Sea Squirt Genome Released

Total Page:16

File Type:pdf, Size:1020Kb

Sea Squirt Genome Released HIGHLIGHTS ETHICS WATCH GENOMICS The $1,000 genome: ethical and legal hurdles Sea squirt There is much buzz these days about 24-hour, whole-genome genome released genotyping of individuals for under US $1,000. Craig Venter has announced that he will tackle this ‘$1,000 genome’,and some The sea squirt Ciona intestinalis is an futurists are thinking of how it might be used in medicine1. unusual organism with an unusual Although the technology for rapid whole-genome genotyping is history. For more than a century, biol- not yet developed, the tools for doing so might soon be available2. ogists have pored over this marine Solving the technical problems fortunately gives us time to invertebrate due to its peculiar resolve the ethical, legal and social issues (ELSI) that this anatomical features and controversial endeavour presents before it is ready for ‘prime time’.Take the taxonomy. It is now widely accepted Adult sea squirt, image courtesy of Nori Satoh. question of ownership of one’s DNA, still an unresolved issue in that this species is a primitive chordate many jurisdictions. Individuals have the right to decide whether — that is, it has a cartilaginous col- development that are absent in the fly tissue that contains their DNA is removed from their body, but few umn resembling a spine — and so, it and worm genomes, such as thyroid personal legal rights have been established over the genotyping or is suitably placed to tell us about the hormone production and detection, testing of DNA that is legally acquired or sloughed off a person. evolutionary steps leading from inver- and heart development. To gain public acceptance of sequencing an individual’s whole tebrates to vertebrates such as our- As well as shedding light on the genome, and the testing that this will make possible, legal selves. The draft sequence of the origin of the vertebrates, interesting protections for consent and privacy are essential. However, at C. intestinalis genome — which has evolutionary insights can be gained present, only 15 US states explicitly protect the rights of consent been 18 months in the making — has from unique features of the Ciona to testing, and Canada, Australia and most European countries do now been published by Dehal and genome. This is the first animal that not explicitly protect an individual’s rights to refuse testing and to colleagues and represents the first has been found to have genes involved have privacy in their test results3. genome of an invertebrate chordate to in the synthesis of cellulose. A putative We also need to make clear rules about when genetic be published. In their paper, the cellulose synthase has been identified information might, or might not, be used in job and insurance authors present a preliminary analysis that is likely to be involved in the pro- decisions. To support a ban on genetic discrimination is easy, but of the gene content of Ciona and how duction of the outer tunic of the adult there are some legitimate uses of genetic testing in both settings. it compares with those of other sea squirt. This gene shares homology A more balanced solution is needed, but we have yet to identify sequenced animals. with those found in nitrogen-fixing what it would be. The 160 million bp Ciona genome bacteria and so might have been Finally, holders of patents on genes and DNA sequences could was sequenced using a whole-genome acquired by an ancestor of Ciona block rapid sequencing of the whole genome of an individual by shotgun approach and is freely avail- through horizontal gene transfer from making excessive royalty demands or refusing to license those uses4. able on the web. It was found to con- a bacterial genome. Also of interest is Changes in the patent system, to allow freer use of gene patents tain ~16,000 protein-coding genes. a new family of receptors that contain while protecting incentives for innovation, are also needed. This is similar to the number of genes two domains — a caspase domain All is not lost, however. Attention to the ethical, legal and social in Drosophila melanogaster (~14,000) and a region with homology to pro- issues raised by the human genome project has identified most of and Caenorhabditis elegans (~19,000), teins involved in Notch signalling — the relevant issues, and this has helped to shape a consensus about but around half the number esti- that have never been observed before how ethically to tackle many issues, including