Ozone Depletion and the Depletion of Cooperation: Model-Based Management to Keep Collective Action Running Long Term
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climate Change and Human Health: Risks and Responses
Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
A Fast-Response Methodological Approach to Assessing and Managing
Ecological Engineering 85 (2015) 47–55 Contents lists available at ScienceDirect Ecological Engineering jo urnal homepage: www.elsevier.com/locate/ecoleng A fast-response methodological approach to assessing and managing nutrient loads in eutrophic Mediterranean reservoirs a,∗ a a Bachisio Mario Padedda , Nicola Sechi , Giuseppina Grazia Lai , a b a a Maria Antonietta Mariani , Silvia Pulina , Cecilia Teodora Satta , Anna Maria Bazzoni , c c a Tomasa Virdis , Paola Buscarinu , Antonella Lugliè a University of Sassari, Department of Architecture, Design and Urban Planning, Via Piandanna 4, 07100 Sassari, Italy b University of Cagliari, Department of Life and Environmental Sciences, via T. Fiorelli 1, 09126 Cagliari, Italy c EN.A.S. Ente Acque della Sardegna, Settore della limnologia degli invasi, Viale Elmas 116, 09122 Cagliari, Italy a r a t i b s c l e i n f o t r a c t Article history: With many lakes and other inland water bodies worldwide being increasingly affected by eutrophication Received 13 July 2015 resulting from excess nutrient input, there is an urgent need for improved monitoring and prediction Received in revised form 8 September 2015 methods of nutrient load effects in such ecosystems. In this study, we adopted a catchment-based Accepted 19 September 2015 approach to identify and estimate the direct effect of external nutrient loads originating in the drainage basin on the trophic state of a Mediterranean reservoir. We also evaluated the trophic state variations Keywords: related to the theoretical manipulation of nutrient inputs. The study was conducted on Lake Cedrino, a Eutrophication typical warm monomictic reservoir, between 2010 and 2011. -
Global Environmental Issues and Its Remedies
International Journal of Sustainable Energy and Environment Vol. 1, No. 8, September 2013, PP: 120 - 126, ISSN: 2327- 0330 (Online) Available online at www.ijsee.com Research article Global Environmental Issues and its Remedies Dr. MD. Zulfequar Ahmad Khan* Address Present. Permanent Address for Correspondence *Dr. Md Zulfequar Ahmad Khan 21-B, Lane No 3, Associate Professor Jamia Nagar, Zakir Nagar, Department of Geography & Environmental Studies New Delhi-110025 Arba Minch University INDIA Arba Minch, Ethiopia. Mobile No.: +919718502867 Mobile No: +251 923934234 E-mail: [email protected] _____________________________________________________________________________________________ Abstract To the surprise of many out-spoken environmentalists, it, in fact, turns out mankind and technology actually aren’t the only significant causes of global environmental problems. However, before we start to get too comfortable and confidently assume that we as human beings are officially “off the hook,” the fact remains that several “man-made” causes play a significant role in our current, global problems trend. Many human actions affect what people value. One way in which the actions that cause global change are different from most of these is that the effects take decades to centuries to be realized. This fact causes many concerned people to consider taking action now to protect the values of those who might be affected by global environmental change in years to come. But because of uncertainty about how global environmental systems work, and because the people affected will probably live in circumstances very much different from those of today and may have different values, it is hard to know how present-day actions will affect them. -
Chapter 1 Ozone and Climate
1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature -
Department of Natural Resources Division 60—Public Drinking Water Program Chapter 2—Definitions
