Common Caribbean Shorebirds: ID Guide

Total Page:16

File Type:pdf, Size:1020Kb

Common Caribbean Shorebirds: ID Guide Common Caribbean Shorebirds: ID Guide Large Medium Small 14”-18” 35 - 46 cm 8.5”-12” 22 - 31 cm 6”- 8” 15 - 20 cm Large Shorebirds Medium Shorebirds Small Shorebirds Whimbrel 17.5” 44.5 cm Lesser Yellowlegs 9.5” 24 cm Wilson’s Plover 7.75” 19.5 cm Spotted Sandpiper 7.5” 19 cm American Oystercatcher 17.5” 44.5 cm Black-bellied Plover 11.5” 29 cm Sanderling 7.75” 19.5 cm Western Sandpiper 6.5” 16.5 cm Willet 15” 38 cm Short-billed Dowitcher 11” 28 cm White-rumped Sandpiper 6” 15 cm Greater Yellowlegs 14” 35.5 cm Ruddy Turnstone 9.5” 24 cm Semipalmated Sandpiper 6.25” 16 cm 6.25” 16 cm American Avocet* 18” 46 cm Red Knot 10.5” 26.5 cm Snowy Plover Least Sandpiper 6” 15 cm 14” 35.5 cm 8.5” 21.5 cm Semipalmated Plover Black-necked Stilt* Pectoral Sandpiper 7.25” 18.5 cm Killdeer* 10.5” 26.5 cm Piping Plover 7.25” 18.5 cm Stilt Sandpiper* 8.5” 21.5 cm Lesser Yellowlegs & Ruddy Turnstone: Brad Winn; Red Knot: Anthony Levesque; Pectoral Sandpiper & *not pictured Solitary Sandpiper* 8.5” 21.5 cm White-rumped Sandpiper: Nick Dorian; All other photos: Walker Golder Clues to help identify shorebirds Size & Shape Bill Length & Shape Foraging Behavior Size Length Sandpipers How big is it compared to other birds? Peeps (Semipalmated, Western, Least) Walk or run with the head down, picking and probing Spotted Sandpiper Short Medium As long Longer as head than head Bobs tail up and down when walking Plovers, Turnstone or standing Small Medium Large Sandpipers White-rumped Sandpiper Tail tips up while probing Yellowlegs Overall Body Shape Stilt Sandpiper Whimbrel, Oystercatcher, Probes mud like “oil derrick,” Willet, rear end tips up Dowitcher, Curvature Plovers Stilt, Avocet Run & stop, pick, hiccup, run & stop Elongate Compact Yellowlegs Specific Body Parts Stroll and pick Bill & leg color Straight Upturned Dowitchers Eye size Plovers = larger, sandpipers = smaller Tip slightly Probe mud with “sewing machine” Leg & neck length downcurved Downcurved bill, body stays horizontal .
Recommended publications
  • Semipalmated Sandpiper Calidris Pusilla in Brazil: Occurrence Away from the Coast and a New Record for the Central-West Region
    Revista Brasileira de Ornitologia 27(3): 218–221. SHORT-COMMUNICARTICLEATION September 2019 Semipalmated Sandpiper Calidris pusilla in Brazil: occurrence away from the coast and a new record for the central-west region Karla Dayane de Lima Pereira1,3 & Jayrson Araújo de Oliveira2 1 Programa Integrado de Estudos da Fauna da Região Centro Oeste do Brasil (FaunaCO), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil. 2 Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil. 3 Corresponding author: karla.biologia@yahoo.com.br Received on 27 March 2019. Accepted on 16 September 2019. ABSTRACT: The Semipalmated Sandpiper, Calidris pusilla, is a Western Hemisphere migrant shorebird for which Brazil forms an internationally important contranuptial area. In Brazil, the species main contranuptial areas is along the Atlantic Ocean coast, in the north and northeast regions. In addition to these primary contranuptial areas, there are also records of vagrants widely distributed across Brazil. Here, we review the occurrence of vagrants of this species in Brazil, and document a new record of C. pusilla for the central-west region and a first occurrence for the state of Goiás. KEY-WORDS: geographical distribution, Nearctic migrant, shorebird, state of Goiás, vagrant. The Semipalmated Sandpiper Calidris pusilla (Linnaeus, of Mato Grosso (Cintra 2011, Levatich & Padilha 2019) 1766) is a migratory shorebird species that breeds in and two in the municipality of Corumbá, state of Mato the Arctic and sub-Arctic regions of Alaska and Canada Grosso do Sul (Serrano 2010, Tubelis & Tomas 2003). (Andres et al. 2012, IUCN 2019). Every year, as the However, there is no evidence that these records have northern autumn approaches, Arctic populations fly been correctly identified, as individuals appear not to from 3000 to 4000 km to South America (Hicklin & have been collected and sent to a scientific collection, nor Gratto-Trevor 2010).
