Fort Carson Wind Resource Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Renewable Energy Forecasting System Design and Implementation Plan
VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN USAID ENERGY PROGRAM 4 February 2019 This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN USAID ENERGY PROGRAM CONTRACT NUMBER: AID-OAA-I-13-00018 DELOITTE CONSULTING LLP USAID | GEORGIA USAID CONTRACTING OFFICER’S REPRESENTATIVE: NICHOLAS OKRESHIDZE AUTHOR(S): DAVIT MUJIRISHVILI LANGUAGE: ENGLISH 4 FEBRUARY 2019 DISCLAIMER: This publication was produced for review by the United States Agency for International Development. It was prepared by Deloitte Consulting LLP. The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. USAID ENERGY PROGRAM VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN i DATA Reviewed by: Valeriy Vlatchkov, Daniel Potash, Ivane Pirveli, Eka Nadareishvili Practice Area: Variable Renewable Energy Forecasting Key Words: Variable Renewable Energy; Forecasting, Procurement of Forecasting Services, Forecasting System Conceptual Design, Implementation Plan USAID ENERGY PROGRAM VARIABLE RENEWABLE ENERGY FORECASTING SYSTEM DESIGN AND IMPLEMENTATION PLAN ii ACRONYMS -
Meteorological Monitoring Guidance for Regulatory Modeling Applications
United States Office of Air Quality EPA-454/R-99-005 Environmental Protection Planning and Standards Agency Research Triangle Park, NC 27711 February 2000 Air EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications Air Q of ua ice li ff ty O Clean Air Pla s nn ard in nd g and Sta EPA-454/R-99-005 Meteorological Monitoring Guidance for Regulatory Modeling Applications U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 February 2000 DISCLAIMER This report has been reviewed by the U.S. Environmental Protection Agency (EPA) and has been approved for publication as an EPA document. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii PREFACE This document updates the June 1987 EPA document, "On-Site Meteorological Program Guidance for Regulatory Modeling Applications", EPA-450/4-87-013. The most significant change is the replacement of Section 9 with more comprehensive guidance on remote sensing and conventional radiosonde technologies for use in upper-air meteorological monitoring; previously this section provided guidance on the use of sodar technology. The other significant change is the addition to Section 8 (Quality Assurance) of material covering data validation for upper-air meteorological measurements. These changes incorporate guidance developed during the workshop on upper-air meteorological monitoring in July 1998. Editorial changes include the deletion of the “on-site” qualifier from the title and its selective replacement in the text with “site specific”; this provides consistency with recent changes in Appendix W to 40 CFR Part 51. -
IRISHWIND Autumn 2019
IRISHWIND Autumn 2019 INSIDE THIS ISSUE Minister Bruton writes for Irish Wind WEGs update Renewable Energy Ireland feature contents Foreword - David Connolly, IWEA, CEO WELCOME TO THE AUTUMN 2019 05 EDITION OF IRISH WIND IWEA is the national association for the Upcoming events wind industry in Ireland. This magazine 06 provides updates on news and events in the wind industry in Ireland and is Membership and events 07 a resource for IWEA members in the interests of the promotion of wind energy. Minister Bruton writes for Irish Wind 10 Please contact Lisa-Anne Crookes with comments / suggestions for future Marie Donnelly on Renewable Energy editions on [email protected] 11 Ireland 12 Green Tech - A Record Year Q&A with Peter Bracken and his drive for 16 green 18 NIRIG - News and introducing new Chief 19 The Offshore Opportunity 21 Policy Pages - IWEA 26 Wind Energy Guidelines 34 Generation Table The information and views set out inside by external contributors are those of the author and do not necessarily reflect the views of IWEA. Pictures in collage from IWEA members and school tours. Foreword by David Connolly, IWEA CEO It has been an exciting six months in Combined with a significant growth in demand, primarily IWEA since our spring conference in due to the large number of data centres getting connected, March, where it was first indicated our forecasts suggest that the renewable electricity share in that Ireland would have a 70 per Ireland will drop to the low thirties, which is very worrying cent renewable electricity target since the first interim target for Ireland under the Clean for 2030. -
CN Experts Summary of Relevant Qualifications and Experience CN Expert Witness Profiles 1
