Final EIS for the Mars Science Laboratory Mission

Total Page:16

File Type:pdf, Size:1020Kb

Final EIS for the Mars Science Laboratory Mission Volume 1 National Aeronautics and Executive Summary and Space Administration Chapters 1 through 8 November 2006 Final Environmental Impact Statement for the Mars Science Laboratory Mission Cover graphic: artist’s concept of the Mars Science Laboratory Rover operating on the surface of Mars. NASA/JPL FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE MARS SCIENCE LABORATORY MISSION VOLUME 1 EXECUTIVE SUMMARY AND CHAPTERS 1 THROUGH 8 Science Mission Directorate National Aeronautics and Space Administration Washington, DC 20546 November 2006 This page intentionally left blank. ii Final Environmental Impact Statement for the Mars Science Laboratory Mission FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE MARS SCIENCE LABORATORY MISSION ABSTRACT LEAD AGENCY: National Aeronautics and Space Administration Washington, DC 20546 COOPERATING AGENCY: U.S. Department of Energy Washington, DC 20585 POINT OF CONTACT Mark R. Dahl FOR INFORMATION: Planetary Science Division Science Mission Directorate NASA Headquarters Washington, DC 20546 (202) 358-4800 DATE: November 2006 This Final Environmental Impact Statement (FEIS) has been prepared by the National Aeronautics and Space Administration (NASA) in accordance with the National Environmental Policy Act of 1969, as amended, (NEPA) to assist in the decision-making process for the Mars Science Laboratory (MSL) mission. This Environmental Impact Statement (EIS) is a tiered document (Tier 2 EIS) under NASA’s Programmatic EIS for the Mars Exploration Program. The Proposed Action addressed in this FEIS is to continue preparations for and implement the MSL mission. The MSL spacecraft would be launched on an expendable launch vehicle during September – November 2009. The MSL spacecraft would then deliver a large, mobile science laboratory (rover) with advanced instrumentation to a scientifically interesting location on the surface of Mars in 2010. The scientific goals of the MSL mission include assessing the biological potential of at least one selected site on Mars, characterizing the geology and geochemistry of the landing region at all appropriate spatial scales, investigating planetary processes of relevance to past habitability, and characterizing the broad spectrum of the Martian surface radiation environment. The MSL mission would also fulfill NASA’s strategic technology goals of increasing the mass of science payloads delivered to the surface of Mars, expanding access to higher and lower latitudes, increasing precision landing capability, and increasing traverse capability to distances on the order of several kilometers. This FEIS presents descriptions of the proposed MSL mission, spacecraft, and candidate launch vehicle; an overview of the affected environment at and near the launch site; and the potential environmental consequences associated with the Proposed Action and alternatives, including the No Action Alternative. iii Final Environmental Impact Statement for the Mars Science Laboratory Mission This page intentionally left blank. iv Final Environmental Impact Statement for the Mars Science Laboratory Mission EXECUTIVE SUMMARY This Final Environmental Impact Statement (FEIS) for the Mars Science Laboratory (MSL) mission has been prepared in accordance with the National Environmental Policy Act of 1969, as amended, (NEPA) (42 U.S.C. 4321 et seq.); Executive Order 12114, Environmental Effects Abroad of Major Federal Actions; the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 CFR parts 1500-1508); and the National Aeronautics and Space Administration's (NASA's) NEPA policy and procedures (14 CFR subpart 1216.3). On April 12, 2005, NASA published the Final Programmatic Environmental Impact Statement for the Mars Exploration Program (the Tier 1 EIS) (NASA 2005a1, 70 FR 19102). The Record of Decision for the Mars Exploration Program (MEP) was rendered by NASA enabling continued planning for the Program, which represents NASA’s overall plans for the robotic exploration of Mars through 2020. This Environmental Impact Statement (EIS) for the MSL mission is a tiered document (Tier 2 EIS) under the Mars Exploration Program. The purpose of this FEIS is to assist in the decision-making process concerning the Proposed Action and Alternatives, including the No Action Alternative, for the proposed MSL mission, planned for launch in 2009. PURPOSE AND NEED FOR ACTION The MEP is currently being implemented as a sustained series of flight missions to Mars, each of which will provide important, focused scientific return. The MEP is fundamentally a science driven program whose focus is on understanding and characterizing Mars as a dynamic system and ultimately addressing whether life is or was ever a part of that system through a strategy referred to as “follow the water”. The core MEP addresses the highest priority scientific investigations directly related to the Program goals and objectives. Additionally, technology developments and improvements over the course of the MEP program are expected to enable a progressive increase in the payload mass and capability delivered to Mars by program spacecraft, enhance the capability to safely and precisely place payloads at any desired location on the surface, and enable full