    [Show full text]
  • Field Identification of Smaller Sandpipers Within the Genus <I
    Field identification of smaller sandpipers within the genus C/dr/s Richard R. Veit and Lars Jonsson Paintings and line drawings by Lars Jonsson INTRODUCTION the hand, we recommend that the reader threeNearctic species, the Semipalmated refer to the speciesaccounts of Prateret Sandpiper (C. pusilia), the Western HESMALL Calidris sandpipers, affec- al. (1977) or Cramp and Simmons Sandpiper(C. mauri) andthe LeastSand- tionatelyreferred to as "peeps" in (1983). Our conclusionsin this paperare piper (C. minutilla), and four Palearctic North America, and as "stints" in Britain, basedupon our own extensivefield expe- species,the primarilywestern Little Stint haveprovided notoriously thorny identi- rience,which, betweenus, includesfirst- (C. minuta), the easternRufous-necked ficationproblems for many years. The hand familiarity with all sevenspecies. Stint (C. ruficollis), the eastern Long- first comprehensiveefforts to elucidate We also examined specimensin the toed Stint (C. subminuta)and the wide- thepicture were two paperspublished in AmericanMuseum of Natural History, spread Temminck's Stint (C. tem- Brtttsh Birds (Wallace 1974, 1979) in Museumof ComparativeZoology, Los minckii).Four of thesespecies, pusilla, whichthe problem was approached from Angeles County Museum, San Diego mauri, minuta and ruficollis, breed on the Britishperspective of distinguishing Natural History Museum, Louisiana arctictundra and are found during migra- vagrant Nearctic or eastern Palearctic State UniversityMuseum of Zoology, tion in flocksof up to thousandsof
    [Show full text]
  • Age-Related Differences in Ruddy Turnstone Foraging and Aggressive Behavior
    AGE-RELATED DIFFERENCES IN RUDDY TURNSTONE FORAGING AND AGGRESSIVE BEHAVIOR SARAH GROVES ABSTRACT.--Theforaging behavior of fall migrant Ruddy Turnstoneswas studiedon the Mas- sachusettscoast on 2 different substrates,barnacle-covered rocks and sand and weed-litteredflats. Foragingrates differedsignificantly between the 2 substrates.On eachsubstrate the foragingand successrates of adults and juveniles differed significantly while the frequenciesof successwere similarfor both age-classes.The observeddifferences in foragingrates of adultsand juvenilesmay be due to the degreeof refinementof foragingtechniques. Experience in searchingfor and handling prey may be a primary factor accountingfor thesedifferences, and foragingperformance probably improves with age and experience.Alternatively, the differencesmay be due to the presenceof inefficient juveniles that do not survive to adulthood. Both adultsand juveniles in the tall-depressedposture were dominant in aggressiveinteractions much morefrequently than birds in the tall-levelposture. In mixedflocks of foragingadult and juvenile turnstones,the four possibletypes of aggressiveinteractions occurred nonrandomly. Adult over juvenile interactionsoccurred more frequently than expected,and juvenile over adult interac- tions were never seen.A tentative explanationof this phenomenonmay be that juveniles misinter- pret or respondambivalently to messagesconveyed behaviorally by adultsand thusbecome espe- cially vulnerableto aggressionby adults.The transiencyof migrantsmade it unfeasibleto evaluate
    [Show full text]
  • Solitary Sandpipers Nesting in Montana