research with stored mated to be present in puffer fish in a single protein, thereby providing samples, biobanking, testing minors, setting standards for genetics (~31,000) and human (~30,000). It an example of domain shuffling. counselling and the need to rethink patent law. has been argued that extensive gene This paper illustrates the power of The prospect of a $1,000 genome is a welcome prod for legal duplication was important in the evo- genome projects to give insight into authorities to finish the work that the genomics, medical and lution of the vertebrates. Comparative evolutionary processes. Sea squirts bioethics communities have done on ELSI questions. It is time for studies of gene families in Ciona and might be only distantly related to clear, legal recognition of people’s rights to control the acquisition, the vertebrates support this idea, as humans, but their genome sequence testing, use and privacy of their most of the genes that are present as adds another perspective to that given DNA. The $1,000 genome has the multiple copies in vertebrates only by other sequenced vertebrate and potential to increase greatly access have a single representative in Ciona. invertebrate genomes. Undoubtedly, to the medical pay-offs of genomics. The two physiological innovations the release of the sea urchin genome, To get there, we will need to get our that characterize vertebrates are their expected in the next ten months, will ethics and laws straight as well. complex central nervous system and complement this work and will pro- John Robertson their adaptive immune system. A vide more information about meta- major evolutionary question is how zoan evolution. REFERENCES 1Pollock, A. Genome pioneer will and when these features arose. Genes Catherine Baxter start center of his own. New York Times A18, 15 required for these functions are absent References and links 2 August 2002 | Nature Science Update. 24-hour from the Ciona genome, suggesting ORIGINAL RESEARCH PAPER Dehal, P. et al. Genome Dawns [online] <http://www.nature.com/ The draft genome of Ciona intestinalis: insight into nsu/o20923/020923-2.html> (24 September that they originated specifically in the chorate and vertebrate origins. Science 298, 2002) | 3Roche, P. A. & Annas, G. J. Protecting vertebrate lineage. By contrast, there 2157–2167 (2002) genetic privacy. Nature Rev. Genet. 2, 392–396 WEB SITE Diptych: ‘Yin/Yang sienna’, by Jacques (2001) | 4Merz, J. F. Patents limit medical potential are Ciona homologues of genes Ciona genome project: http://genome.jgi- Deshaies (2002) (detail). of sequencing. Nature 419, 878 (2002) required for other aspects of vertebrate psf.org/ciona4/ciona4.home.html 82 | FEBRUARY 2003 | VOLUME 4 www.nature.com/reviews/genetics © 2003 Nature Publishing Group.
Recommended publications
  • Settlement Patterns in Ascidians Concerning Have Been
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Larval settlement behaviour in six gregarious ascidians in relation to adult 2 distribution 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Marc Rius1,2,*, George M. Branch2, Charles L. Griffiths1,2, Xavier Turon3 18 19 20 1 Centre for Invasion Biology, Zoology Department, University of Cape Town, 21 Rondebosch 7701, South Africa 22 23 2 Marine Biology Research Centre, Zoology Department, University of Cape Town, 24 Rondebosch 7701, South Africa 25 26 3 Center for Advanced Studies of Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 27 17300 Blanes (Girona), Spain 28 29 30 31 32 33 34 * Corresponding author: Marc Rius 35 Centre for Invasion Biology, Zoology Department, University of Cape Town, 36 Rondebosch 7701, South Africa 37 E-mail: [email protected] 38 Telephone: +27 21 650 4939 39 Fax: +27 21 650 3301 40 41 Running head: Settlement patterns of gregarious ascidians 42 43 44 1 45 ABSTRACT 46 Settlement influences the distribution and abundance of many marine organisms, 47 although the relative roles of abiotic and biotic factors influencing settlement are poorly 48 understood. Species that aggregate often owe this to larval behaviour, and we ask 49 whether this predisposes ascidians to becoming invasive, by increasing their capacity to 50 maintain their populations. We explored the interactive effects of larval phototaxis and 51 geotaxis and conspecific adult extracts on settlement rates of a representative suite of 52 six species of ascidians that form aggregations in the field, including four aliens with 53 global distributions, and how they relate to adult habitat characteristics.