access to the surface, subsurface and atmospheric regions. The purpose of the MSL mission is to both conduct comprehensive science on the surface of Mars and demonstrate technological advancements in the exploration of Mars. MSL investigations would be a means of addressing several of the high-priority scientific investigations recommended to NASA by the planetary science community. The overall scientific goal of the proposed MSL mission can be divided into four areas: 1) assess the biological potential of at least one selected site on Mars, 2) characterize the geology and geochemistry of the landing region at all appropriate spatial scales, 1 The web-site addresses for reference material publicly available on the Internet are included in Chapter 8 of this EIS. v Final Environmental Impact Statement for the Mars Science Laboratory Mission 3) investigate planetary processes of relevance to past habitability, and 4) characterize the broad spectrum of the Martian surface radiation environment. The proposed MSL mission, with it’s planned capability to “follow the water” from a potential landing site within a broad range of latitudes, would utilize a mobile science laboratory (rover) with advanced instrumentation to acquire significant, detailed information regarding the habitability of Mars from a scientifically promising location. The proposed MSL mission would also fulfill NASA’s strategic technology goals of increasing the mass of science payloads delivered to the surface of Mars, expanding access to higher and lower latitudes, increasing precision landing capability, and increasing traverse capability to distances on the order of several kilometers. ALTERNATIVES EVALUATED This FEIS for the MSL mission evaluates the following alternatives. • Proposed Action (Alternative 1, NASA’s Preferred Alternative)—NASA proposes to continue preparations for and implement the MSL mission to Mars. The proposed MSL spacecraft would be launched on board an expendable launch vehicle from Cape Canaveral Air Force Station (CCAFS), Florida, during September – November 2009, and would be inserted into a trajectory toward Mars. The proposed MSL rover would utilize a radioisotope power system as its primary source of electrical power to operate and conduct science on the surface of Mars. The next launch opportunity for a landed mission to Mars would occur during November – December 2011. • Alternative 2—Under this alternative, NASA would discontinue preparations for the Proposed Action (Alternative 1) and implement an alternative MSL mission to Mars. The alternative MSL spacecraft would be launched on board an expendable launch vehicle from CCAFS, Florida, during September – November 2009, and would be inserted into a trajectory toward Mars. The alternative MSL rover would utilize solar energy as its primary source of electrical power to operate and conduct science on the surface of Mars. The next launch opportunity for a landed mission to Mars would occur during November – December 2011. • No Action Alternative—Under this alternative, NASA would discontinue preparations for the MSL mission and the spacecraft would not be launched. SCIENCE COMPARISON ALTERNATIVES 1 AND 2. The MSL rover designs in both the Proposed Action (Alternative 1) and Alternative 2 would carry the same science instruments and hence either alternative would have common mission science objectives. The main difference between these two alternatives is that the proposed radioisotope-powered rover would be capable of landing and operating within a significantly broader range of latitudes on Mars than would the solar-powered rover. The capability to land the rover within a broad range of latitudes is important because doing so maintains NASA’s flexibility to select the most scientifically interesting location on the surface and maximize the rover’s vi Final Environmental Impact Statement for the Mars Science Laboratory Mission capability to collect surface samples and conduct comprehensive science experiments. The radioisotope-powered rover would be capable of operating for at least one Mars year and accomplish all of the MSL mission’s science objectives at a landing site on Mars, yet to be selected, between 60° South and 60° North latitude. Only at 15° North latitude could a solar-powered rover operate
Recommended publications
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Voyager 1 Encounter with the Saturnian System Author(S): E
    Voyager 1 Encounter with the Saturnian System Author(s): E. C. Stone and E. D. Miner Source: Science, New Series, Vol. 212, No. 4491 (Apr. 10, 1981), pp. 159-163 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1685660 . Accessed: 04/02/2014 18:59 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org This content downloaded from 131.215.71.79 on Tue, 4 Feb 2014 18:59:21 PM All use subject to JSTOR Terms and Conditions was complicated by several factors. Sat- urn's greater distance necessitated a fac- tor of 3 reduction in the rate of data transmission (44,800 bits per second at Saturn compared to 115,200 bits per sec- Reports ond at Jupiter). Furthermore, Saturn's satellites and rings provided twice as many objects to be studied at Saturn as at Jupiter, and the close approaches to Voyager 1 Encounter with the Saturnian System these objects all occurred within a 24- hour period, compared to nearly 72 Abstract.
