A New Volvate <I>Macrolepiota</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Sequence Analysis of Auricularia Heimuer Combined with Genetic Linkage Map
Journal of Fungi Article Genome Sequence Analysis of Auricularia heimuer Combined with Genetic Linkage Map Ming Fang 1, Xiaoe Wang 2, Ying Chen 2, Peng Wang 2, Lixin Lu 2, Jia Lu 2, Fangjie Yao 1,2,* and Youmin Zhang 1,* 1 Lab of genetic breeding of edible mushromm, Horticultural, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; [email protected] 2 Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; [email protected] (X.W.); [email protected] (Y.C.); [email protected] (P.W.); [email protected] (L.L.); [email protected] (J.L.) * Correspondence: [email protected] (F.Y.); [email protected] (Y.Z.) Received: 3 March 2020; Accepted: 12 March 2020; Published: 16 March 2020 Abstract: Auricularia heimuer is one of the most popular edible fungi in China. In this study, the whole genome of A. heimuer was sequenced on the Illumina HiSeq X system and compared with other mushrooms genomes. As a wood-rotting fungus, a total of 509 carbohydrate-active enzymes (CAZymes) were annotated in order to explore its potential capabilities on wood degradation. The glycoside hydrolases (GH) family genes in the A. heimuer genome were more abundant than the genes in the other 11 mushrooms genomes. The A. heimuer genome contained 102 genes encoding class III, IV, and V ethanol dehydrogenases. Evolutionary analysis based on 562 orthologous single-copy genes from 15 mushrooms showed that Auricularia formed an early independent branch of Agaricomycetes. The mating-type locus of A. heimuer was located on linkage group 8 by genetic linkage analysis. -
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
<I>Lepiota Brunneoincarnata</I>
ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/126.133 Volume 126, pp. 133–141 October–December 2013 Lepiota brunneoincarnata and L. subincarnata: distribution and phylogeny A. Razaq1*, E.C. Vellinga2, S. Ilyas1 & A.N. Khalid1 1Department of Botany, University of the Punjab, Lahore. 54590, Pakistan 2Department of Plant and Microbial Biology, University of California Berkeley California USA *Correspondence to: [email protected] Abstract — An updated phylogeny of the clade of toxic Lepiota species is presented, and new insights in the distribution of L. brunneoincarnata and L. subincarnata are given. Lepiota brunneoincarnata is widespread in Europe and temperate Asia, and L. subincarnata is now known from Asia, Europe, and North America. Morphological and anatomical descriptions are provided for these two species based on material from the western Himalayan forests in Pakistan, where they are reported for the first time. Keywords — amatoxins, lepiotaceous fungi, mushroom diversity, rDNA Introduction Among lepiotaceous fungi the genus Lepiota (Pers.) Gray (Agaricales, Basidiomycota) has a worldwide distribution and is highly diversified (Bon 1993; Ahmad et al. 1997; Vellinga 2003; Kirk et al. 2008; Razaq et al. 2012; Nawaz et al. 2013). The genus is characterized by having a scaly (rarely smooth) pileus, free lamellae, partial veil in the form of annulus, a universal veil, smooth white dextrinoid spores (in most species), and clamp connections (present in all but one or two species) (Vellinga 2001, Kumar & Manimohan 2009). The nature of the pileus covering elements and the spore shape are very important characters for infrageneric classification (Candusso & Lanzoni 1990; Bon 1993; Vellinga 2001, 2003). -
MYCOTAXON Volume 96, Pp
MYCOTAXON Volume 96, pp. 181–191 April–June 2006 The genus Chlorophyllum (Basidiomycetes) in China Z. W. GE1, 2 & Zhu L. YANG1, * [email protected] [email protected] 1 Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany Chinese Academy of Sciences, Heilongtan, Kunming 650204, Yunnan, P. R. China 2 Graduate School of the Chinese Academy of Sciences Beijing 100039, P. R. China Abstract—Species of the genus Chlorophyllum (Agaricaceae) in China are described and illustrated with line drawings. Among them, C. sphaerosporum is new to science, and C. hortense is new to China. A key to the Chlorophyllum species in China is also provided. Key words—Agaricales, new taxon, new record, taxonomy, distribution Introduction The genus Chlorophyllum Massee (Agaricaceae, Agaricales, Basidiomycetes) in its amended sense is characterized by a hymenidermal pileus covering, a smooth stipe, and basidiospores without a germ pore or with a germ pore but just