Rules of Department of Natural Resources Division 60—Public Drinking Water Program Chapter 2—Definitions Title Page 10 CSR 60-2.010 Installation, Extension, Testing and Operation of Public Water Supplies (Rescinded October 11, 1979) ..................................................3 10 CSR 60-2.015 Definitions .......................................................................................3 10 CSR 60-2.020 Grants for Public Water Supply Districts, Sewer Districts, Rural Community Water Supply and Sewer Systems and Certain Municipal Sewer Systems (Moved to 10 CSR-13.010).................................7 Rebecca McDowell Cook (7/31/00) CODE OF STATE REGULATIONS 1 Secretary of State Chapter 2—Definitions 10 CSR 60-2 Title 10—DEPARTMENT OF liquids, gases or other substances into the ified operator classification of the certifica- NATURAL RESOURCES public water system from any source(s). tion program under the provisions of 10 CSR Division 60—Public Drinking 2. Backflow hazard. Any facility which, 60-14.020. Water Program because of the nature and extent of activities 2. Certificate of examination. A certifi- Chapter 2—Definitions on the premises or the materials used in con- cate issued to a person who passes a written nection with the activities or stored on the examination but does not meet the experience 10 CSR 60-2.010 Installation, Extension, premises, would present an actual or potential requirements for the classification of exami- Testing and Operation of Public Water health hazard to customers of the public water nation taken. Supplies system or would threaten to degrade the water 3. Chief operator. The person designat- (Rescinded October 11, 1979) quality of the public water system should ed by the owner of a public water system to backflow occur. -
Measurements and Fluxes of Volatile Chlorinated Organic Compounds (Vocl) from Natural Terrestrial Sources
Technical Report TR-18-09 February 2019 Measurements and fluxes of volatile chlorinated organic compounds (VOCl) from natural terrestrial sources Measurement techniques and spatio-temporal variability of flux estimates SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO Box 3091, SE-169 03 Solna Phone +46 8 459 84 00 Teresia Svensson skb.se SVENSK KÄRNBRÄNSLEHANTERING ISSN 1404-0344 SKB TR-18-09 ID 1695279 February 2019 Measurements and fluxes of volatile chlorinated organic compounds (VOCl) from natural terrestrial sources Measurement techniques and spatio-temporal variability of flux estimates Teresia Svensson, Linköpings Universitet Keywords: Chlorine, Soil, Emission, Chloroform, Uptake, VOCl, Surface ecosystem, Biosphere, SE-SFL. This report concerns a study which was conducted for Svensk Kärnbränslehantering AB (SKB). The conclusions and viewpoints presented in the report are those of the author. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions. A pdf version of this document can be downloaded from www.skb.se. © 2019 Svensk Kärnbränslehantering AB Abstract Volatile organic compounds (VOCs) and especially chlorinated VOCs (VOCls) are regarded as en viron mental risk substances in water bodies due to their toxic characteristics. Even in the atmo sphere they highly impact atmospheric chemistry, e.g. degrading the ozone layer. Several studies have convincingly identified a number of natural VOCl sources thereby challenging the view of VOCls as only produced by humans. Yet, fundamental knowledge is still missing concerning the emission, distribution and the natural abundance of VOCls, especially regarding the high spatial and temporal variability of emissions from terrestrial sources. In the nuclear industry, Cl36 is a dosedominating radionuclide in some waste, and this adds to the need to better understand the processes, transport and fate of chlorine in the biosphere. -
Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Sharon A. Robinson University of Wollongong, [email protected] Stephen R. Wilson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Sharon A. and Wilson, Stephen R.: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment 2010. https://ro.uow.edu.au/scipapers/456 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Abstract This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties -
Regression Relations and Long-Term Water-Quality Constituent
