Downloaded from Genbank

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Genbank Methylotrophs and Methylotroph Populations for Chloromethane Degradation Françoise Bringel1*, Ludovic Besaury2, Pierre Amato3, Eileen Kröber4, Stefen Kolb4, Frank Keppler5,6, Stéphane Vuilleumier1 and Thierry Nadalig1 1Université de Strasbourg UMR 7156 UNISTR CNRS, Molecular Genetics, Genomics, Microbiology (GMGM), Strasbourg, France. 2Université de Reims Champagne-Ardenne, Chaire AFERE, INR, FARE UMR A614, Reims, France. 3 Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France. 4Microbial Biogeochemistry, Research Area Landscape Functioning – Leibniz Centre for Agricultural Landscape Research – ZALF, Müncheberg, Germany. 5Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany. 6Heidelberg Center for the Environment HCE, Heidelberg University, Heidelberg, Germany. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.149 Abstract characterized ‘chloromethane utilization’ (cmu) Chloromethane is a halogenated volatile organic pathway, so far. Tis pathway may not be representa- compound, produced in large quantities by terres- tive of chloromethane-utilizing populations in the trial vegetation. Afer its release to the troposphere environment as cmu genes are rare in metagenomes. and transport to the stratosphere, its photolysis con- Recently, combined ‘omics’ biological approaches tributes to the degradation of stratospheric ozone. A with chloromethane carbon and hydrogen stable beter knowledge of chloromethane sources (pro- isotope fractionation measurements in microcosms, duction) and sinks (degradation) is a prerequisite indicated that microorganisms in soils and the phyl- to estimate its atmospheric budget in the context of losphere (plant aerial parts) represent major sinks global warming. Te degradation of chloromethane of chloromethane in contrast to more recently by methylotrophic communities in terrestrial envi- recognized microbe-inhabited environments, such ronments is a major underestimated chloromethane as clouds. Cultivated chloromethane-degraders sink. Methylotrophs isolated from soils, marine envi- lacking cmu genes display a singular isotope frac- ronments and more recently from the phyllosphere tionation signature of chloromethane. Moreover, 13 have been grown under laboratory conditions using CH3Cl labelling of active methylotrophic commu- chloromethane as the sole carbon source. In addi- nities by stable isotope probing in soils identify taxa tion to anaerobes that degrade chloromethane, that difer from those known for chloromethane the majority of cultivated strains were isolated in degradation. Tese observations suggest that new aerobiosis for their ability to use chloromethane biomarkers for detecting active microbial chlo- as sole carbon and energy source. Among those, romethane-utilizers in the environment are needed the Proteobacterium Methylobacterium (recently to assess the contribution of microorganisms to the reclassifed as Methylorubrum) harbours the only global chloromethane cycle. Curr. Issues Mol. Biol. (2019) Vol. 33 caister.com/cimb 150 | Bringel et al. Introduction much more efcient at higher temperatures such as those reached during pyrolysis and biomass Chloromethane and stratospheric burning (Hamilton et al., 2003; Keppler, 2005; ozone depletion McRoberts et al., 2015). Chloromethane release Chloromethane (methyl chloride, CH3Cl) is was also detected during thermal conversion of the most abundant organohalogen in the Earth Martian soils by the Mars landers Viking (Bie- atmosphere. Its global production is estimated mann et al., 1976) and Curiosity (Ming et al., at 4–5 megatons per year, with main sources 2014), indicating the presence of endogenous stemming from terrestrial vegetation (Keppler, organic mater on Mars. Chloromethane emis- 2005). Photolytic degradation of chloromethane sion profles during thermal treatment of soils releases a halogen radical, which catalyses the sampled from other hyperarid environments destruction of ozone. Tus, chloromethane con- hostile microbial life such as the Atacama desert tributes to depletion of the stratospheric ozone were almost identical