABLE DOSAGE FORM COMPRISING W W 2.3. A. 3. 2. GELLAN GUMI WO WOO1,76610 10, 2001 WO WOO2,46571 A2 6, 2002 (75) Inventors: Daniel Bar-Shalom, Kokkedal (DK); WO WO O2/49571 A2 6, 2002 Lillian Slot, Virum (DK); Gina Fischer, WO WO 03/043638 A1 5, 2003 yerlosea (DK), Pernille Heyrup WO WO 2004/096906 A1 11, 2004 Hemmingsen, Bagsvaerd (DK) WO WO 2005/007074 1, 2005 WO WO 2005/007074 A 1, 2005 (73) Assignee: Egalet A/S, Vaerlose (DK) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 JECFA, “Gellangum”. FNP 52 Addendum 4 (1996).* U.S.C. 154(b) by 1259 days. JECFA, “Talc”, FNP 52 Addendum 1 (1992).* Alterna LLC, “ElixSure, Allergy Formula', description and label (21) Appl. No.: 111596,123 directions, online (Feb. 6, 2007). Hagerström, H., “Polymer gels as pharmaceutical dosage forms'. (22) PCT Filed: May 11, 2005 comprehensive Summaries of Uppsala dissertations from the faculty of pharmacy, vol. 293 Uppsala (2003). (86). PCT No.: PCT/DK2OOS/OOO317 Lin, “Gellan Gum', U.S. Food and Drug Administration, www. inchem.org, online (Jan. 17, 2005). S371 (c)(1), Miyazaki, S., et al., “In situ-gelling gellan formulations as vehicles (2), (4) Date: Aug. 14, 2007 for oral drug delivery”. J. Control Release, vol. 60, pp. 287-295 (1999). (87) PCT Pub. No.: WO2005/107713 Rowe, Raymond C.
    [Show full text]
  • Wo 2007/095187 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 23 August 2007 (23.08.2007) PCT WO 2007/095187 A2 (51) International Patent Classification: Not classified 29, D-85630 Grasbrunn (DE). THORMANN, Michael [DE/DE]; Kopernikusweg 1, D-82152 Martinsried (DE). (21) International Application Number: TREML, Andreas [DE/DE]; Bermeister Stolzl Str. 11, PCT/US2007/003698 94249 Bodenmais (DE). (22) International Filing Date: (74) Agent: JARRELL, Brenda, Herschbach; Choate, Hall & 13 February 2007 (13.02.2007) Stewart, Two International Place, Boston, MA 021 10 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (30) Priority Data: GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, 60/772,648 13 February 2006 (13.02.2006) US JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, 60/835,596 4 August 2006 (04.08.2006) US LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, (71) Applicants (for all designated States except US): RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TRUSTEES OF BOSTON UNIVERSITY [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW One Sherborn Street, Boston, MA 02215 (US).
    [Show full text]