    [Show full text]
  • Planetary Exploration : Progress and Promise
    PLANET ARY EXPLORATION PROGRESS AND PROMISE CONTENTS: NASA PLANETARY EXPLORATION PLANS: SIGNIFICANT EVENTS PLANETARY EXPLORATION PROGRESS-1978 NASA SPACE SCIENCE PROGRAM FUNDING: 5 -YEAR PLAN NASA OSS 5-YEAR PLAN: PLANETARY PROGRAM FUNDING REFERENCE COP'I PLEASE DO NOT REMOVE compiled by Dr. Leonard Srnka, Staff Scientist Lunar and Planetary Institute 3303 NASA Road One Houston, Texas 77058 Lunar and Planetary Institute Contribution No. 297 (June 1978 update> NASA PLANETARY EXPLORATION PLANS SIGNIFICANT EVENTS MISSION EVENTS PIONEER VENUS ORBITER ORBIT INSERTION, DECEMBER 1978 PIONEER VENUS MULTIPROBE VENUS ENCOUNTER/ENTRY, DECEMBER 1978 PIONEER 11 SATURN ENCOUNTER, SEPTEMBER 1979 VOYAGER 1 JUPITER ENCOUNTER, MARCH 1979 SATURN ENCOUNTER, NOVEMBER 1980 VOYAGER 2 JUPITER ENCOUNTER, JULY 1979 SATURN ENCOUNTER, AUGUST 1981 URANUS ENCOUNTER, JANUARY 1986 SOLAR MAXIMUM MISSION LAUNCH, OCTOBER 1979 VENUS ORBITAL IMAGING RADAR VENUS ENCOUNTER, SPRING 1985 SOLAR POLAR MISSION JUPITER ENCOUNTER, 1984 SOLAR POLES PASSAGE, 1986 GALILEO MISSION MARS FLYBY, APRIL 1982 JUPITER ENCOUNTER (ORBIT INSERTION/ PROBE ENTRY), 1985 COMET HALLEYlTEMPEL, . 2'J MISSION• HALLEY ENCOUNTER, NOVEMBER 1985 TEMPEL 2 ENCOUNTER, JULY 1988 or COMET ENCKE RENDEZVOUS ENCKE ENCOUNTER, 1987 MARS GEOCHEMICAL ORBITER MARS ENCOUNTER, 1987 MARS SAMPLE RETURN MARS ENCOUNTER, 1989 EARTH RETURN, 1991 SATURN ORBITER DUAL PROBE SATURN ENCOUNTER, 1992 from NASA Headquarters 5-year plan May 1978 PLANETARY EXPLORATION -- PROGRESS AND PROMISE CONTENT S: Planetary exploration progress - 1977 fig. 1 The future fig. 2 Inner planets plan fig. 3 Outer planets plan fig. 4 Small bodies plan fig. 5 compiled by Dr. Leonard Srnka, Staff Scientist LUNAR SCIENCE INSTITUTE 3303 NASA Road One Houston, TX 77058 September 1977 LUNAR SCIENCE INSTITUTE CONTRIBUTION No.
    [Show full text]
  • Pioneer Anomaly: What Can We Learn from Future Planetary Exploration Missions?
