5Ways to Find True North

Total Page:16

File Type:pdf, Size:1020Kb

5Ways to Find True North 5 Ways to Find True North You can rarely rely on magnetic north to accurately align your antenna. Here’s how to get pointed in the right direction. Compensating for Declination Ron Berry, WB3LHD In the United States, magnetic north varies from –19° (westward error) in Maine to +18° (eastward error) in Washington state. This error is known as Compass Method magnetic declination. World maps, however, are based upon geodetic (i.e., true) north, so to accurately align your antenna, you must compen- If you use the compass method, True north 1 sate for your local magnetic declination. The DXCC Country List at you must first compensate for your (geographic) ok2pbq.atesystem.cz/prog/dxcclist.phpMagnetic provides north helpful coordinates location’s magnetic declination (see −D to navigate this. (compass) the sidebar, “Compensating for Declination”). When your compass Compensation is simple: for a west (negative) declination,N add its absolute needle points north, it is pointing at value to your compass reading; for an east (positive) declination,NE subtract it magnetic north (a point in northern from your compass reading. NW Canada where northern lines of attrac- You may not get your antenna aligned to true north exactly, but most tion enter Earth, responding to its antenna beamwidths are broad enough that you will not see much differ- E magnetic field), not true north (geo- ence with headings a few degrees off. But W remember, if you’re in a location graphically, the North Pole). If you with a high magnetic declination, aligning your antenna to true north is criti- don’t have a standard compass, there cal. Declination error is calculated at 100 feet/degrees/miles, so if you live are many GPS devices and smart- in a location with an 18° declination and align your antenna to magneticSE phone apps that show magnetic decli- north, then try for an 8,000-mile DX contact, youSW will be off target by over 2,700 miles! S nation and true north directions for your location. (A) A National Oceanic and Atmospheric True north True north Administration website (www. (geographic) (geographic) Magnetic north ngdc.noaa.gov/geomag-web/ Magnetic north (compass) +D #declination) makes easy work of (compass) −D finding your declination. Just enter N N your address and the calculator will fill NE NE in the latitude, longitude, and date. NW NW Then hit CALCULATE and the calcu- lator will use the default World E Magnetic Model — which uses the E W geomagnetic field to standardize navi- W gation, attitude, and heading reference networks — to determine your mag- SE SE SW netic declination. The result is shown SW S as a compass overlying a map of your S local area. (B) QS1905-Berry01 (A) For my location, the calculator shows magnetic north (MN) pointing 9° 10' Figure 1 — At (A),True the northabsolute value of a westward declination must be added to the heading shown by the needle (colloquially known as red Fred) to determine true north; west of true north. To get a true north (geographic) Magnetic north at (B) for an eastward declination,(compass) the declination is subtracted from the magnetic heading heading, I must add 9.17° in the east- to determine true north. +D erly direction (see Figure 1A). N 42 July 2019 QST www.arrl.org NE NW E W SE SW S (B) QS1905-Berry01 If you have an easterly magnetic decli- na’s true heading. Your compass dial nation, you would subtract your decli- will have an orientating arrow pointing Equipment nation degrees in the westerly straight out that is colloquially referred If you are looking to buy a new or direction to get the true north heading to as ‘the shed,” along with the red part first compass, some good names (see Figure 1B). Better compasses of the magnetic needle called ”red are Brunton, Silva, and Suunto. have an adjustment bezel to compen- Fred.” Turn your compass dial to “put Try a mirrored orientating com- pass, which makes it easier to sate for east and west declinations. red Fred in the shed” — or align the see where your antenna is magnetic needle with the orienting Once the declination is set, your com- pointed. I also recommend a pass headings will always reference arrow (see Figure 2). While keeping compass with a declination set- from true north. the needle in that position, sight down ting adjustment. Once you set the compass in the direction your your location’s declination, you Assuming that you have a better com- antenna is pointing and read the won’t have to worry about it pass and that it’s now compensated for heading. An orienteering compass again. Remember, if you move to declination, you can check your anten- makes this easier to do. another location, you may need to readjust the declination for that area. For this article and Direction of Antenna testing, I used a Brunton TruArc Shed Housing 20 compass. Figure 2 — A base- E plate compass, which Inches is handy for working with topographic maps. N The compass heading is determined by rotating the housing ring to align the box associated with north S (the shed) with the gen- erally red half (red W Fred) of the magnetic 10 mm north seeking compass needle, colloquially referred to as putting red Fred in the shed. Read bearing here Base plate marker Red Fred QS1905-Berry02 Map Method bottom of the map. Because the Earth’s magnetic field is constantly QS1905-Berry03 2If you have a baseplate compass, Grid you can use a US