CN Experts Summary of Relevant Qualifications and Experience CN Expert Witness Profiles 1. Frank Babic 2. Michael Bissett 3. Russell Brownlee 4. Andrew Cairns 5. Benjamin Coulson 6. Parker Dickson 7. Andrew Faszer 8. Sean Geddes 9. Jeanette Gillezeau 10. Marianne Hatzpoulou 11. Ron Howieson 12. Audrey Jacob 13. Paul Johnston 14. Loren Knopper 15. Daniel Krewski 16. John Martin 17. Robert McBride 18. Tom McCormack 19. Allan Prits 20. Mark Raizenne 21. Meaghan Rivard 22. Sheldon Smith 23. Andrew Taylor 24. Grant Whitehead Frank Babic P.Eng. INCE Environmental Services Acoustics Practice Area Lead, Ontario, Stantec Inc. Mr. Babic is the Environmental Services Acoustics Practice Area Lead for Ontario. He has over 20 years of engineering consulting experience in the areas of acoustics, noise and vibration engineering. Areas of technical expertise include engineering consulting in Environmental Noise, Transportation Noise, Building Acoustics, Vibration and Monitoring (Noise and Vibration). He has a breadth of project experience in key markets including Buildings, Construction, Environmental Services, Land Development, Oil & Gas, Transportation and Water/Wastewater. Prior to joining Stantec, Frank was a key technical resource and support for multi-disciplinary, multi-million dollar projects in Canada and the US for notable consulting firms in the industry. EDUCATION SELECTED PROJECT EXPERIENCE Bachelor of Applied Science, Civil Engineer; Option in Management Science, University of CSX Virginia Avenue Tunnel Railway Vibration, Waterloo, ON, 1996 Washington, DC (Lead Acoustic Engineer) Lead acoustic engineer engaged to support CSX in addressing freight railway vibration complaints REGISTRATIONS with the opening of the Virginia Avenue Tunnel in Registered Member, Institute of Noise Control the Washington, DC area. -
Meteorological Monitoring Plan
Meteorological Monitoring at Los Alamos LA-UR-03-8097 November 2003 Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 Cover: (Top) Net radiation (shortwave and longwave) measurements at Technical Area (TA) 6. (Middle) Multiple measurement levels on the TA-6 tower. (Bottom) Typical tower instrumentation including a horizontal vane/propeller, a vertical propeller, and an aspirated thermometer with a solar radiation shield. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. -
Sodar Observation of the ABL Structure and Waves Over the Black Sea Offshore Site
atmosphere Article Sodar Observation of the ABL Structure and Waves over the Black Sea Offshore Site Vasily Lyulyukin 1,* , Margarita Kallistratova 1 , Daria Zaitseva 1, Dmitry Kuznetsov 1, Arseniy Artamonov 1 , Irina Repina 1,2 , Igor Petenko 1,3 and Rostislav Kouznetsov 1,4 and Artem Pashkin 1,2 1 A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017 Moscow, Russia; [email protected] (M.K.); [email protected] (D.Z.); [email protected] (D.K.); [email protected] (A.A.); [email protected] (I.R.); [email protected] (I.P.); rostislav.kouznetsov@fmi.fi (R.K.); [email protected] (A.P.) 2 Research Computer Center, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia 3 Institute of Atmospheric Sciences and Climate, National Research Council, 00133 Rome, Italy 4 Finnish Meteorological Institute, FI-00101 Helsinki, Finland * Correspondence: [email protected] Received: 19 October 2019; Accepted: 11 December 2019; Published: 14 December 2019 Abstract: Sodar investigations of the breeze circulation and vertical structure of the atmospheric boundary layer (ABL) were carried out in the coastal zone of the Black Sea for ten days in June 2015. The measurements were preformed at a stationary oceanographic platform located 450 m from the southern coast of the Crimean Peninsula. Complex measurements of the ABL vertical structure were performed using the three-axis Doppler minisodar Latan-3m. Auxiliary measurements were provided by a temperature profiler and two automatic weather stations. During the campaign, the weather was mostly fair with a pronounced daily cycle. Characteristic features of breeze circulation in the studied area, primarily determined by the adjacent mountains, were revealed. -
Draft Guidelines for Consideration of Bats in Wind Farm Projects – Revision 2014
Doc.EUROBATS.MoP7.13.Annex Draft Guidelines for consideration of bats in wind farm projects – revision 2014 Notes: - Comments may be sent to Luisa Rodrigues ([email protected]; [email protected]) - Additional data on studies (annex 1) and mortality (annex 2) may still be incorporated. - Sentences/words highlighted in yellow are still missing or need to will be revised after 7MoP. - Suren will check if all references are referred in the text, and uniform the references - Suren will highlight in the text all terms that are included in the Glossary - Authors: Luísa Rodrigues (Portugal), Lothar Bach (Germany), Marie-Jo Dubourg-Savage (SFEPM, France), Branko Karapandža (Serbia), Dina Kovač (Croatia), Thierry Kervyn (Belgium), Jasja Dekker (BatLife Europe, The Netherlands), Andrzej Kepel (Poland), Petra Bach (Germany), Jan Collins (BCT, United Kingdom), Christine Harbusch (NABU, Germany), Kirsty Park (Stirling University, United Kingdom), Branko Micevski (FYR Macedonia), Jeroen Minderman (Stirling University, United Kingdom) Foreword Comment [LR1]: At the end we need to 1 Introduction discuss the level of detail of the index 2 General aspects of the planning process 2.1 Site selection phase 2.2 Construction phase 2.3 Operation phase 2.4 Decommissioning phase 3 Carrying out impact assessments Goals of the impact assessment in relation to bats (EXTRA BOX - Collision risk level for European bat species) 3.1 Pre-survey assessment Collation and review of existing information 3.2 Survey 3.2.1 Survey design 3.2.2 Survey methods 3.2.2.1 -
Enbridge's Energy Infrastructure Assets
Enbridge’s Energy Infrastructure Assets Last Updated: Aug. 4, 2021 Energy Infrastructure Assets Table of Contents Crude Oil and Liquids Pipelines .................................................................................................... 3 Natural Gas Transmission Pipelines ........................................................................................... 64 Natural Gas Gathering Pipelines ................................................................................................ 86 Gas Processing Plants ................................................................................................................ 91 Natural Gas Distribution .............................................................................................................. 93 Crude Oil Tank Terminals ........................................................................................................... 96 Natural Gas Liquids Pipelines ................................................................................................... 110 NGL Fractionation ..................................................................................................................... 111 Natural Gas Storage ................................................................................................................. 112 NGL Storage ............................................................................................................................. 119 LNG Storage ............................................................................................................................ -
TRANSMISSION: Solving the Dilemma
FeBRUARY2010 FeATUReS Company Profile: Parkline, Inc. Gathering Blade Span Data A New Direction for Turbine Gearing Cool System, Hot Results Free Money for Wind Developers Eliminating Uncertainty with Sodar A Greener Wind Farm TRANSMISSION: SOlvINgThedIleMMA departments Logistics—BDP Project Logistics Construction—Hayward Baker Maintenance— SKF Technology—SandiaNational Laboratories Q&A: Kenneth Westrick 3TIER FEBRUARY 2010 FEATURES COMPANYPROFILE 24 PARKLINE, INC. BY RUSS WILLCUTT This renowned manufacturer of prefabricated electrical buildings can provide you with structures designed to meet your exact job specifications. GATHERING BLADE 26 SPAN DATA BY JOSH UNDErwOOD Compiling a complete range of data is the only way to determine whether a potential wind-farm site is viable and will produce as desired. A NEW DIRECTION FOR 30 TURBINE GEARING BY CHRISTER RICHT In this article Sandvik Coromant reports on tooling developments that are driving progress in cutting gears for wind turbines. SOLVING THE 34 TRANSMISSION DILEMMA BY PAUL KAISER While transmission continues to be a major impediment to getting more wind power to the market, several important developments were made in the past few years. COOL SYSTEM, 40 HOT RESULT BY DALE THOMPSON New cooling system from Parker provides significant advantages to wind turbines by offering greater performance in a smaller package. FREE MONEY FOR 44 WIND DEVELOPERS BY JESSICA A. GRAF AND JUSTIN B. MEAD Allow these experts to guide you through the grant funds available to wind developers through The American Recovery and Reinvestment Act of 2009. ELIMINATING UNCERTAINTY 50 WITH SODAR BY SUSAN GIORDANO Just as the wind industry itself continues to evolve, remote sensing has truly come of age, eliminating the uncertainty often associated with wind-assessment studies. -
West Texas Mesonet Overview