    56th International Astronautical Congress, Paper IAC-05-A3.4.02 PIONEER ANOMALY: WHAT CAN WE LEARN FROM FUTURE PLANETARY EXPLORATION MISSIONS? Andreas Rathke EADS Astrium GmbH, Dept. AED41, 88039 Friedrichshafen, Germany. Email: [email protected] Dario Izzo ESA Advanced Concepts Team, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands. Email: [email protected] The Doppler-tracking data of the Pioneer 10 and 11 spacecraft show an unmodelled constant acceleration in the direction of the inner Solar System. Serious efforts have been undertaken to find a conventional explanation for this effect, all without success at the time of writing. Hence the effect, commonly dubbed the Pioneer anomaly, is attracting considerable attention. Unfortunately, no other space mission has reached the long-term navigation accuracy to yield an independent test of the effect. To fill this gap we discuss strategies for an experimental verification of the anomaly via an upcoming space mission. Emphasis is put on two plausible scenarios: non-dedicated concepts employing either a planetary exploration mission to the outer Solar System or a piggybacked micro- spacecraft to be launched from an exploration spacecraft travelling to Saturn or Jupiter. The study analyses the impact of a Pioneer anomaly test on the system and trajectory design for these two paradigms. Both paradigms are capable of verifying the Pioneer anomaly and determine its magnitude at 10% level. Moreover they can discriminate between the most plausible classes of models of the anomaly. The necessary adaptions of the system and mission design do not impair the planetary exploration goals of the missions. I.
    [Show full text]
  • In Situ Exploration of the Giant Planets Olivier Mousis, David H
    In situ Exploration of the Giant Planets Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, Stas Barabash, Michel Blanc, T. Cavalié, Athena Coustenis, Magali Deleuil, et al. To cite this version: Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, et al.. In situ Exploration of the Giant Planets. 2019. hal-02282409 HAL Id: hal-02282409 https://hal.archives-ouvertes.fr/hal-02282409 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. In Situ Exploration of the Giant Planets A White Paper Submitted to ESA’s Voyage 2050 Call arXiv:1908.00917v1 [astro-ph.EP] 31 Jul 2019 Olivier Mousis Contact Person: Aix Marseille Université, CNRS, LAM, Marseille, France ([email protected]) July 31, 2019 WHITE PAPER RESPONSE TO ESA CALL FOR VOYAGE 2050 SCIENCE THEME In Situ Exploration of the Giant Planets Abstract Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe.
    [Show full text]
  • Celebrating 40 Years of Voyager Wonders Mission Veterans Recall the Dedication of the Team; Rock Concert Looks Back Four Decades
    SEPTEMBER Jet Propulsion 2017 Laboratory VOLUME 47 NUMBER 9 Celebrating 40 years of Voyager wonders Mission veterans recall the dedication of the team; rock concert looks back four decades By Mark Whalen JPL’s iconic explorers, the twin Voyag- ers, continue on their journey at the edge of the solar system started 40 years ago. JPL celebrated Voyager in late August with a series of events befitting one of the most accomplished and revered robotic space missions of all time. On Friday, Aug. 25, Lab Director Mi- chael Watkins welcomed JPLers, Voyager veterans and political representatives to a commemoration on the Mall. Voyager has been not only a great voy- Josh Krohn / JPL Photo Lab From left: Voyager Project Manager Suzy Dodd, Project Scientist Ed Stone, Communications and Education Director age of exploration, but one of the great- Blaine Baggett, JPL Chief Engineer Chris Jones and John Casani, Voyager’s first project manager. est engineering feats of all time, Watkins noted. “I hope all of us here today feel a told the commitment was for four years. we had ever been,” said Casani. “So it part of the Voyager project,” he said. Hardly, as it turns out. was quite a challenge.” Congresswoman Judy Chu, elected in “There was no way to know whether a But JPLers were up to it. 2009 to represent the 27th district that spacecraft — never mind two — could go The panel chat was interspersed with includes JPL and Caltech, presented a for 40 years,” said Stone, Voyager’s only video clips featuring historic interviews, Congressional certificate of recognition to project scientist since 1972, who still re- launch footage, and Voyager team mem- the Laboratory.
    [Show full text]
  • Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret About Uranus 26 March 2020, by Miles Hatfield
    Revisiting decades-old Voyager 2 data, scientists find one more secret about Uranus 26 March 2020, by Miles Hatfield Three decades later, scientists reinspecting that data found one more secret. Unbeknownst to the entire space physics community, 34 years ago Voyager 2 flew through a plasmoid, a giant magnetic bubble that may have been whisking Uranus's atmosphere out to space. The finding, reported in Geophysical Research Letters, raises new questions about the planet's one-of-a-kind magnetic environment. A wobbly magnetic oddball Planetary atmospheres all over the solar system are leaking into space. Hydrogen springs from Venus to join the solar wind, the continuous stream of particles escaping the Sun. Jupiter and Saturn eject globs of their electrically-charged air. Even Earth's atmosphere leaks. (Don't worry, it will stick around for another billion years or so.) Voyager 2 took this image as it approached the planet The effects are tiny on human timescales, but given Uranus on Jan. 14, 1986. The planet’s hazy bluish color long enough, atmospheric escape can is due to the methane in its atmosphere, which absorbs fundamentally alter a planet's fate. For a case in red wavelengths of light. Credit: NASA/JPL-Caltech point, look at Mars. "Mars used to be a wet planet with a thick atmosphere," said Gina DiBraccio, space physicist Eight and a half years into its grand tour of the at NASA's Goddard Space Flight Center and solar system, NASA's Voyager 2 spacecraft was project scientist for the Mars Atmosphere and ready for another encounter.