to those recorded by the layer (altitude of approximately 20 to 30 km), Curiosity rover on Mars (Schulze-Makuch et which constitutes the Earth’s natural protective al., 2018). Furthermore, chloromethane forma- shield that absorbs the solar UVC and partially tion was observed from thermal conversion of UVB radiation dangerous for living organisms. extraterrestrial material such as carbonaceous Until the 1990s, chloromethane was used as meteorites (Keppler et al., 2014) and in protos- a refrigerant under the name Freon 40. Chlo- tellar environments (Fayolle et al., 2017). Tese romethane has a stratospheric lifetime of about recent observations contributed to the emer- one year, much shorter than most other chloro- gence of an ‘astronomical’ fundamental interest fuorocarbons (CFCs), solvents and halons also in the understanding of chloromethane’s cycle in banned by the international agreement of 1987 sun-like stars and on Earth. known as the Montreal Protocol on substances On Earth, plants (alive or decaying) are a that deplete the ozone layer (see web resource major biotic source of chloromethane. Chlo- section). Tere are still some uncertainties about romethane is produced by enzymatic chloride ion chloromethane anthropogenic emissions (e.g. coal methylation, as shown in higher plants afliated combustion, feedstock for chemical industries) to the Brassicaceae family (Atieh et al., 1995; (Li et al., 2017). Chloromethane is responsible Rhew et al., 2003) and wood-degrading fungi alone for approximately 16% of stratospheric (Harper et al., 1990). Te S-adenosyl-l-methio- chlorine-catalysed ozone destruction (Carpenter nine-dependent halide ion methyltransferase is et al., 2014). A detailed understanding of its encoded by gene HOL1 (Harmless to Ozone sources and sinks will be essential to predict Layer) in Arabidopsis thaliana (Nagatoshi and changes in atmospheric chloromethane fuxes in Nakamura, 2009). HOL1 gene disruption corre- the context of global climate change. lates with decreased pathogen defence, possibly due to reduced production of methyl thiocy- Chloromethane sources and sinks anate (CH3SCN) from glucosinolate-derived Chloromethane formation in plants and soil thiocyanate by HOL1 (Manley, 2002; Rhew involves biotic and abiotic processes. Chloride et al., 2003; Nagatoshi and Nakamura, 2009). ion can be alkylated during the abiotic oxida- Chloromethane production is considered a by- tion of organic mater by an electron acceptor product of plant thiocyanate metabolism. Such such as Fe(III) in soils and sediments (Kep- methyltransferases have also been detected in pler et al., 2000). Abiotic chloromethane mainly other crop and seaside plants (Itoh et al., 2009) results from the conversion of plant methoxyl including marine algae (Wuosmaa and Hager, groups (ether- or ester-bonded methyl groups) 1990; Ohsawa et al., 2001; Toda and Itoh, 2011). and their reaction with chloride ion (Keppler et Identifed chloromethane sinks are dominated al., 2000; Hamilton et al., 2003; Sailaukhanuly by abiotic loss processes in the atmosphere et al., 2014). Tis process occurs in terrestrial involving reaction with OH radicals, or via ecosystems at ambient temperatures (Derendorp chlorine radicals in the marine atmospheric et al., 2012; Keppler et al., 2014), but it is boundary layer (see Web resources). Te extent Bacterial Chloromethane Degradation | 151 of consumption of chloromethane under the possibility raises questions about the composi- control of biological processes, especially by tion, distribution, functioning and evolution of microorganisms, constitutes one of the largest chloromethane-utilizing populations in response uncertainties regarding the global budget of chlo- to highly fuctuating emissions of this volatile romethane (Harper and Hamilton, 2003; Keppler, halogenated compound at the soil-plant-atmos- 2005). phere interfaces. Microbial degradation: an underestimated sink in the global Assessing bacterial chloromethane budget chloromethane sinks Te study of ecology and diversity of chlo- Recent investigations of plant and soil samples romethane and other methyl halide-degrading suggest that chloromethane-degraders