Geological Survey changing, use this declination only if north the map is current. You may see a vari- (USGS) topographical map (available Magnetic ation of Figure 3 on your map. The star True at www.usgs.gov/products/maps/ north north topo-maps). Orient your map and symbol line is always the direction of compass to true north and take a true north. The magnetic north direc- heading with your compass to an tion is shown with the harpoon line. 7° 36' object you can see. There is an excel- Note the westerly magnetic declination lent video explaining how to do this at number listed as 7° 36' from true 4° 58' www.youtube.com/watch?v= north. There may also be a third direc- a2aGiUl1u4c. tional line called “grid north,” some- times abbreviated as GN. The grid The magnetic declination information lines are references used for navi- and true north direction for the local gating on the map with your baseplate area are generally located at the compass. At street center magnetic variation on January 1, 1985 Annual change of 08' east Figure 3 — Magnetic declination specifi­ cation, generally located at the bottom of topological maps. www.arrl.org QST July 2019 43 Star Method Shadow Method 3 Presently, Polaris, the North Star, 4 On a sunny day, get a QS1905-Berry06 is very close to true north and is rou- straight pole a few feet long tinely used for celestial navigation. In and stick it in the ground as the constellation Ursa Minor, Polaris is straight up and down as pos- the end “tail” star, and brightest of sible. At the tip of the pole’s the seven stars in the Little Dipper. shadow, place an object like a It may be difficult to identify or see small stone as a marker. This clearly on all nights from urban skies first stone is the westerly point. (see Figure 4). Wait about a half hour or more so there is a good spacing For stations south of the equator, W between the shadows and S Polaris is not visible, so you must find place another stone at the tip true south using the Southern Cross of the shadow again. This 1 and the two Pointer stars, Alpha and stone is the easterly point. Beta Centauri, in the constellation 2 Crux (see Figure 5). Placing a straightedge across E N the two stones forms an east- west line. Placing another straightedge perpendicular to Figure 6 — Using the sun’s shadow from a vertical Little Dipper The pole to determine true north. north star the east-west line forms a Pherkad Polaris north-south line with the end Kochab away from the vertical pole pointing Be careful not to blind yourself looking to true north (see Figure 6). Align your directly at the sun. This won’t work antenna north with the boom parallel very well on cloudy or overcast days, with the north-south straightedge. You as the sun’s actual location may be Big must be sure you can see the shadow visually skewed. This calculator is Dipper Dubhe alignment sticks from your antenna good for checking your antenna view. Note that this method will be system from time to time to make Merak QS1905-Berry06 more accurate if the west and east sure nothing has gone askew. points are marked in the morning and Figure 4 — A Northern Hemisphere star map for locating the North Star, Polaris, using the afternoon and are equidistant from two pointing stars Merak and Dubhe in the the vertical pole. Forty-year ARRL member Ron Berry, ladle portion of the Big Dipper constellation. WB3LHD, holds a 20 WPM Amateur Extra- class license and is a member of the Interna- tional DX Association (INDEXA) and the Six Meter International Club (SMIRK). He is on the Southern QS1905-Berry05 Solar Method DXCC Honor Roll and needs only three enti- Cross ties to achieve DXCC #1. Ron graduated from 5An online calculator that displays electronics school in 1969 with a degree in the sun’s azimuth according to the electronics technology.
Recommended publications
  • Basic Principles of Celestial Navigation James A
    Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Map and Compass
    UE CG 039-089 2018_UE CG 039-089 2018 2018-08-29 9:57 AM Page 56 MAP The north magnetic pole is not the same as the geographic North Pole, also known as AND COMPASS true north, which is the northern end of the axis around which the earth spins. In fact, the north magnetic pole currently lies Background Information approximately 800 mi (1300 km) south of the geographic North Pole, in northern A compass is an instrument that people use Canada. And because the north magnetic to find a direction in relation to the earth as pole migrates at 6.6 mi (10 km) per year, its a whole. The magnetic needle in the location is constantly changing. compass, which is the freely moving needle in the compass that has a red end, points The meridians of longitude on maps and north. More specifically, this needle points globes are based upon the geographic to the north magnetic pole, the northern North Pole rather than the north magnetic end of the earth’s magnetic field, which pole. This means that magnetic north, the can be imagined as lines of magnetism that direction that a compass indicates as north, leave the south magnetic pole, flow north is not the same direction as maps indicate around the earth, and then enter the north for north. Magnetic declination, the magnetic pole. difference in the angle between magnetic north and true north must, therefore, be Any magnetized object, an object with two taken into account when navigating with a oppositely charged ends, such as a magnet map and a compass.