    [Show full text]
  • Ciona Intestinalis and Comparative Analysis with Ciona Savignyi
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Methods Diploid genome reconstruction of Ciona intestinalis and comparative analysis with Ciona savignyi Jong Hyun Kim,1,4 Michael S. Waterman,2,3 and Lei M. Li2,3 1Department of Computer Science, Yonsei University, Seoul, 120-749, Republic of Korea; 2Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA; 3Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA One of the main goals in genome sequencing projects is to determine a haploid consensus sequence even when clone libraries are constructed from homologous chromosomes. However, it has been noticed that haplotypes can be inferred from genome assemblies by investigating phase conservation in sequenced reads. In this study, we seek to infer haplotypes, a diploid consensus sequence, from the genome assembly of an organism, Ciona intestinalis. The Ciona intestinalis genome is an ideal resource from which haplotypes can be inferred because of the high polymorphism rate (1.2%). The haplotype estimation scheme consists of polymorphism detection and phase estimation. The core step of our method is a Gibbs sampling procedure. The mate-pair information from two-end sequenced clone inserts is exploited to provide long-range continuity. We estimate the polymorphism rate of Ciona intestinalis to be 1.2% and 1.5%, according to two different polymorphism counting schemes. The distribution of heterozygosity number is well fit by a compound Poisson distribution. The N50 length of haplotype segments is 37.9 kb in our assembly, while the N50 scaffold length of the Ciona intestinalis assembly is 190 kb.
    [Show full text]
  • Cionin, a Vertebrate Cholecystokinin/Gastrin
    www.nature.com/scientificreports OPEN Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A Tomohiro Osugi, Natsuko Miyasaka, Akira Shiraishi, Shin Matsubara & Honoo Satake* Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identifed in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifcally in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to signifcantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confrmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were signifcantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory efect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the frst report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism. Ascidians are the closest living relatives of vertebrates in the Chordata superphylum, and thus they provide important insights into the evolution of peptidergic systems in chordates.
    [Show full text]
  • Ciona Intestinalis
    UC Berkeley UC Berkeley Previously Published Works Title Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis Permalink https://escholarship.org/uc/item/6531j4jb Journal Genome Research, 15(12) ISSN 1088-9051 Authors Shi, Weiyang Levine, Michael Davidson, Brad Publication Date 2005-12-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Perspective Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis Weiyang Shi, Michael Levine, and Brad Davidson1 Department of Molecular and Cell Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, California 94720, USA The draft genome of the primitive chordate, Ciona intestinalis, was published three years ago. Since then, significant progress has been made in utilizing Ciona’s genomic and morphological simplicity to better understand conserved chordate developmental processes. Extensive annotation and sequencing of staged EST libraries make the Ciona genome one of the best annotated among those that are publicly available. The formation of the Ciona tadpole depends on simple, well-defined cellular lineages, and it is possible to trace the lineages of key chordate tissues such as the notochord and neural tube to the fertilized egg. Electroporation methods permit the targeted expression of regulatory genes and signaling molecules in defined cell lineages, as well as the rapid identification of regulatory DNAs underlying cell-specific gene expression. The recent sequencing of a second Ciona genome (C. savignyi) permits the use of simple alignment algorithms for the identification of conserved noncoding sequences, including microRNA genes and enhancers. Detailed expression profiles are now available for almost every gene that encodes a regulatory protein or cell-signaling molecule.
    [Show full text]
  • And Description of a New Species, Ciona Interme
    An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimienti, Egidio Trainito, Carmela Gissi To cite this version: Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimi- enti, et al.. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society, Linnean Society of London, 2020, 10.1093/zoolinnean/zlaa042. hal-02861027 HAL Id: hal-02861027 https://hal.archives-ouvertes.fr/hal-02861027 Submitted on 8 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doi: 10.1093/zoolinnean/zlaa042 An integrative taxonomy framework for the study of the genus Ciona (Ascidiacea) and the description of the new species Ciona intermedia Francesco Mastrototaro1, Federica Montesanto1*, Marika Salonna2, Frédérique Viard3, Giovanni Chimienti1, Egidio Trainito4, Carmela Gissi2,5,* 1 Department of Biology and CoNISMa LRU, University of Bari “Aldo Moro” Via Orabona, 4 - 70125 Bari, Italy 2 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona, 4 - 70125 Bari, Italy 3 Sorbonne Université, CNRS, Lab.