represent a microorganisms remain a challenging feld of minor fraction of microbial communities (Chaig- environmental biology. Key microbial enzymes naud et al., 2018; Jaeger et al., 2018a,b) that are of (de)halogenation activity and active microor- estimated as 107 cells per cm2 of leaf surface ganisms in chlorine and other halogens (fuorine, to 109 cells per g of soil (Vorholt, 2012). In bromine, iodine) cycling remain largely unknown air, microbial concentrations range from a few (Weigold et al., 2016). Te global impact of tens to billions per cubic metre depending on microorganisms on the chloromethane sink is location, altitude above ground, and time of the difcult to quantify due to concomitant processes day and year (Amato et al., 2017a; DasSarma of production and degradation of chloromethane and DasSarma, 2018), representing a total of in the environment. For instance, highly fuctuat- 1019 bacterial cells in the atmosphere (Whitman ing chloromethane emissions occur in fern plants et al., 1998). Microorganisms collected from as recently discussed (Jaeger et al., 2018b). Both aerosols, cloud and rain waters retain metabolic production and degradation of chloromethane activity under cloud-like conditions and are may coexist
Recommended publications
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Vanadium-dependent bromoperoxidase in a marine Synechococcus / Permalink https://escholarship.org/uc/item/34x4t8rp Author Johnson, Todd Laurel Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Vanadium-dependent bromoperoxidase in a marine Synechococcus A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Marine Biology by Todd L. Johnson Committee in charge: Brian Palenik, Chair Bianca Brahamsha, Co-Chair Lihini Aluwihare James Golden Jens Mühle Bradley Moore 2013 Copyright Todd L. Johnson, 2013 All rights reserved. The dissertation of Todd L. Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair University of California, San Diego 2013 iii DEDICATION To Janet, Tim, and Andrew Johnson, for unconditional love and support. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………iii Dedication ………………………………………………………………………………..iv Table of Contents………………………………………………………………………….v List
    [Show full text]
  • Hydrogen and Carbon Isotope Fractionation During Degradation Of
    ORIGINAL RESEARCH Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria Thierry Nadalig1, Markus Greule2, Francßoise Bringel1,Stephane Vuilleumier1 & Frank Keppler2 1Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 Universite de Strasbourg - CNRS, 28 rue Goethe, Strasbourg, 67083, France 2Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany Keywords Abstract Carbon isotope fractionation, chloromethane biodegradation, hydrogen isotope Chloromethane (CH3Cl) is a widely studied volatile halocarbon involved in the fractionation, methylotrophic bacteria. destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes Correspondence of chloromethane between various environmental compartments which involve Thierry Nadalig, Universite de Strasbourg, a multiplicity of sources and sinks, and both biotic and abiotic processes. In UMR 7156 UdS-CNRS, 28 rue Goethe, this study, we measured hydrogen and carbon isotope fractionation of the 67083 Strasbourg Cedex, France. Tel: +33 3 68851973; Fax: +33 3 68852028; remaining untransformed chloromethane following its degradation by methylo- Methylobacterium extorquens Hyphomicrobium E-mail: [email protected] trophic bacterial strains CM4 and sp. MC1, which belong to different genera but both use the cmu pathway, the Funding Information only pathway for bacterial degradation of chloromethane characterized so far. Financial support for the acquisition of Hydrogen isotope fractionation for degradation of chloromethane was deter- GC-FID equipment by REALISE (http://realise. mined for the first time, and yielded enrichment factors (e)ofÀ29& and unistra.fr), the Alsace network for research À27& for strains CM4 and MC1, respectively. In agreement with previous and engineering in environmental sciences, is studies, enrichment in 13C of untransformed CH Cl was also observed, and gratefully acknowledged.