    [Show full text]
  • Some Guidelines for Effective Field-Use of the GPS Unit
    PRBO Conservation Science 4990 Shoreline Highway Stinson Beach, CA 94970 415-868-1221 www.prbo.org Guidelines for Field Use of Garmin GPS Units GPS Checklist: Copy an updated version of the master "allpc" shapefile and other digital basemaps, including topo quads and aerial photos, from the GIS server (V: drive) before the field season starts. Know what coordinate system (e.g., UTM, zone 10) and datum (e.g., NAD83) your project uses. The PRBO default is UTM, WGS84 (same as NAD83). In the UTM coordinate system, your zone depends on where you are (see map). Download your GPS coordinates daily, using GPS Utility (www.gpsu.co.uk/) or Waypoint+ (www.tapr.org/~kh2z/Waypoint/) shareware. It is not uncommon for Garmin units to die in the field. You will need a PC Interface cable to download your data and a registration key for GPS Utility. If you are unable to download, record your coordinates by hand in the field. Always carry extra batteries, especially if you’re not planning to revisit the site, and turn off your GPS unit when not in use to avoid draining the internal lithium battery. Contact Garmin (www.garmin.com) for replacement or repair under warranty if your unit dies. UTM Zones Submit copies of your GPS coordinate files to the GIS lab at the end of the field season for archiving and general mapping purposes. In the Field GPS Unit Setup Before taking waypoints in the field, the GPS navigation display should be set up to match the coordinate system, horizontal datum, and units used at a particular field project’s location.
    [Show full text]
  • Find Location from Grid Reference
    Find Location From Grid Reference Piney and desiccant Jean-Luc understocks almost florally, though Milton ruptures his wartweeds intermarried. Is Emmery Nikkialways focalises superjacent shipshape. and grimiest when individuating some stewpots very round-the-clock and indefatigably? Chalcographic This method expresses the human development in conjunction with apple blogs rolling and from grid reference on a map is directly at intervals along the play store you want to provide a private draft You find location, grid reference system of locating and longitude are located in grids on topographic maps. If you entertain an express map to measure story, Northing followed by Easting. Apple blogs rolling and the Internet safe. Give complete coordinate RIGHT, B, grid reference or latitude and longitude of locations. Sign arm to our Newsletter. The satellite map with the marker is shown alongside an equivalent Ordnance Survey map. If you work with MGRS coordinates, and that the scale is right side up. The layer you selected must be of point geometry. This earthquake has cloud been published or shared. Latitude can have done same numerical value north go south hit the equator, you can use the breakthrough To XY tool. Upload multiple images at once. What is high pressure? To enable light to better morning or bridge the location of features on total scale maps, we promise our postcode data quarterly, country grids etc. Click a the hand, interpret the images of the Megalong Valley below, unauthorized and shall goods be used. Google Earth starting point over Lawrence, stationary media panel. Perhaps you find. Two simple methods using a poise of so are described below.
    [Show full text]
  • Dead Reckoning and Magnetic Declination: Unveiling the Mystery of Portolan Charts
    Joaquim Alves Gaspar * Dead reckoning and magnetic declination: unveiling the mystery of portolan charts Keywords : medieval charts; cartometric analysis; history of cartography; map projections of old charts; portolan charts Summary For more than two centuries much has been written about the origin and method of con- struction of the Mediterranean portolan charts; still these matters continue to be the object of some controversy as no one explanation was able to gather unanimous agreement among researchers. If some theory seems to prevail, that is certainly the one asserting the medieval origin of the portolan chart, which would have followed the introduction of the marine compass in the Mediterranean, when the pilots start to plot the magnetic directions and es- timated distances between ports observed at sea. In the research here presented a numerical model which simulates the construction of the old portolan charts is tested. This model was developed in the light of the navigational methods available at the time, taking into account the spatial distribution of the magnetic declination in the Mediterranean, as estimated by a geomagnetic model based on paleomagnetic data. The results are then compared with two extant charts using cartometric analysis techniques. It is concluded that this type of meth- odology might contribute to a better understanding of the geometry and methods of con- struction of the portolan charts. Also, the good agreement between the geometry of the ana- lysed charts and the model’s results clearly supports the a-priori assumptions on their meth- od of construction. Introduction The medieval portolan chart has been considered as a unique achievement in the history of maps and marine navigation, and its appearance one of the most representative turn- ing points in the development of nautical cartography.