    Solitary Sandpipers Breeding in Montana Progress Report for the 2020 Field Season and Summary of Past Work Montana Bird Advocacy, Missoula, Montana 2 March 2021 Most Solitary Sandpipers (Tringa solitaria) breed in Alaska and Canada near wetlands surrounded by boreal forest habitat. They were first confirmed breeding in the contiguous United States in northern Minnesota in 1973 (Savoloja 1973). Additional nesting attempts (dependent young, not nests with eggs) were documented annually in Minnesota from 1982–1984 and in 1987, 2012, and 2013 (Hoffman and Hoffman 1982, Pfannmuller et al. 2017). Solitary Sandpipers were strongly suspected to have nested in Oregon several times between 1981 and 1995 (Sawyer 1981, Lundsten 1996), but no nest or dependent young were observed. The species had never been documented nesting in Montana prior to our work in 2018 (Marks et al. 2016). Recent observations from Glacier National Park (GNP) suggested that they bred in the state. Single adults were observed at two wetlands during the summer of 2007 and at a third location in 2010, 2011, and 2016 (see Tables 1 & 2) as they vocalized and perched in trees, which are typical behaviors of breeding birds but not of migrants (Paulson 1993). These three sites were on the west side of the park. Also, birds that may have been territorial were seen at two unnamed lakes near the eastern boundary of the park in June and July of 2013 (Steve Gniadek, pers. comm.). Habitat at these sites is similar to that at breeding sites in Canada. We documented the first nesting attempt known for Solitary Sandpipers in Montana in 2018 at Sondreson Meadow just outside the boundary of GNP (Fig.
    [Show full text]
  • The First Semipalmated Sandpiper for Estonia
    The first Semipalmated Sandpiper for Estonia Uku Paal The Story Winter-listing is something that helps to keep our birding community sane during the darkest months of the year. The idea is simple - if you nail a species between December and February then you’ve got your winter-tick. It is a good way to motivate birders to gather phenological data in the bleakest season, and to convince yourself that you are actually seeing something good when bumping into a Common Snipe in mid-December! Plate 1. Semipalmated Sandpiper Calidris pusilla. Rahuste, Estonia December 2011 (below) compared with an individual from Paracas, Peru, November 2014. Note the head pattern, bill structure and shaft-streaks of scapular and mantle feathers. This and some other photos were published on the web for seven years without any feedback. The late autumn of 2011 looked perfect to get some lingering migrants, as the warm weather was going strong well into January. In the first few days of December, I usually try to get to the west coast in the hope of some lost migrants, and so I packed myself off with Mari and Margus and headed to Saaremaa. Coastal meadows here are often hold a good selection of birds... We start at Türju lighthouse on the 3rd of December with a seawatching session. Nothing shocking this time with the usual Red-throated Divers, Razorbills, and a lone Red-necked Grebe passing. Rahuste coastal meadow is obviously the next site – a well-known place for getting some late birds. The situation looks exceptionally good. After trampling the area for couple of hours we manage to find White Wagtail, Skylark, five Common Snipe, two Pintail, 15 Lapwing, two Common Redshank, Grey Plover and Brant Goose among many other birds.