    [Show full text]
  • A Fast-Response Methodological Approach to Assessing and Managing
    Ecological Engineering 85 (2015) 47–55 Contents lists available at ScienceDirect Ecological Engineering jo urnal homepage: www.elsevier.com/locate/ecoleng A fast-response methodological approach to assessing and managing nutrient loads in eutrophic Mediterranean reservoirs a,∗ a a Bachisio Mario Padedda , Nicola Sechi , Giuseppina Grazia Lai , a b a a Maria Antonietta Mariani , Silvia Pulina , Cecilia Teodora Satta , Anna Maria Bazzoni , c c a Tomasa Virdis , Paola Buscarinu , Antonella Lugliè a University of Sassari, Department of Architecture, Design and Urban Planning, Via Piandanna 4, 07100 Sassari, Italy b University of Cagliari, Department of Life and Environmental Sciences, via T. Fiorelli 1, 09126 Cagliari, Italy c EN.A.S. Ente Acque della Sardegna, Settore della limnologia degli invasi, Viale Elmas 116, 09122 Cagliari, Italy a r a t i b s c l e i n f o t r a c t Article history: With many lakes and other inland water bodies worldwide being increasingly affected by eutrophication Received 13 July 2015 resulting from excess nutrient input, there is an urgent need for improved monitoring and prediction Received in revised form 8 September 2015 methods of nutrient load effects in such ecosystems. In this study, we adopted a catchment-based Accepted 19 September 2015 approach to identify and estimate the direct effect of external nutrient loads originating in the drainage basin on the trophic state of a Mediterranean reservoir. We also evaluated the trophic state variations Keywords: related to the theoretical manipulation of nutrient inputs. The study was conducted on Lake Cedrino, a Eutrophication typical warm monomictic reservoir, between 2010 and 2011.
    [Show full text]
  • Iodomethane Safety Data Sheet 1100H01 According to Federal Register / Vol
    Iodomethane Safety Data Sheet 1100H01 according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 08/18/2016 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Iodomethane CAS No : 74-88-4 Product code : 1100-H-01 Formula : CH3I Synonyms : Methyl iodide Other means of identification : MFCD00001073 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Laboratory chemicals Manufacture of substances Scientific research and development 1.3. Details of the supplier of the safety data sheet SynQuest Laboratories, Inc. P.O. Box 309 Alachua, FL 32615 - United States of America T (386) 462-0788 - F (386) 462-7097 [email protected] - www.synquestlabs.com 1.4. Emergency telephone number Emergency number : (844) 523-4086 (3E Company - Account 10069) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture Classification (GHS-US) Acute Tox. 3 (Oral) H301 - Toxic if swallowed Acute Tox. 3 (Dermal) H311 - Toxic in contact with skin Acute Tox. 2 (Inhalation) H330 - Fatal if inhaled Acute Tox. 3 (Inhalation:vapour) H331 - Toxic if inhaled Skin Irrit. 2 H315 - Causes skin irritation Eye Dam. 1 H318 - Causes serious eye damage Resp. Sens. 1 H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled Skin Sens. 1 H317 - May cause an allergic skin reaction Carc. 2 H351 - Suspected of causing cancer STOT SE 3 H335 - May cause respiratory irritation
    [Show full text]
  • METHYL IODIDE 1. Exposure Data
    METHYL IODIDE Data were last reviewed in IARC (1986) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 74-88-4 Chem. Abstr. Name: Iodomethane IUPAC Systematic Name: Iodomethane 1.1.2 Structural and molecular formulae and relative molecular mass H H C I H CH3I Relative molecular mass: 141.94 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless transparent liquid, with a sweet ethereal odour (American Conference of Governmental Industrial Hygienists, 1992; Budavari, 1996) (b) Boiling-point: 42.5°C (Lide, 1997) (c) Melting-point: –66.4°C (Lide, 1997) (d) Solubility: Slightly soluble in water (14 g/L at 20°C); soluble in acetone; miscible with diethyl ether and ethanol (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) Vapour pressure: 53 kPa at 25.3°C; relative vapour density (air = 1), 4.9 (Ver- schueren, 1996) ( f ) Octanol/water partition coefficient (P): log P, 1.51 (Hansch et al., 1995) (g) Conversion factor: mg/m3 = 5.81 × ppm –1503– 1504 IARC MONOGRAPHS VOLUME 71 1.2 Production and use No information on the global production of methyl iodide was available to the Working Group. Production in the United States in 1983 was about 50 tonnes (IARC, 1986). Because of its high refractive index, methyl iodide is used in microscopy. It is also used as an embedding material for examining diatoms, in testing for pyridine, as a methy- lating agent in pharmaceutical (e.g., quaternary ammonium compounds) and chemical synthesis, as a light-sensitive etching agent for electronic circuits, and as a component in fire extinguishers (IARC, 1986; American Conference of Governmental Industrial Hygienists, 1992; Budavari, 1996).