    [Show full text]
  • Titan a Moon with an Atmosphere
    TITAN A MOON WITH AN ATMOSPHERE Ashley Gilliam Earth 450 – Satellites of Jupiter and Saturn 4/29/13 SATURN HAS > 60 SATELLITES, WHY TITAN? Is the only satellite with a dense atmosphere Has a nitrogen-rich atmosphere resembles Earth’s Is the only world besides Earth with a liquid on its surface • Possible habitable world Based on its size… Titan " a planet in its o# $ght! R = 6371 km R = 2576 km R = 1737 km Ch$%iaan Huy&ns (1629-1695) DISCOVERY OF TITAN Around 1650, Huygens began building telescopes with his brother Constantijn On March 25, 1655 Huygens discovered Titan in an attempt to study Saturn’s rings Named the moon Saturni Luna (“Saturns Moon”) Not properly named until the mid-1800’s THE DISCOVERY OF TITAN’S ATMOSPHERE Not much more was learned about Titan until the early 20th century In 1903, Catalan astronomer José Comas Solà claimed to have observed limb darkening on Titan, which requires the presence of an atmosphere Gerard P. Kuiper (1905-1973) José Comas Solà (1868-1937) This was confirmed by Gerard Kuiper in 1944 Image Credit: Ralph Lorenz Voyager 1 Launched September 5, 1977 M"sions to Titan Pioneer 11 Launched April 6, 1973 Cassini-Huygens Images: NASA Launched October 15, 1997 Pioneer 11 Could not penetrate Titan’s Atmosphere! Image Credit: NASA Vo y a &r 1 Image Credit: NASA Vo y a &r 1 What did we learn about the Atmosphere? • Composition (N2, CH4, & H2) • Variation with latitude (homogeneously mixed) • Temperature profile Mesosphere • Pressure profile Stratosphere Troposphere Image Credit: Fulchignoni, et al., 2005 Image Credit: Conway et al.
    [Show full text]
  • Evaluation Using SOHO SWAN and MAVEN EUVM Lyman Measurements
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Multiple Scattering Effects in the Interplanetary Medium: Evaluation Using SOHO SWAN and MAVEN EUVM Lyman α Measurements Eric Quémerais, Edward Thiemann, Martin Snow, Stéphane Ferron, Walter Schmidt To cite this version: Eric Quémerais, Edward Thiemann, Martin Snow, Stéphane Ferron, Walter Schmidt. Multiple Scat- tering Effects in the Interplanetary Medium: Evaluation Using SOHO SWAN and MAVENEUVM Lyman α Measurements. Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2019, 124 (6), pp.3949-3960. 10.1029/2019JA026674. insu-02151127 HAL Id: insu-02151127 https://hal-insu.archives-ouvertes.fr/insu-02151127 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Multiple Scattering Effects in the Interplanetary 10.1029/2019JA026674 Medium: Evaluation Using SOHO SWAN Key Points: and MAVEN EUVM Lyman • We present a new method to evaluate the solar flux toward any object in the Measurements solar system • We evaluate the contribution of 1 2 2 3 multiple scattering to the Eric Quémerais , Edward Thiemann , Martin Snow , Stéphane Ferron , interplanetary ultraviolet emission and Walter Schmidt4 1LATMOS-OVSQ, Université Versailles Saint-Quentin, Guyancourt, France, 2Laboratory for Atmospheric and Space Correspondence to: Physics, University of Colorado Boulder, Boulder, CO, USA, 3ACRI-ST, Guyancourt, France, 4Finnish Meteorological E.
    [Show full text]