Facts About Helium by Stephanie Pappas, Live Science Contributor | January 26, 2015 11:50Pm ET

Total Page:16

File Type:pdf, Size:1020Kb

Facts About Helium by Stephanie Pappas, Live Science Contributor | January 26, 2015 11:50Pm ET Facts About Helium By Stephanie Pappas, Live Science Contributor | January 26, 2015 11:50pm ET First discovered in the corona surrounding the sun and later found in gases leaking from Mount Vesuvius, helium is the second-most abundant element in the universe. The second element on the Periodic Table of Elements is inert, colorless and odorless — but far from boring. Helium shows up in semiconductors, birthday balloons and the Large Hadron Collider. Because of its extremely low density, helium floats in air. The low density is also responsible for the weird "squeaky voice" effect when helium is inhaled. The less dense the gas surrounding the vocal cords, the faster they vibrate, sending the voice's pitch skyward. (Practice this party trick in moderation, though: Helium replaces oxygen in the lungs and can kill you if you inhale enough.) Read on for more about this lighter-than-air gas, its amazing discovery story and all of its myriad uses today. Just the facts According to the Jefferson National Linear Accelerator Laboratory, the properties of helium are: Atomic number (number of protons in the nucleus): 2 Atomic symbol (on the Periodic Table of Elements): He Atomic weight (average mass of the atom): 4.002602 Density: 0.0001785 grams per cubic centimeter Phase at Room temperature: Gas Melting point: minus 458.0 degrees Fahrenheit (minus 272.2 degrees Celsius) Boiling point: minus 452.07 F (minus 268.93 C) Number of isotopes (atoms of the same element with a different number of neutrons): 8; 2 stable Most common isotopes: He-4 (99.999866 percent natural abundance) and He-3 (0.000134 percent natural abundance) Solar discovery On Aug. 18, 1868, a total eclipse obscured the sun. French astronomer Pierre Janssen was on-hand in India to watch, and to measure the sun's atmosphere, known as the chromosphere. In the spectrum of gases he observed in the chromosphere was a strange yellow line with a wavelength of 587.49 nanometers, according to the Jefferson Lab. Janssen didn't identify the source of this wavelength. Two months later, though, English astronomer Sir Norman Lockyer set up his own spectroscope in London and saw that same yellow line. Working with chemist Edward Frankland, Lockyer concluded that the line was the fingerprint of an unknown element. The scientists dubbed this mystery element "helium," after Helios, the Greek god of the sun. The discovery of helium on Earth took longer. According to the Royal Society of Chemistry, Italian physicist Luigi Palmieri observed a wavelength of 587.49 nanometers in gases emitted from Mount Vesuvius in 1882, the first detection of helium on Earth. It wasn't until 1895, however, that helium's presence on Earth was confirmed and that scientist discovered its atomic weight. Credit for this discovery goes to Swedish chemists Per Teodor Cleve and Nils Abraham Langer. Earth's atmosphere is only about 5 parts per million, or 0.0005 percent, helium. As such, it's not economical to extract the gas from air. Instead, the helium used in science and industry today comes from natural gas, where this element was first discovered in 1905. The initial hint that helium was lurking in natural gas occurred in 1903, according to the American Chemical Society (ACS). At a celebration of a new gas well in Dexter, Kansas, the mayor attempted to ignite the escaping gases, only to find that the flames went out. Most of the townspeople were disappointed, but Kansas state geologist Erasmus Haworth became curious. He had the gas from the well collected and discovered that 12 percent was made of an "inert residue." Further experiments over the next two years at the University of Kansas revealed helium gas among this residue. At first, no one thought the discovery of helium in natural gas had much application. But during World War I, military leaders and scientists began to push for helium's use in blimps. Helium blimps weren't used much in World War I because of the cost of production, according to the ACS, but they became much more common in World War II, by which time the cost of helium had dropped. Today, helium is frequently found in laboratories that require extra-cold temperatures for experiments, because this inert gas can be chilled to temperatures near absolute zero. According to the American Physical Society, most helium in the United States is used in industry and in cooling the magnets in magnetic resonance imaging (MRI) machines. Only about 3 percent of the helium used in the United States each year is consumed by scientific labs. Liquid helium also cools the magnets in the Large Hadron Collider, the world's largest particle accelerator, down to -456.34 degrees Fahrenheit (-271.3 degrees Celsius). The