    [Show full text]
  • Research Article Antimicrobial and Antioxidant Properties of a Bacterial
    Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum
    [Show full text]
  • Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
    Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I)
    [Show full text]
  • Department of Natural Resources Division 60—Public Drinking Water Program Chapter 2—Definitions
    Rules of Department of Natural Resources Division 60—Public Drinking Water Program Chapter 2—Definitions Title Page 10 CSR 60-2.010 Installation, Extension, Testing and Operation of Public Water Supplies (Rescinded October 11, 1979) ..................................................3 10 CSR 60-2.015 Definitions .......................................................................................3 10 CSR 60-2.020 Grants for Public Water Supply Districts, Sewer Districts, Rural Community Water Supply and Sewer Systems and Certain Municipal Sewer Systems (Moved to 10 CSR-13.010).................................7 Rebecca McDowell Cook (7/31/00) CODE OF STATE REGULATIONS 1 Secretary of State Chapter 2—Definitions 10 CSR 60-2 Title 10—DEPARTMENT OF liquids, gases or other substances into the ified operator classification of the certifica- NATURAL RESOURCES public water system from any source(s). tion program under the provisions of 10 CSR Division 60—Public Drinking 2. Backflow hazard. Any facility which, 60-14.020. Water Program because of the nature and extent of activities 2. Certificate of examination. A certifi- Chapter 2—Definitions on the premises or the materials used in con- cate issued to a person who passes a written nection with the activities or stored on the examination but does not meet the experience 10 CSR 60-2.010 Installation, Extension, premises, would present an actual or potential requirements for the classification of exami- Testing and Operation of Public Water health hazard to customers of the public water nation taken. Supplies system or would threaten to degrade the water 3. Chief operator. The person designat- (Rescinded October 11, 1979) quality of the public water system should ed by the owner of a public water system to backflow occur.
    [Show full text]
  • Identification and Antimicrobial Properties of Bacteria Isolated from Naturally Decaying Wood
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896464; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Identification and antimicrobial properties of bacteria isolated from naturally 2 decaying wood 3 4 5 Tanja R. Scheublin2, Anna M. Kielak1, Marlies van den Berg1, Johannes A. van Veen1, Wietse de 6 Boer1,3,* 7 8 1 Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 9 Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands 10 2 Soiltech, Biezenmortelsestraat 57, 5074 RJ Biezenmortel, The Netherlands 11 3 Soil Biology Group, Wageningen University, Wageningen, The Netherlands 12 13 * Corresponding author: Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial 14 Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands, Phone: +31 (0)317 473 15 676, E-mail: [email protected] 16 17 Running title: antimicrobial properties of wood-inhabiting bacteria 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.896464; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 24 Research on wood decay in forest ecosystems has traditionally focused on wood-rot fungi, which lead 25 the decay process through attack of the lignocellulose complex. The role of bacteria, which can be 26 highly abundant, is still unclear. Wood-inhabiting bacteria are thought to be nutritionally dependent on 27 decay activities of wood-rot fungi.