    [Show full text]
  • Repertoires of G Protein-Coupled Receptors for Ciona-Specific Neuropeptides
    Repertoires of G protein-coupled receptors for Ciona-specific neuropeptides Akira Shiraishia, Toshimi Okudaa, Natsuko Miyasakaa, Tomohiro Osugia, Yasushi Okunob, Jun Inouec, and Honoo Satakea,1 aBioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan; bDepartment of Biomedical Intelligence, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan; and cMarine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan Edited by Thomas P. Sakmar, The Rockefeller University, New York, NY, and accepted by Editorial Board Member Jeremy Nathans March 11, 2019 (received for review September 26, 2018) Neuropeptides play pivotal roles in various biological events in the conservesagreaternumberofneuropeptide homologs than proto- nervous, neuroendocrine, and endocrine systems, and are corre- stomes (e.g., Caenorhabditis elegans and Drosophila melanogaster) lated with both physiological functions and unique behavioral and other invertebrate deuterostomes (7–13), confirming the evo- traits of animals. Elucidation of functional interaction between lutionary and phylogenetic relatedness of ascidians to vertebrates. neuropeptides and receptors is a crucial step for the verification of The second group includes Ciona-specific novel neuropeptides, their biological roles and evolutionary processes. However, most namely Ci-NTLPs, Ci-LFs, and Ci-YFV/Ls (SI Appendix,Fig. receptors for novel peptides remain to be identified. Here, we S1 and Table S1), which share neither consensus motifs nor se- show the identification of multiple G protein-coupled receptors quence similarity with any other peptides (8, 9). The presence of (GPCRs) for species-specific neuropeptides of the vertebrate sister both homologous and species-specific neuropeptides highlights this group, Ciona intestinalis Type A, by combining machine learning phylogenetic relative of vertebrates as a prominent model organism and experimental validation.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Ciona savignyi Phylum Chordata Common Name Pacific transparent sea squirt Class Ascidiacea Order Enterogona Family Cionidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\CIOSAV.png 73 Final Rank 52.25 Data Deficiency: 0.00 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 20.5 30 0 Anthropogenic Influence: 6 10 0 Biological Characteristics: 21.25 30 0 Impacts: 4.5 30 0 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 52.25 100.00 0.00 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -1.7 Minimum Salinity (ppt) 24 Maximum Temperature (°C) 27 Maximum Salinity (ppt) 37 Minimum Reproductive Temperature (°C) 12 Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) 25 Maximum Reproductive Salinity (ppt) 35* Additional Notes Ciona savignyi is a solitary, tube-shaped tunicate that is white to almost clear in colour. It has two siphons of unequal length, with small yellow or orange flecks on the siphons’ rim. Although C. savignyi is considered solitary, individuals are most often found in groups, and can form dense aggregations (Jiang and Smith 2005). Report updated on Wednesday, December 06, 2017 Page 1 of 14 1. Distribution and Habitat 1.1 Survival requirements - Water temperature Choice: Moderate overlap – A moderate area (≥25%) of the Bering Sea has temperatures suitable for year-round survival Score: B 2.5 of 3.75 Ranking Rationale: Background Information: Temperatures required for year-round survival occur in a moderate Based on this species' geographic distribution, it is estimated to tolerate area (≥25%) of the Bering Sea.