    [Show full text]
  • Appendix A. the Normal Geomagnetic Field in Hutchinson, Kansas (
    Appendix A. The Normal Geomagnetic Field in Hutchinson, Kansas (http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/fldsnth1.pl) Model: IGRF2000 Latitude: 38 deg, 3 min, 54 sec Longitude: -97 deg, 54 min, 50 sec Elevation: 0.50 km Date of Interest: 11/12/2003 ---------------------------------------------------------------------------------- D I H X Y Z F (deg) (deg) (nt) (nt) (nt) (nt) (nt) 5d 41m 66d 33m 21284 21179 2108 49067 53484 dD dI dH dX dY dZ dF (min/yr) (min/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr) (nT/yr) -6 -1 -16 -12 -39 -92 -91 ----------------------------------------------------------------------------------- Definitions D: Magnetic Declination Magnetic declination is sometimes referred to as the magnetic variation or the magnetic compass correction. It is the angle formed between true north and the projection of the magnetic field vector on the horizontal plane. By convention, declination is measured positive east and negative west (i.e. D -6 means 6 degrees west of north). For surveying practices, magnetic declination is the angle through which a magnetic compass bearing must be rotated in order to point to the true bearing as opposed to the magnetic bearing. Here the true bearing is taken as the angle measured from true North. Declination is reported in units of degrees. One degree is made up of 60 minutes. To convert from decimal degrees to degrees and minutes, multiply the decimal part by 60. For example, 6.5 degrees is equal to 6 degrees and 30 minutes (0.5 x 60 = 30). If west declinations are assumed to be negative while east declination are considered positive then True bearing = Magnetic bearing + Magnetic declination An example: The magnetic bearing of a property line has an azimuth of 72 degrees East.
    [Show full text]
  • Determining True North on Mars by Using a Sundial on Insight D
    Determining True North on Mars by Using a Sundial on InSight D. Savoie, A. Richard, M. Goutaudier, N. Onufer, M. Wallace, D. Mimoun, K. Hurst, N. Verdier, P. Lognonné, N. Mäki, et al. To cite this version: D. Savoie, A. Richard, M. Goutaudier, N. Onufer, M. Wallace, et al.. Determining True North on Mars by Using a Sundial on InSight. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.215:2. hal-01977462 HAL Id: hal-01977462 https://hal.sorbonne-universite.fr/hal-01977462 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Determining true North on Mars by using a sundial on InSight D. Savoiea,∗, A. Richardb,∗∗, M. Goutaudierb, N.P. Onuferc, M.C. Wallacec, D. Mimoune, K. Hurstc, N. Verdierf, P. Lognonnéd, J.N. Makic, B. Banerdtc aSYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l’Observatoire 75014 Paris, France bPalais de la Découverte, Av. Franklin D. Roosevelt, 75008 Paris, France cNASA Jet Propulsion Laboratory, Pasadena, California dInstitut de Physique du Globe de Paris, Université Paris Diderot, Paris, France eInstitut Supérieur de l’Aéronautique et de l’Espace, ISAE, Toulouse, France fFrench National Space Agency, CNES, Paris, France Abstract In this work, we demonstrate the possibility to determine the true North direction on Mars by using a gnomon on the InSight mission.
    [Show full text]
  • Chasing the Pole — Howard L. Cohen
    Reprinted From AAC Newsletter FirstLight (2010 May/June) Chasing the Pole — Howard L. Cohen Polaris like supernal beacon burns, a pivot-gem amid our star-lit Dome ~ Charles Never Holmes (1916) ew star gazers often believe the North Star (Polaris) is brightest of all, even mistaking Venus for this best known star. More advanced star gazers soon learn dozens of Nnighttime gems appear brighter, forty-seven in fact. Polaris only shines at magnitude +2.0 and can even be difficult to see in light polluted skies. On the other hand, Sirius, brightest of all nighttime stars (at magnitude -1.4), shines twenty-five times brighter! Beginning star gazers also often believe this guidepost star faithfully defines the direction north. Although other stars staunchly circle the heavens during night’s darkness, many think this pole star remains steadfast in its position always marking a fixed point on the sky. Indeed, a popular and often used Shakespeare quote (from Julius Caesar) is in tune with this perception: “I am constant as the northern star, Of whose true-fix'd and resting quality There is no fellow in the firmament.” More advanced star gazers know better, that the “true-fix’d and resting quality”of the northern star is only an approximation. Not only does this north star slowly circle the northen heavenly pole (Fig. 1) but this famous star is also not quite constant in light, slightly varying about 0.03 magnitudes. Polaris, in fact, is the brightest appearing Cepheid variable, a type of pulsating star. Still, Polaris is a good marker of the north cardinal point.