    [Show full text]
  • Genome Characteristics of a Generalist Marine Bacterial Lineage
    The ISME Journal (2010), 1–15 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Genome characteristics of a generalist marine bacterial lineage Ryan J Newton1, Laura E Griffin1, Kathy M Bowles1, Christof Meile1, Scott Gifford1, Carrie E Givens1, Erinn C Howard1, Eric King1, Clinton A Oakley2, Chris R Reisch3, Johanna M Rinta-Kanto1, Shalabh Sharma1, Shulei Sun1, Vanessa Varaljay3, Maria Vila-Costa1,4, Jason R Westrich5 and Mary Ann Moran1 1Department of Marine Sciences, University of Georgia, Athens, GA, USA; 2Department of Plant Biology, University of Georgia, Athens, GA, USA; 3Department of Microbiology, University of Georgia, Athens, GA, USA; 4Group of Limnology-Department of Continental Ecology, Centre d’Estudis Avanc¸ats de Blanes-CSIS, Catalunya, Spain and 5Odum School of Ecology, University of Georgia, Athens, GA, USA Members of the marine Roseobacter lineage have been characterized as ecological generalists, suggesting that there will be challenges in assigning well-delineated ecological roles and biogeochemical functions to the taxon. To address this issue, genome sequences of 32 Roseobacter isolates were analyzed for patterns in genome characteristics, gene inventory, and individual gene/ pathway distribution using three predictive frameworks: phylogenetic relatedness, lifestyle strategy and environmental origin of the isolate. For the first framework, a phylogeny containing five deeply branching clades was obtained from a concatenation of 70 conserved single-copy genes. Somewhat surprisingly, phylogenetic tree topology was not the best model for organizing genome characteristics or distribution patterns of individual genes/pathways, although it provided some predictive power. The lifestyle framework, established by grouping isolates according to evidence for heterotrophy, photoheterotrophy or autotrophy, explained more of the gene repertoire in this lineage.
    [Show full text]
  • Measurements and Fluxes of Volatile Chlorinated Organic Compounds (Vocl) from Natural Terrestrial Sources
    Technical Report TR-18-09 February 2019 Measurements and fluxes of volatile chlorinated organic compounds (VOCl) from natural terrestrial sources Measurement techniques and spatio-temporal variability of flux estimates SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO Box 3091, SE-169 03 Solna Phone +46 8 459 84 00 Teresia Svensson skb.se SVENSK KÄRNBRÄNSLEHANTERING ISSN 1404-0344 SKB TR-18-09 ID 1695279 February 2019 Measurements and fluxes of volatile chlorinated organic compounds (VOCl) from natural terrestrial sources Measurement techniques and spatio-temporal variability of flux estimates Teresia Svensson, Linköpings Universitet Keywords: Chlorine, Soil, Emission, Chloroform, Uptake, VOCl, Surface ecosystem, Biosphere, SE-SFL. This report concerns a study which was conducted for Svensk Kärnbränslehantering AB (SKB). The conclusions and viewpoints presented in the report are those of the author. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions. A pdf version of this document can be downloaded from www.skb.se. © 2019 Svensk Kärnbränslehantering AB Abstract Volatile organic compounds (VOCs) and especially chlorinated VOCs (VOCls) are regarded as en viron mental risk substances in water bodies due to their toxic characteristics. Even in the atmo­ sphere they highly impact atmospheric chemistry, e.g. degrading the ozone layer. Several studies have convincingly identified a number of natural VOCl sources thereby challenging the view of VOCls as only produced by humans. Yet, fundamental knowledge is still missing concerning the emission, distribution and the natural abundance of VOCls, especially regarding the high spatial and temporal variability of emissions from terrestrial sources. In the nuclear industry, Cl­36 is a dose­dominating radionuclide in some waste, and this adds to the need to better understand the processes, transport and fate of chlorine in the biosphere.
    [Show full text]
  • Excess Labile Carbon Promotes the Expression of Virulence Factors in Coral Reef Bacterioplankton
    OPEN The ISME Journal (2018) 12, 59–76 www.nature.com/ismej ORIGINAL ARTICLE Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton Anny Cárdenas1,2,3, Matthew J Neave3, Mohamed Fauzi Haroon3,4, Claudia Pogoreutz1,3,5, Nils Rädecker3,5, Christian Wild5, Astrid Gärdes1 and Christian R Voolstra3 1Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany; 2Max Plank Institute for Marine Microbiology, Bremen, Germany; 3Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; 4Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA and 5Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (470%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expres- sion analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations.
    [Show full text]