www.mesonet.ttu.edu National Wind Institute www.depts.ttu.edu/nwi Atmospheric Science Group www.atmo.ttu.edu West Texas Mesonet – Map 111 Completed Stations – January 2018 Site Photo CROWELL 1E – Foard County Site Photo Bootleg 11WNW - Deaf Smith County Site Photo ENDEE 2SW – Quay County, New Mexico Instrumentation ❖ The following data are collected at each mesonet station every one to five minutes depending on the datalogger at each station: ❖ 10-meter wind speed and direction (average and 3-second peak wind speed) ❖ 9-meter temperature ❖ 20-ft wind speed (fire weather) and 2-meter wind speed ❖ 2-meter temperature ❖ 1.5-meter temperature and relative humidity (including dewpoint calculation) ❖ barometric pressure (using digital barometer: calculations include station pressure and altimeter) ❖ rainfall (total for the 5-minute period and an hourly summation product) ❖ 2-meter solar radiation (Kipp and Zonen SP-Lite2 and CM-3) Instrumentation ❖The following data are collected at most mesonet stations every 15 minutes: ❖Soil Temperature at 5cm (~2 inches) under sod-covered ground ❖Soil Temperature at 10cm (~4 inches) under sod-covered ground ❖Soil Temperature at 20cm (~8 inches) under sod-covered ground ❖Soil Temperature at 5cm (~2 inches) for bare ground ❖Soil Temperature at 20cm (~8 inches) for bare ground ❖Soil Moisture at 5cm (~2 inches) (all of these are sod-covered ground) ❖Soil Moisture at 20cm (~8 inches) ❖Soil Moisture at 60cm (~24 inches) ❖Soil Moisture at 75cm (~30 inches) ❖Leaf Wetness Instrumentation Fluvanna 3W WTM Station Users/Importance ❖ Users: ❖ Agriculture ❖ Schools ❖ Wind Power Industry ❖ Community Leaders ❖ National Weather Service ❖ Emergency Management ❖ NOAA Weather Radio ❖ Media Outlets ❖ General Public ❖ And Many More…. -
LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes
Remote Sens. 2011, 3, 1871-1901; doi:10.3390/rs3091871 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes Steven Lang * and Eamon McKeogh Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +353-21-439-4291; Fax: ++353-21-439-4291. Received: 23 June 2011; in revised form: 28 July 2011 / Accepted: 16 August 2011 / Published: 25 August 2011 Abstract: Detailed knowledge of the wind resource is necessary in the developmental and operational stages of a wind farm site. As wind turbines continue to grow in size, masts for mounting cup anemometers—the accepted standard for resource assessment—have necessarily become much taller, and much more expensive. This limitation has driven the commercialization of two remote sensing (RS) tools for the wind energy industry: The LIDAR and the SODAR, Doppler effect instruments using light and sound, respectively. They are ground-based and can work over hundreds of meters, sufficient for the tallest turbines in, or planned for, production. This study compares wind measurements from two commercial RS instruments against an instrumented mast, in upland (semi-complex) terrain typical of where many wind farms are now being installed worldwide. With appropriate filtering, regression analyses suggest a good correlation between the RS instruments and mast instruments: The RS instruments generally recorded lower wind speeds than the cup anemometers, with the LIDAR more accurate and the SODAR more precise. -
Seventh International Meeting on Wind Turbine Noise Rotterdam, the Netherlands, 2Nd – 5Th May 2017
Seventh International Meeting on Wind Turbine Noise Rotterdam, The Netherlands, 2nd – 5th May 2017 Abstracts accepted Presentations will be either oral, poster or part of a workshop session. Managing tonality during the planning, design and construction of a wind farm Justin Adcock, Christophe Delaire, Daniel Griffin, Alex Morabito Noise measurement on a Small Wind Turbine preliminary results Mariano Amadio Trailing edge serrations - effect of their flap angle on flow and acoustics Carlos Arce León, Roberto Merino-Martínez, Daniele Ragni, Stefan Pröbsting, Francesco Avallone, Ashish Singh, Jesper Madsen An investigation into the effect of wind shear on the noise emission of modern wind turbines Payam Ashtiani, Duncan Halstead Airfoil noise reduction using active flow control Mahdi Azarpeyvand, Mate Szoke, Weam Elsahhar, Yannick Mayer Investigation of Amplitude Modulation Noise with a Fully Coupled Noise Source and Propagation Model Emre Barlas, Wei Jun Zhu, Wen Zhong Shen, Kaya Dag, Patrick Moriarty Windfarm noise assessment methodologies comparison: UNI 11143-7 and ISPRA guidelines. Different approaches, results, features Andrea Bartolazzi, Michela Spizzichino Pre-construction Site Prediction Tool for Wind Farm AM - Do We Now Know Enough? Jeremy Bass, Andrew Birchby Wind turbine noise – an overview of current knowledge and perspectives Andrea Bauerdorff, Steffen Körper Coupled wind turbine noise generation and propagation - A numerical study Franck Bertagnolio Wind turbine noise prediction using Olive Tree Lab Alexis BIGOT, Panos ECONOMOU, Costas ECONOMOU The influence of aero-elastic coupling on rotor sound predictions Remy Binois, Thomas Klemme, Sascha Erbsloeh Annual analysis of sound propagation from a boreal wind park Karl Bolin, Ilkka Karasalo, Esbjörn Olsson Developing and presenting a unique and innovative acoustic installation template to offer a spatial, frequency and calibrated reproduction of a wind turbine noise to the public.