    [Show full text]
  • The Role of Metalloproteases in Fertilisation in the Ascidian Ciona
    www.nature.com/scientificreports OPEN The role of metalloproteases in fertilisation in the ascidian Ciona robusta Received: 8 August 2018 Shiori Nakazawa 1,2, Maki Shirae-Kurabayashi1 & Hitoshi Sawada1 Accepted: 12 December 2018 In the ascidian Ciona robusta (formerly C. intestinalis type A), the mechanism underlying sperm Published: xx xx xxxx penetration through the egg investment remains unknown. We previously reported that proteins containing both an astacin metalloprotease domain and thrombospondin type 1 repeats are abundant in the sperm surface protein-enriched fraction of C. robusta. Here we investigated the involvement of those proteins in fertilisation. We refned the sequences of astacin metalloproteases, confrmed that fve of them are present in the sperm, and labelled them as tunicate astacin and thrombospondin type 1 repeat-containing (Tast) proteins. Fertilisation of C. robusta eggs was potently inhibited by a metalloprotease inhibitor GM6001. The eggs cleaved normally when they were vitelline coat-free or the inhibitor was added after insemination. Furthermore, vitelline coat proteins were degraded after incubation with intact sperm. These results suggest that sperm metalloproteases are indispensable for fertilisation, probably owing to direct or indirect mediation of vitelline-coat digestion during sperm penetration. TALEN-mediated knockout of Tast genes and the presence of GM6001 impaired larval development at the metamorphic stage, suggesting that Tast gene products play a key role in late development. Egg fertilisation is key to achieving genetic diversity in the next generation. In most animals, the eggs are covered with an acellular investment called the egg coat, also called the vitelline coat (VC) in some marine invertebrates, including ascidians and zona pellucida in mammals.
    [Show full text]
  • Can Man Rep Fish Aquat Sci 2746 Ciona
    Biological Synopsis of the Solitary Tunicate Ciona intestinalis C.E. Carver, A.L. Mallet and B. Vercaemer Science Branch Maritimes Region Ecosystem Research Division Fisheries and Oceans Canada Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia, B2Y 4A2 2006 Canadian Manuscript Report of Fisheries and Aquatic Sciences 2746 i Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2746 2006 BIOLOGICAL SYNOPSIS OF THE SOLITARY TUNICATE CIONA INTESTINALIS by C.E. Carver, A.L. Mallet and B. Vercaemer Science Branch Maritimes Region Ecosystem Research Division Fisheries and Oceans Canada Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia, B2Y 4A2 ii Think Recycling! Pensez à recycler © Minister of Public Works and Government Services Canada 1998 Cat. No. Fs. 97-6/2746E ISSN 0706-6457 Correct citation for this publication: Carver, C.E., A.L. Mallet and B. Vercaemer. 2006a. Biological Synopsis of the Solitary Tunicate Ciona intestinalis. Can. Man. Rep. Fish. Aquat. Sci. 2746: v + 55 p. iii TABLE OF CONTENTS ABSTRACT...................................................................................................................... iv RÉSUMÉ ........................................................................................................................... v 1.0 INTRODUCTION....................................................................................................... 1 1.1. NAME AND CLASSIFICATION................................................................................1 1.2.
    [Show full text]
  • Iceland: a Laboratory for Non-Indigenous Ascidians
    BioInvasions Records (2020) Volume 9, Issue 3: 450–460 CORRECTED PROOF Research Article Iceland: a laboratory for non-indigenous ascidians Alfonso A. Ramos-Esplá1,*, Joana Micael2, Halldór P. Halldórsson3 and Sindri Gíslason2 1Research Marine Centre of Santa Pola (CIMAR), University of Alicante, 03080 Alicante, Spain 2Southwest Iceland Nature Research Centre (SINRC), 245 Suðurnesjabær, Iceland 3University of Iceland, Sudurnes Research Center, 245 Suðurnesjabær, Iceland *Corresponding author E-mail: [email protected] Citation: Ramos-Esplá AA, Micael J, Halldórsson HP, Gíslason S (2020) Abstract Iceland: a laboratory for non-indigenous ascidians. BioInvasions Records 9(3): 450– Non-indigenous species (NIS) represent a serious problem worldwide, where ascidians 460, https://doi.org/10.3391/bir.2020.9.3.01 are one of the most important taxa. However, little has been done to document the non-indigenous ascidians in Iceland, and over the past decade only two species had Received: 30 October 2019 been recorded prior to the present study, Ciona intestinalis in 2007 and Botryllus Accepted: 19 March 2020 schlosseri in 2011. To increase the knowledge of this taxon, extensive sampling Published: 7 May 2020 was carried out in shallow waters around Iceland, during the summer 2018, in ports Handling editor: Noa Shenkar and on ropes of a long-line mussel aquaculture. In total, eleven species were identified, Thematic editor: Stelios Katsanevakis four native and seven NIS, of which Diplosoma listerianum, Ascidiella aspersa, Copyright: © Ramos-Esplá et al. Botrylloides violaceus, Molgula manhattensis and Ciona cf. robusta, are now reported This is an open access article distributed under terms for the first time in Iceland.