United States produces about 75 percent of the world's helium, with Qatar coming in second. In 2013, fears of a global helium shortage loomed when a 1996 law went into effect requiring the U.S. Bureau of Land Management to sell off federal reserves of helium on the cheap, discouraging the development of new helium sources. However, Congress acted, passing the Helium Stewardship Act of 2013, which slowed the sale of federal helium and allowed the BLM to auction the gas at higher prices. The bill prevented the federal government from undercutting private producers, thus encouraging more sources of helium production to go online. The helium atom has one proton and two electrons. Credit: bobyramone, Andrei Marincas Shutterstock Who knew? The Federal Helium Reserve, operated by the U.S. Bureau of Land Management, is near Amarillo, Texas. It holds over 40 percent of the helium used annually in the United States. Helium is a noble gas, a group of nonreactive and stable gases that also include neon, argon, krypton, xenon and radon. As of 2010, it took 300,000 cubic feet of helium to float the 15 character balloons in that year's Macy's Thanksgiving Day Parade, the equivalent volume of 2.2 million gallons of milk. Helium on Earth is formed when radioactive elements in the crust decay, producing positively charged particles called alpha particles. When these alpha particles attract a couple of electrons, the result is a helium atom. No one has ever successfully made helium combine with another element to create a compound, according to the Jefferson Lab. It's just that inert. Current research Helium is helping scientists peer past the limits of their knowledge about physics and chemistry, thanks to its convenient ability to become a superfluid with relative ease. Superfluids are liquids that behave as if they have no viscosity, or resistance to flow. "When atoms come together in a superfluid state, they all of the sudden behave as one object," said Oliver Gessner, a senior scientist at the Ultrafast X-ray Science Laboratory at Lawrence Berkeley National Lab, and one of the lead researchers on a project that delved into superfluid helium and observed some very bizarre behavior. Gessner and his colleagues were looking to push the limits of fundamental physics by testing the behavior of superfluid flows under conditions never studied before. They turned to helium because this element's atoms come together into a superfluid state at temperatures that are relatively easy to generate, Gessner told Live Science — about 2 Kelvin, or minus 456 degrees Fahrenheit (minus 271 degrees Celsius). Other elements would freeze solid at those temperatures, Gessner said. The researchers squirted the liquid into a vacuum chamber through a nozzle only 5 microns wide, about the same diameter as a red blood cell. The tiny droplets exist for mere milliseconds as they fly across the chamber at about 655 feet (200 meters) per second, Gessner said. Incredibly, using an X-ray free-electron laser, the scientists are able to observe these moving targets by shining pulses of light on them midair. They discovered that the droplets indeed behave like superfluids. From a distance, the droplets' behavior looks almost banal. They rotate and compress slightly, going from spherical to a little bit flattened, just as a droplet of regular rotating liquid might do. But simultaneously, Gessner said, these droplets are behaving according to the rules of quantum physics, which deal with the behavior of nano-sized opbjects. Inside each droplet is a grid of tornado-like vortices. The sum of the rotation of these infinitesimally small tornadoes is what drives the rotation of the entire droplets, Gessner said. "At the same time that it behaves, in a way, like a classical liquid, on a microscopic scale, it shows clear quantum behavior," he said. The study, published in August 2014 in the journal Science, studied the helium superfluid droplets as they spun at speeds 100,000 times faster than any ever studied before in the laboratory. Those blistering speeds are important for pushing physics understanding, Gessner said. "If you find that a certain law of physics is valid for a certain speed or a certain size of object, is it also valid for something that is 100,000 times bigger or 100,000 times faster?" he said. The equivalent might be building a sandcastle a meter, or about three feet tall, and then testing to find out if you can use the same design principles to build a sandcastle 100 kilometers, or 62 miles, tall, Gessner said. The helium superfluid droplets still contain mysteries, including the origin of the strange grid of vortices. Researchers now know that the tiny nozzle method works to create these rotating droplets, but not why. "One aspect we haven't touched on at all in the last study is where does this vorticity actually come from, and how could we eventually maybe control it?" Gessner said.