    [Show full text]
  • The Promiseuous Pectoral Sandpiper
    BEHAVIOR The promiscuous Pectoral Sandpiper "nothing evolvesNorth Slope tundra more certainly than a male Pectoral Sandpiper, hooting through chilled Alaskan mist" J.P. Myers [sBARROW,ALASKA, the Pectoral a pendulous, fat-filled organ hanging deep o6-ah, o6-ah, o6-ah each syllable andpiper seasonbegins with a few prominently even while the male stands separated by a moment's silence and distant hoots sometime between the 5th immobile (Fig. 1). Its outline is en- repeatedtwo or three timesper second and 10thof June. At first hearing one has hanced by sharp contrast with the white for l0 to 15 seconds½Fig. 3 and record). difficulty accepting its source as arian. vent, and more still by the way the male Viewing this display in profile is star- The hoot is a fog horn, a sonar beam, an erects his feathers to expose their tling, but imagine what a female Pec- electronic oscillator bearing no relation darker base. toral sees. More often than not she to the sounds about it. Even after bird But the sac comes into its own when serves as the focus of his flight: the and call are linked it seems preposter- the male takes flight to hoot (Fig. 2). He male's path takes him directly over her ous. The way the call is made, the bodily flies low over the tundra, often within a in mid-hoot, perhaps only 5 cm from her distortions that male goes through to few centimeters of the upper blades of head as she feeds in the grass. He make its hoot, are visually just as odd as grass and sedge.
    [Show full text]
  • Population Analysis and Community Workshop for Far Eastern Curlew Conservation Action in Pantai Cemara, Desa Sungai Cemara – Jambi
    POPULATION ANALYSIS AND COMMUNITY WORKSHOP FOR FAR EASTERN CURLEW CONSERVATION ACTION IN PANTAI CEMARA, DESA SUNGAI CEMARA – JAMBI Final Report Small Grant Fund of the EAAFP Far Eastern Curlew Task Force Iwan Febrianto, Cipto Dwi Handono & Ragil S. Rihadini Jambi, Indonesia 2019 The aim of this project are to Identify the condition of Far Eastern Curlew Population and the remaining potential sites for Far Eastern Curlew stopover in Sumatera, Indonesia and protect the remaining stopover sites for Far Eastern Curlew by educating the government, local people and community around the sites as the effort of reducing the threat of habitat degradation, habitat loss and human disturbance at stopover area. INTRODUCTION The Far Eastern Curlew (Numenius madagascariencis) is the largest shorebird in the world and is endemic to East Asian – Australian Flyway. It is one of the Endangered migratory shorebird with estimated global population at 38.000 individual, although a more recent update now estimates the population at 32.000 (Wetland International, 2015 in BirdLife International, 2017). An analysis of monitoring data collected from around Australia and New Zealand (Studds et al. in prep. In BirdLife International, 2017) suggests that the species has declined much more rapidly than was previously thought; with an annual rate of decline of 0.058 equating to a loss of 81.7% over three generations. Habitat loss occuring as a result of development is the most significant threat currently affecting migratory shorebird along the EAAF (Melville et al. 2016 in EAAFP 2017). Loss of habitat at critical stopover sites in the Yellow Sea is suspected to be the key threat to this species and given that it is restricted to East Asian - Australasian Flyway, the declines in the non-breeding are to be representative of the global population.
    [Show full text]
  • Draft Version Target Shorebird Species List
    Draft Version Target Shorebird Species List The target species list (species to be surveyed) should not change over the course of the study, therefore determining the target species list is an important project design task. Because waterbirds, including shorebirds, can occur in very high numbers in a census area, it is often not possible to count all species without compromising the quality of the survey data. For the basic shorebird census program (protocol 1), we recommend counting all shorebirds (sub-Order Charadrii), all raptors (hawks, falcons, owls, etc.), Common Ravens, and American Crows. This list of species is available on our field data forms, which can be downloaded from this site, and as a drop-down list on our online data entry form. If a very rare species occurs on a shorebird area survey, the species will need to be submitted with good documentation as a narrative note with the survey data. Project goals that could preclude counting all species include surveys designed to search for color-marked birds or post- breeding season counts of age-classed bird to obtain age ratios for a species. When conducting a census, you should identify as many of the shorebirds as possible to species; sometimes, however, this is not possible. For example, dowitchers often cannot be separated under censuses conditions, and at a distance or under poor lighting, it may not be possible to distinguish some species such as small Calidris sandpipers. We have provided codes for species combinations that commonly are reported on censuses. Combined codes are still species-specific and you should use the code that provides as much information as possible about the potential species combination you designate.