    [Show full text]
  • Sea Squirt) Capable of Metabolizing Iodine?
    TITLE: Microbial Symbionts from the Endostyle Region of the Ascidiella aspersa (Sea Squirt) capable of metabolizing iodine? Indu Sharma, Phd Microbial Diversity Course 2017 Hampton University Abstract: Tunicates (sea squirt) are filter feeders which process liters of sea water daily. They have a preemptive organelle similar to the vertebrate thyroid called an endostyle. The endostyle has been identified as site for iodine metabolism. Our hypothesis was that microbial symbionts associated with endostyle play a role in iodine metabolism. Using Ascidiella aspersa (sea squirt) as the model, we have identified Endozoicomonas ascidiicola as a dominant symbiont of the endostyle and its surrounding tissues. We have found that the mucus secreted by the endostyle in the bronchial sac has an acidic pH providing a unique microbial environment. Indirect evidence from fluorescent microscopy suggest the Endozoicomons are present in tissue and not in the mucus layer and warrant further investigation. INTRODUCTION: The mechanism of uptake of iodine have been characterized in the thyroid gland of vertebrates, brown algae, and kelp. However, the microbial contribution of this uptake has never been studied in tunicates. This led to our hypothesis “Does the sea squirt, a tunicate, harbor microbial symbionts capable of metabolizing iodine/iodate from the sea water?” The sea squirt can filter hundreds of liter of sea water per day where iodine is primarily present in the form of iodide (I-) or iodate (IO3-). The concentration of iodide is higher in warm surface water (0.10 pg per liter on the average) than that in cold deeper water of lower temperature than 20°C (0.03pg per liter) (Tsunogai and Henmi, 1971).
    [Show full text]
  • Ascidian News #76 December 2015
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 76 December 2015 I greatly enjoyed participating in teaching a two week ascidian course at Nagoya University’s Sugashima Marine Lab from the end of June to July 10, and then attended the Intl. Tunicata meeting in Aomori, Japan from July 13-17. This issue is the second for my 40th year of compiling Ascidian News. I would greatly appreciate hearing from you whether you still find it useful and interesting. There are 93 New Publications listed at the end of this issue. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. Ciona intestinalis now shown to be 2 separate species. Because so many researchers work on Ciona intestinalis, and so many papers are published on this species, I draw your attention to 2 new publications showing at last that Ciona intestinalis A and B are different species and designating the correct names to be used in all future publications: Brunetti, R., Gissi, C., Pennati, R., Caicci, F., Gasparini, F. and Manni, L. 2015. Morphological evidence indicates that Ciona intestinalis (Tunicata, Ascidiacea) type A and type B are different species. Journal of Zool. Systematics & Evolutionary Research 53 (3): 186–193. [Type A is now designated C. robusta; type B retains the name C. intestinalis.] The second new publication describes larval differences between the two species: Pennati, R., Ficetola, G. F., Brunetti, R., Caicci, F., Gasparini, F., Griggio, F., Sato, A., Stach, T., Kaul-Strehlow, S., Gissi, C.
    [Show full text]