Prepared in cooperation with the City of Wichita Regression Relations and Long-Term Water-Quality Constituent Concentrations, Loads, Yields, and Trends in the North Fork Ninnescah River, South-Central Kansas, 1999–2019 Scientific Investigations Report 2021–5006 U.S. Department of the Interior U.S. Geological Survey Cover. Photograph showing North Fork Ninnescah River downstream from the continuous water- quality monitor installation, taken at the North Fork Ninnescah River above Cheney Reservoir (U.S. Geological Survey [USGS] site 07144780) on July 8, 2020, by David Eason (USGS hydrologic technician). Back cover. Photograph showing sandy channel and streamflow conditions at 150 cubic feet per second upstream from the continuous water-quality monitor installation, taken at the North Fork Ninnescah River above Cheney Reservoir (USGS site 07144780) on November 26, 2018, by USGS personnel. Regression Relations and Long-Term Water-Quality Constituent Concentrations, Loads, Yields, and Trends in the North Fork Ninnescah River, South-Central Kansas, 1999–2019 By Ariele R. Kramer, Brian J. Klager, Mandy L. Stone, and Patrick J. Eslick-Huff Prepared in cooperation with the City of Wichita Scientific Investigations Report 2021–5006 U.S. Department of the Interior U.S. Geological Survey U.S. Geological Survey, Reston, Virginia: 2021 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. -
Transmittal of Final "Guidance for State Implementation of Water Quality Standards for CWA Section 303(C) (2) (B)"
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON. D.C. 20460 OFFICEOF WATER MEMORANDUM SUBJECT: Transmittal of Final "Guidance for State Implementation of Water Quality Standards for CWA Section 303(c) (2) (B)" FROM: Rebecca W. Hanmer, Acting Assistant Administrator for Water (WH-556) TO: Water Management Division Directors Regions I-X Directors State Water Pollution Control Agencies Attached is the final guidance on State adoption of criteria for priority toxic pollutants. We prepared this guidance to help States comply with the new requirements of the 1987 amendments to the Clean Water Act. We have made only minor changes to the September 2, 1988 draft which was distributed to you earlier. The guidance focuses specifically on the new effort to control toxics in water quality standards. It does not supersede other elements of the standards program which address conventional and non-conventional pollutants as well as priority toxic pollutants. These other elements are described in other Office of Water guidance such as the Water Quality Standards Handbook and continue in full force and effect. Some commenters on the draft expressed a concern that the guidance places an unnecessary burden on States to demonstrate a need to regulate toxics before State criteria are adopted. This comment related primarily to Option 2 which provides for a more target red approach than Option 1. We wish to clarify that no such requirement for the States to develop a demonstration of need is included in or intended by the guidance. We do urge States, as a minimum, to use their identifications of impacted segments under Section 304(l) as a starting point for identifying locations where toxic pollutants are of concern and in need of coverage in State standards. -
Use of Irradiation for Chemical and Microbial Decontamination of Water, Wastewater and Sludge
IAEA-TECDOC-1225 Use of irradiation for chemical and microbial decontamination of water, wastewater and sludge Final report of a co-ordinated research project 1995–1999 June 2001 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria USE OF IRRADIATION FOR CHEMICAL AND MICROBIAL DECONTAMINATION OF WATER, WASTEWATER AND SLUDGE IAEA, VIENNA, 2001 IAEA-TECDOC-1225 ISSN 1011–4289 © IAEA, 2001 Printed by the IAEA in Austria June 2001 )25(:25' :DWHUUHVRXUFHVKDYHEHHQDQGFRQWLQXHWREHFRQWDPLQDWHGZLWKELRORJLFDOO\UHVLVWDQW SROOXWDQWVIURPLQGXVWULDOPXQLFLSDODQGDJULFXOWXUDOGLVFKDUJHV 6WXGLHVLQUHFHQW\HDUVKDYHGHPRQVWUDWHGWKHHIIHFWLYHQHVVRILRQL]LQJUDGLDWLRQDORQH RULQFRPELQDWLRQZLWKRWKHUDJHQWVVXFKDVR]RQHDQGKHDWLQWKHGHFRPSRVLWLRQRIUHIUDFWRU\ RUJDQLFFRPSRXQGVLQDTXHRXVVROXWLRQVDQGLQWKHUHPRYDORULQDFWLYDWLRQRIWKHSDWKRJHQLF PLFURRUJDQLVPVDQGSURWR]RDQSDUDVLWHV 7KH ,QWHUQDWLRQDO $WRPLF (QHUJ\ $JHQF\ ,$($ KDV EHHQ DFWLYH LQ UHFHQW \HDUV LQ GUDZLQJ DWWHQWLRQ WR WKH FRQVLGHUDEOH SRWHQWLDO RI UDGLDWLRQ WHFKQRORJ\ IRU WKH FOHDQXS RI ZDVWH GLVFKDUJHV IURP YDULRXV LQGXVWULDO DQG PXQLFLSDO DFWLYLWLHV 7KH WZR LQWHUQDWLRQDO V\PSRVLD RQ WKH XVH RI UDGLDWLRQ LQ WKH FRQVHUYDWLRQ RI WKH HQYLURQPHQW RUJDQL]HG E\ WKH ,$($LQ0DUFKLQ.DUOVUXKH*HUPDQ\DQGLQ6HSWHPEHULQ=DNRSDQH3RODQG UHVSHFWLYHO\ GHPRQVWUDWHG WKH XQLTXH SRWHQWLDO RI UDGLDWLRQ SURFHVVLQJ IRU WKH GHFRQWDPLQDWLRQ RI ZDWHU ZDVWHZDWHU DQG VOXGJH )ROORZLQJ WKH UHFRPPHQGDWLRQ RI WKH $GYLVRU\ -