Recommended publications
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Helium Adsorption on Lithium Substrates
    JLowTempPhys DOI 10.1007/s10909-007-9516-5 Helium Adsorption on Lithium Substrates E. Van Cleve · P. Taborek · J.E. Rutledge Received: 25 July 2007 / Accepted: 13 September 2007 © Springer Science+Business Media 2007 Abstract We have developed a cryogenic pulsed laser deposition (PLD) system to deposit lithium films onto a quartz crystal microbalance (QCM) at 4 K. Adsorption isotherms of 4He on lithium were measured in the temperature range between 1.42 K and 2.5 K. The isotherms are qualitatively different from isotherms on strong sub- strates such as gold and weak substrates such as cesium. There is no evidence of the formation of solid-like layers of helium, and the helium coverage is approximately linear in the pressure over a wide range. By measuring the low coverage slope of the isotherms, the binding energy of helium to lithium was found to be approxi- mately −13.6 K. For lithium substrates less than approximately 100 layers thick, the chemical potential at which the superfluid transition was observed was surprisingly sensitive to the details of lithium deposition. Keywords Helium films · Pulsed laser deposition · Superfluidity · Alkali metal 1 Introduction When helium is adsorbed onto a strong heterogenous substrate such as gold, the first 2 or 3 statistical layers are solid-like. The nature of these layers is not yet clear, but the layers are amorphous and do not participate significantly in superflow at high coverages. Superfluidity on strong substrates requires a minimum critical coverage to saturate the solid-like layers, and the superfluid phase which forms at higher cover- ages flows over these layers and does not interact directly with the strong, short range This work was supported by NSF grant DMR 0509685.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Unit 6 the Periodic Table How to Group Elements Together? Elements of Similar Properties Would Be Group Together for Convenience
    Unit 6 The periodic table How to group elements together? Elements of similar properties would be group together for convenience. The periodic table Chemists group elements with similar chemical properties together. This gives rise to the periodic table. In the periodic table, elements are arranged according to the following criteria: 1. in increasing order of atomic numbers and 2. according to the electronic arrangement The diagram below shows a simplified periodic table with the first 36 elements listed. Groups The vertical columns in the periodic table are called groups . Groups are numbered from I to VII, followed by Group 0 (formerly called Group VIII). [Some groups are without group numbers.] The table below shows the electronic arrangements of some elements in some groups. Group I Group II Group VII Group 0 He (2) Li (2,1) Be (2,2) F (2,7) Ne (2,8) Na (2,8,1) Mg (2,8,2) Cl (2,8,7) Ar (2,8,8) K (2,8,8,1) Ca (2,8,8,2) Br (2,8,18,7) Kr (2,8,18,8) What is the relationship between the group numbers and the electronic arrangements of the elements? Group number = the number of outermost shell electrons in an atom of the element The chemical properties of an element depend mainly on the number of outermost shell electrons in its atoms. Therefore, elements within the same group would have similar chemical properties and would react in a similar way. However, there would be a gradual change of reactivity of the elements as we move down the group.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • Vapour-Liquid Equilibria of the Neon-Helium System, Cryogenics, 7, 177 (1967) Easitrain – European Advanced Superconductivity Innovation and Training
    Fluid properties modeling Jakub Tkaczuk 1,*, Eric Lemmon 2, Ian Bell 2, Francois Millet 1, Nicolas Luchier 1 1 Université Grenoble Alpes, CEA IRIG-dSBT, F-38000 Grenoble, France 2 National Institute of Standards and Technology, Boulder, Colorado 80305, United States * [email protected] Abstract Phase envelope Based upon the conceptual design reports for the FCC cryogenic With the available data points, a shape of the vapor-liquid equilibrium system, the need for more accurate thermodynamic property models of and the occurrence of liquid-liquid equilibrium can be defined (most mixtures was identified. Both academic institutes and world-wide probably no LLE for helium-neon). industries have identified the lack of reliable equation of state for mixtures used at very low temperatures. Detailed cryogenic architecture modeling and design cannot be assessed without valid fluid properties. Therefore, the latter is the focus of this work. Initially driven by the FCC study, the modeling was extended to other fluids beneficial for scientific and industrial application beyond the FCC needs. The properties are modeled for the mixtures of some noble gases with the use of multi-fluid Helmholtz-energy-explicit models: helium-neon, neon-argon, and helium-argon. The on-going studies are performed at CEA-Grenoble, France and at the National Institute of Standards and Technology, U.S. Helmholtz energy equation of state The Helmholtz free energy 훼(훿, 휏) is a thermodynamic potential, which measures useful work obtainable from a closed system. Defining the equation of state (EoS) as a Helmholtz energy-explicit function can be particularly advantageous. Fig. 2.