    [Show full text]
  • The All-Bird Bulletin
    Advancing Integrated Bird Conservation in North America Spring 2014 Inside this issue: The All-Bird Bulletin Protecting Habitat for 4 the Buff-breasted Sandpiper in Bolivia The Neotropical Migratory Bird Conservation Conserving the “Jewels 6 Act (NMBCA): Thirteen Years of Hemispheric in the Crown” for Neotropical Migrants Bird Conservation Guy Foulks, Program Coordinator, Division of Bird Habitat Conservation, U.S. Fish and Bird Conservation in 8 Wildlife Service (USFWS) Costa Rica’s Agricultural Matrix In 2000, responding to alarming declines in many Neotropical migratory bird popu- Uruguayan Rice Fields 10 lations due to habitat loss and degradation, Congress passed the Neotropical Migra- as Wintering Habitat for tory Bird Conservation Act (NMBCA). The legislation created a unique funding Neotropical Shorebirds source to foster the cooperative conservation needed to sustain these species through all stages of their life cycles, which occur throughout the Western Hemi- Conserving Antigua’s 12 sphere. Since its first year of appropriations in 2002, the NMBCA has become in- Most Critical Bird strumental to migratory bird conservation Habitat in the Americas. Neotropical Migratory 14 Bird Conservation in the The mission of the North American Bird Heart of South America Conservation Initiative is to ensure that populations and habitats of North Ameri- Aros/Yaqui River Habi- 16 ca's birds are protected, restored, and en- tat Conservation hanced through coordinated efforts at in- ternational, national, regional, and local Strategic Conservation 18 levels, guided by sound science and effec- in the Appalachians of tive management. The NMBCA’s mission Southern Quebec is to achieve just this for over 380 Neo- tropical migratory bird species by provid- ...and more! Cerulean Warbler, a Neotropical migrant, is a ing conservation support within and be- USFWS Bird of Conservation Concern and listed as yond North America—to Latin America Vulnerable on the International Union for Conser- Coordination and editorial vation of Nature (IUCN) Red List.
    [Show full text]
  • Tringarefs V1.3.Pdf
    Introduction I have endeavoured to keep typos, errors, omissions etc in this list to a minimum, however when you find more I would be grateful if you could mail the details during 2016 & 2017 to: josephobbs@gmail.com. Please note that this and other Reference Lists I have compiled are not exhaustive and best employed in conjunction with other reference sources. Grateful thanks to Graham Clarke (http://grahamsphoto.blogspot.com/) and Tom Shevlin (www.wildlifesnaps.com) for the cover images. All images © the photographers. Joe Hobbs Index The general order of species follows the International Ornithologists' Union World Bird List (Gill, F. & Donsker, D. (eds). 2016. IOC World Bird List. Available from: http://www.worldbirdnames.org/ [version 6.1 accessed February 2016]). Version Version 1.3 (March 2016). Cover Main image: Spotted Redshank. Albufera, Mallorca. 13th April 2011. Picture by Graham Clarke. Vignette: Solitary Sandpiper. Central Bog, Cape Clear Island, Co. Cork, Ireland. 29th August 2008. Picture by Tom Shevlin. Species Page No. Greater Yellowlegs [Tringa melanoleuca] 14 Green Sandpiper [Tringa ochropus] 16 Greenshank [Tringa nebularia] 11 Grey-tailed Tattler [Tringa brevipes] 20 Lesser Yellowlegs [Tringa flavipes] 15 Marsh Sandpiper [Tringa stagnatilis] 10 Nordmann's Greenshank [Tringa guttifer] 13 Redshank [Tringa totanus] 7 Solitary Sandpiper [Tringa solitaria] 17 Spotted Redshank [Tringa erythropus] 5 Wandering Tattler [Tringa incana] 21 Willet [Tringa semipalmata] 22 Wood Sandpiper [Tringa glareola] 18 1 Relevant Publications Bahr, N. 2011. The Bird Species / Die Vogelarten: systematics of the bird species and subspecies of the world. Volume 1: Charadriiformes. Media Nutur, Minden. Balmer, D. et al 2013. Bird Atlas 2001-11: The breeding and wintering birds of Britain and Ireland.