Effectiveness of Houseplants in Reducing the Indoor Air Pollutant
as a result of increased input of the Effectiveness of Houseplants in Reducing precursors of ozone into the atmos- the Indoor Air Pollutant Ozone phere (Mustafa, 1990). Automobiles are the principal contributors to sec- ondary tropospheric ozone genera- Heather L. Papinchak1, E. Jay Holcomb2,4, tion (Maroni et al., 1995). Teodora Orendovici Best3, and Dennis R. Decoteau2 Ozone as an indoor air pollutant can be prevalent in homes and offices due to infiltration of outdoor ambient ADDITIONAL INDEX WORDS. mitigation, depletion rates, foliage air indoors (Weschler, 2000). Ozone- emitting equipment such as copy UMMARY Sansevieria trifasciata S . Three common indoor houseplants, snake plant ( ), machines, laser printers, ultraviolet spider plant (Chlorophytum comosum), and golden pothos (Epipremnum aureum), were evaluated for their species effectiveness in reducing ozone concentrations in a lighting, and some electrostatic air simulated indoor environment. Continuously stirred tank reactor (CSTR) chambers purification systems may also contrib- housed within a greenhouse equipped with a charcoal filtration air supply system ute to indoor ozone levels (Maroni were used to simulate an indoor environment in which ozone concentrations could et al., 1995; Weschler, 2000). Ozone be measured and regulated. Ozone was injected into the chambers and when generation from appliances such as concentrations reached 200 ± 5 ppb, the ozone-generating system was turned off photocopiers on average yield 5.2 and ozone concentrations over time (ozone was monitored every 5–6 min in each mgÁh–1 and laser printers on average chamber) were recorded until about <5 ppb were measured in the treatment produce 1.2 mgÁh–1; however, con- chamber. On average, ozone depletion time (time from when the ozone generating centrations could vary based on < system was turned off at 200 ppb to 5 ppb in the chamber) ranged from 38 to equipment maintenance (Black and 120 min per evaluation. -
Chemicals Found in Pool Water Can Be Derived from a Number of Sources
CHAPTER 4 CChemicalhemical hhazardsazards hemicals found in pool water can be derived from a number of sources: the source Cwater, deliberate additions such as disinfectants and the pool users themselves (see Figure 4.1). This chapter describes the routes of exposure to swimming pool chemi- cals, the chemicals typically found in pool water and their possible health effects. While there is clearly a need to ensure proper consideration of health and safety issues for operators and pool users in relation to the use and storage of swimming pool chemicals, this aspect is not covered in this volume. Chemicals in pool, hot tub and spa water Source water-derived: Bather-derived: Management-derived: disinfection by-products; urine; disinfectants; precursors sweat; pH correction chemicals; dirt; coagulants lotions (sunscreen, cosmetics, soap residues, etc.) Disinfection by-products: e.g. trihalomethanes; haloacetic acids; chlorate; nitrogen trichloride Figure 4.1. Possible pool water contaminants in swimming pools and similar environments 4.1 Exposure There are three main routes of exposure to chemicals in swimming pools and similar environments: • direct ingestion of water; • inhalation of volatile or aerosolized solutes; and • dermal contact and absorption through the skin. 60 GUIDELINES FOR SAFE RECREATIONAL WATER ENVIRONMENTS llayoutayout SSafeafe WWater.inddater.indd 8822 224.2.20064.2.2006 99:57:05:57:05 4.1.1 Ingestion The amount of water ingested by swimmers and pool users will depend upon a range of factors, including experience, age, skill and type of activity. The duration of ex- posure will vary signifi cantly in different circumstances, but for adults, extended ex- posure would be expected to be associated with greater skill (e.g.