    [Show full text]
  • A Tribute to the Memory of Svante Arrhenius (1859-1927)
    A TRIBUTE TO THE MEMORY OF SVANTE ArrHENIUS (1859–1927) A SCIENTIst AHEAD OF HIS TIME BY GUstAF A rrHENIUS, K ARIN CALDWELL AND SVANTE WOLD ROYAL SWEDISH ACADEMY OF ENGINEERING SCIENCES (IVA) A TRIBUTE TO THE MEMORY OF SVANTE ARRHENIUS (1859–1927) P RESENTED at THE 2008 A NNUA L MEETING OF THE ROYA L SWEDISH ACA DEM Y OF ENGINEERING SCIENCES BY GUSta F A RRHENIUS, K A RIN CA LDWELL A ND SVA NTE WOLD The Royal Swedish Academy of Engineering Sciences (IVA) is an independent, learned society that promotes the engineering and economic sciences and the development of industry for the benefit of Swedish society. In cooperation with the business and academic communities, the Academy initiates and proposes measures designed to strengthen Sweden’s industrial skills base and competitiveness. For further information, please visit IVA’s website at www.iva.se. Published by the Royal Swedish Academy of Engineering Sciences (IVA) and Gustaf Arrhenius, Scripps Institution of Oceanography, University of California, San Diego, Karin Caldwell, Surface Biotechnology, Uppsala University and Svante Wold, Umetrics AB and Institute of Chemistry, Umeå University. Cover picture: photography of original painting by Richard Bergh, 1910. Photos and illustrations provided by the authors and by courtesy of the archives at the Royal Swedish Academy of Sciences. The authors would like to express their gratitude to professor Henning Rodhe at Stockholm University for his comments and contributions on selected text. IVA, P.O. Box 5073, SE-102 42 Stockholm, Sweden Phone: +46 8 791 29 00 Fax: +46 8 611 56 23 E-mail: [email protected] Website: www.iva.se IVA-M 395 • ISSN 1102-8254 • ISBN 978-91-7082-779-2 Editor: Eva Stattin, IVA Layout and production: Hans Melcherson, Tryckfaktorn AB, Stockholm, Sweden Printed by OH-Tryck, Stockholm, Sweden, 2008 FOREWORD Every year, the Royal Academy of Engineering Sciences (IVA) produces a booklet com- memorating a person whose scientific, engineering, economic or industrial achieve- ments were of significant benefit to the society of his or her day.