    [Show full text]
  • Biogeographical Profiles of Shorebird Migration in Midcontinental North America
    U.S. Geological Survey Biological Resources Division Technical Report Series Information and Biological Science Reports ISSN 1081-292X Technology Reports ISSN 1081-2911 Papers published in this series record the significant find­ These reports are intended for the publication of book­ ings resulting from USGS/BRD-sponsored and cospon­ length-monographs; synthesis documents; compilations sored research programs. They may include extensive data of conference and workshop papers; important planning or theoretical analyses. These papers are the in-house coun­ and reference materials such as strategic plans, standard terpart to peer-reviewed journal articles, but with less strin­ operating procedures, protocols, handbooks, and manu­ gent restrictions on length, tables, or raw data, for example. als; and data compilations such as tables and bibliogra­ We encourage authors to publish their fmdings in the most phies. Papers in this series are held to the same peer-review appropriate journal possible. However, the Biological Sci­ and high quality standards as their journal counterparts. ence Reports represent an outlet in which BRD authors may publish papers that are difficult to publish elsewhere due to the formatting and length restrictions of journals. At the same time, papers in this series are held to the same peer-review and high quality standards as their journal counterparts. To purchase this report, contact the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (call toll free 1-800-553-684 7), or the Defense Technical Infonnation Center, 8725 Kingman Rd., Suite 0944, Fort Belvoir, VA 22060-6218. Biogeographical files o Shorebird Migration · Midcontinental Biological Science USGS/BRD/BSR--2000-0003 December 1 By Susan K.
    [Show full text]
  • List of Shorebird Profiles
    List of Shorebird Profiles Pacific Central Atlantic Species Page Flyway Flyway Flyway American Oystercatcher (Haematopus palliatus) •513 American Avocet (Recurvirostra americana) •••499 Black-bellied Plover (Pluvialis squatarola) •488 Black-necked Stilt (Himantopus mexicanus) •••501 Black Oystercatcher (Haematopus bachmani)•490 Buff-breasted Sandpiper (Tryngites subruficollis) •511 Dowitcher (Limnodromus spp.)•••485 Dunlin (Calidris alpina)•••483 Hudsonian Godwit (Limosa haemestica)••475 Killdeer (Charadrius vociferus)•••492 Long-billed Curlew (Numenius americanus) ••503 Marbled Godwit (Limosa fedoa)••505 Pacific Golden-Plover (Pluvialis fulva) •497 Red Knot (Calidris canutus rufa)••473 Ruddy Turnstone (Arenaria interpres)•••479 Sanderling (Calidris alba)•••477 Snowy Plover (Charadrius alexandrinus)••494 Spotted Sandpiper (Actitis macularia)•••507 Upland Sandpiper (Bartramia longicauda)•509 Western Sandpiper (Calidris mauri) •••481 Wilson’s Phalarope (Phalaropus tricolor) ••515 All illustrations in these profiles are copyrighted © George C. West, and used with permission. To view his work go to http://www.birchwoodstudio.com. S H O R E B I R D S M 472 I Explore the World with Shorebirds! S A T R ER G S RO CHOOLS P Red Knot (Calidris canutus) Description The Red Knot is a chunky, medium sized shorebird that measures about 10 inches from bill to tail. When in its breeding plumage, the edges of its head and the underside of its neck and belly are orangish. The bird’s upper body is streaked a dark brown. It has a brownish gray tail and yellow green legs and feet. In the winter, the Red Knot carries a plain, grayish plumage that has very few distinctive features. Call Its call is a low, two-note whistle that sometimes includes a churring “knot” sound that is what inspired its name.
    [Show full text]