    [Show full text]
  • SUNDIALS \0> E O> Contents Page
    REG: HER DEPARTMENT OF COMMERCE Letter 1 1-3 BUREAU OF STANDARDS Circular WASHINGTON LC 3^7 (October Jl., 1932) Prepared by R. E. Gould, Chief, Time Section ^ . fA SUNDIALS \0> e o> Contents Page I. Introduction „ 2 II. Corrections to be applied 2 1. Equation of time 3 III. Construction 4 1. Materials and foundation 4 2. Graphical construction for a horizontal sundial 4 3. Gnomon . 5 4. Mathematical construction ........ 6 5,. Illustrations Fig. 1. Layout of a dial 7 Fig. 2. Suggested forms g IV. Setting up the dial 9 V. Mottoes q VI. Bibliography -10 . , 2 I. Introduction One of the earliest methods of determining time was by observing the position of the shadow cast by an object placed in the sunshine. As the day advances the shadow changes and its position at any instant gives an indication of the time. The relative length of the shadow at midday can also be used to indicate the season of the year. It is thought that one of the purposes of the great pyramids of Egypt was to indicate the time of day and the progress of the seasons. Although the origin of the sundial is very obscure, it is known to have been used in very early times in ancient Babylonia. One of the earliest recorded is the Dial of Ahaz 0th Century, B. C. mentioned in the Bible, II Kings XX: 0-11. , The Greeks used sundials in the 4th Century B. C. and one was set up in Rome in 233 B. C. Today sundials are used largely for decorative purposes in gardens or on lawns, and many inquiries have reached the Bureau of Standards regarding the construction and erection of such dials.
    [Show full text]
  • Using a Sundial
    Using a Sundial by Nancy P. Moreno, Ph.D. Barbara Z. Tharp, M.S. Gregory L. Vogt, Ed.D. RESOURCES For online presentations of each activity and downloadable slide sets for classroom use, visit http://www.bioedonline.org or http://www.k8science.org. © 2012 by Baylor College of Medicine © 2012 by Baylor College of Medicine SOURCE URLs All rights reserved. BAYLOR COLLEGE OF MEDICINE Printed in the United States of America, Second Edition. BIOED ONLINE / K8 SCIENCE www.bioedonline.org / www.k8science.org ISBN-13: 978-1-888997-58-3 CENTER FOR EDUCATIONAL OUTREACH www.bcm.edu/edoutreach Teacher Resources from the Center for Educational Outreach at Baylor College of Medicine. HARVARD UNIVERSITY The mark “BioEd” is a service mark of Baylor College of Medicine. HEALTHY SLEEP http://healthysleep.med.harvard.edu The information contained in this publication is intended solely to provide broad consumer understanding and knowledge of health care topics. This information is for educational pur- INDIANA UNIVERSITY poses only and should in no way be taken to be the provision or practice of medical, nursing or PLANTS-IN-MOTION professional health care advice or services. The information should not be considered complete and http://plantsinmotion.bio.indiana.edu should not be used in place of a visit, call or consultation with a physician or other health care pro- vider, or the advice thereof. The information obtained from this publication is not exhaustive and does ITOUCHMAP.COM not cover all diseases, ailments, physical conditions or their treatments. Call or see a physician or www.itouchmap.com other health care provider promptly for any health care-related questions.
    [Show full text]
  • Precession of Earth WS.Pdf
    Precession of Earth: Spinning on the Axis Environmental Science Name: ____________________________________________Period:__________ Date: ___________ Essential Question: Why is earth’s axis wobbling? Een 1.1.1 Instructions: Study the selection and answer the questions. Just like a toy top that wobbles before it falls, the Earth wobbles as it rotates on its axis, the imaginary line that extends through the poles. This wobbling motion is due to the slight bulge at the equator. If you traced the Earth's axis out into space, you would see the extension of the axis slowly tracing a cone shape. The wobble is very slow; it takes the Earth 26,000 years to trace one complete conical shape. This wobbling motion of Earth on its axis is called precession. Because of precession, Polaris and Vega alternate as the North Star every 13,000 years. Polaris: The Current North Star Today the Earth's axis points within one degree of Polaris, the brightest star in the constellation Ursa Minor (also called the Little Bear or the Little Dipper). Polaris appears to be in a fixed position in the sky throughout the year. All other stars and constellations seem to revolve around the North Star. Why isn't the North Star Fixed? Over the course of time, the North Star changes. Right now Polaris is within one degree of true north, but at other times the North Star has been and will again be Thuban (the brightest star in the constellation Draco), Vega (the brightest star in the constellation Lyra), and Alpha Cephei (the brightest star in the constellation Cepheus).
    [Show full text]