    [Show full text]
  • Marie Sktodowska Curie, Born As Maria Salomea Sktodowska, Was a Polish Naturalized-French Chemist and Physicist Who Was a Pioneer in the Research of Radioactivity
    Hailey Heider Mrs.Kelly Period 6 11/17/16 Marie Curie By Hailey Heider Marie Sktodowska Curie, born as Maria Salomea Sktodowska, was a Polish naturalized-French chemist and physicist who was a pioneer in the research of radioactivity. Marie Curie made history in 1903 when she became the first woman to ever receive a Nobel Prize in physics, for her work in radioactivity. In 1911, Marie received a great honor when winning her second Nobel Prize, this time in chemistry. Marie contributed to the first world war with portable x-ray units. She and her husband, Pierre, were recognized for discovering Polonium and Radium. Marie’s parents were both teachers, and she was also the youngest of five children, following siblings Zosia,Jozef, Bronya, and Hela. As a child Marie looked up to her father, Wladyslaw, who was a math and physics teacher. Marie had a bright and curious mind and excelled in school. Tragedy struck when she was only 10, losing her mother, Bronislawa, who died of tuberculosis. As a top student in her secondary school, Marie could not attend the men-only University of Warsaw. She instead continued her education in Warsaw’s “Floating University”, a set of underground, informal classes, which were held in secret. Marie and her sister Bronya dreamed of earning an official degree, but lacked financial resources to pay for more schooling. Marie and Bronya worked out a deal. Marie would support Bronya while in school, and Bronya would return the favor while Marie completed her studies. Marie worked as a tutor and governess for roughly five years.
    [Show full text]
  • Mass Spectrometric Measurement of Helium Isotopes and Tritium in Water Samples
    Mass spectrometric measurement of helium isotopes and tritium in water samples Andrea Ludin1, Ralf Weppernig1, Gerhard Bönisch1, and Peter Schlosser1,2 1Lamont-Doherty Earth Observatory of Columbia University Route 9W Palisades, NY 10964 2Department of Earth and Environmental Sciences Columbia University New York, NY 10027 downloaded from: http://www.ldeo.columbia.edu/~etg/ms_ms/Ludin_et_al_MS_Paper.html 1 ABSTRACT The design, setup and routine performance of systems for mass spectrometric measurement of helium isotopes and tritium of water samples by the 3He ingrowth method are described using two systems operated in the noble gas laboratory of the Lamont-Doherty Earth Observatory as examples. The systems are built around commercially available mass spectrometers and are equipped with specially designed sample inlet and purification systems including a series of cryogenically cooled traps for removal of water and permanent gases, as well as for separation of helium from neon. Neon isotopes are measured simultaneously to the helium isotope measurements in quadrupole mass spectrometers. The systems are fully automated for high sample throughput and high precision. Typical precisions for measurement of tritium, δ 3He, and the 4He and neon concentrations are ± 1 to ± 2 %, ± 0.15 to ± 0.2 %, and ± 0.2 to ± 0.3 %, respectively. These values are determined by several factors including the linearity of the mass spectrometers and the individual blank and memory components. 2 1. ABSTRACT......................................................................................................................
    [Show full text]
  • Marie Curie and the Discovery of Radium
    Marie Curie and the Discovery of Radium Fernando P. Carvalho Abstract. Marie Curie gave outstanding contributions to science and society that were recognized still in her lifetime. In particular, the discovery of radium com- pletely changed the therapeutic methods for treatment of cancer and other dis- eases, and allowed the development of radiotherapy and nuclear medicine. Ra- dium was also used in many non-medical applications. Radium applications fostered the growth of uranium mining industry during the first half of 20th cen- tury. During the second half of the past century, with developments of artificial radionuclides production and particle physics, radium was gradually replaced by shorter-lived radionuclides and electron and photon beams in cancer therapy. In the 70s and 80s most radium sources in cancer hospitals were replaced while in non-medical applications radium had been substituted already. Notwithstanding, the avenue for medical use of radioactivity and radionuclides opened with Marie Curie discoveries and radium applications still goes on. This avenue is currently pursued in curietherapy and nuclear medicine. Introduction This year one completes the 100th anniversary of the Chemistry Nobel Prize awarded to Marie Curie in 1911 for the discovery of radium and polonium, two radioactive elements she identified and separated from uranium ore. These discov- eries were made based on measurements of ionizing radiation emitted by the ore and they steered a fantastic number of scientific discoveries made during the first __________________________________ Fernando P. Carvalho Nuclear and Technological Institute (ITN) Department of Radiological Safety and Protection E.N. 10, 2686-953 Sacavém, Portugal E-mail: [email protected] B.
    [Show full text]