caused by a depression in the episporium. A hyaline covering on the germ pore is absent. The basidiospores may be white, green, brownish or brown in deposit, and the habit varies from agaricoid to secotioid (Vellinga 2001, 2002, 2003a, b; Vellinga & de Kok 2002; Vellinga et al. 2003). During our survey of the lepiotoid fungi in China, several species were identified, and one new species of the genus was encountered and thus described below. Differences between similar species are provided and discussed. Material and methods All material examined collected in China, and deposited in three Herbaria. Herbarium codes used follow Holmgren et al. (1990) with one exception: HKAS = Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences, which is not listed in the index or relevant publications. -
A Nomenclatural Study of Armillaria and Armillariella Species
A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Printed in Eko-trykk A/S, Førde, Norway Printing date: 1. August 1995 ISBN 82-90724-14-4 ISSN 0802-4966 A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway 6 Authors address: Center for Forest Mycology Research Forest Products Laboratory United States Department of Agriculture Forest Service One Gifford Pinchot Dr. Madison, WI 53705 USA ABSTRACT Once a taxonomic refugium for nearly any white-spored agaric with an annulus and attached gills, the concept of the genus Armillaria has been clarified with the neotypification of Armillaria mellea (Vahl:Fr.) Kummer and its acceptance as type species of Armillaria (Fr.:Fr.) Staude. Due to recognition of different type species over the years and an extremely variable generic concept, at least 274 species and varieties have been placed in Armillaria (or in Armillariella Karst., its obligate synonym). Only about forty species belong in the genus Armillaria sensu stricto, while the rest can be placed in forty-three other modem genera. This study is based on original descriptions in the literature, as well as studies of type specimens and generic and species concepts by other authors. This publication consists of an alphabetical listing of all epithets used in Armillaria or Armillariella, with their basionyms, currently accepted names, and other obligate and facultative synonyms. -
INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales. -
2011 NAMA Toxicology Committee Report North American Mushroom Poisonings
2011 NAMA Toxicology Committee Report North American Mushroom Poisonings By Michael W. Beug, PhD, Chair NAMA Toxicology Committee P.O. Box 116, Husum, WA 98623 email: [email protected] Abstract In 2011, for North America, the reports to NAMA included 117 people seriously sickened by mushrooms. Thirteen cases involved ingestion of either “Destroying Angel” or “Death Cap” mushrooms in the genus Amanita. There was one death and two people needed a liver transplant after ingestion of a “Destroying Angel”, presumably Amanita bisporigera. Three cases, including one death, involved amatoxins from a Galerina , presumably Galerina marginata . There was one case of kidney damage after consumption of Amanita smithiana and a second case of kidney damage involving two women who consumed an unknown mushroom . The year was noteworthy for the large number of reports of problems from consumption of morels with 22 cases (18.8% of the total). A number of problems were the result of people consuming morels raw – but everyone recovered within 24 hours. The eighteen Chlorophyllum molybdites cases (15% of the total) were sometimes quite severe and often required hospitalization. While Gyromitra cases numbered only nine (eight Gyromitra esculenta and one Gyromitra montana ), four required long hospitalizations as a result of liver damage. In the Northeast, newspaper reports mention long hospitalizations from some of the mushrooms known to cause gastro- intestinal distress, but we have no information on those cases. Twenty seven reports of dogs ill after eating mushrooms included fourteen deaths of the dogs. The dog deaths were mostly attributed to ingestion of mushrooms containing α-amanitin, including probable Amanita bisporigera, Amanita ocreata and Amanita phalloides , though in at least one case the possibility of a deadly Galerina cannot be ruled out. -
Agarics-Stature-Types.Pdf
Gilled Mushroom Genera of Chicago Region, by stature type and spore print color. Patrick Leacock – June 2016 Pale spores = white, buff, cream, pale green to Pinkish spores Brown spores = orange, Dark spores = dark olive, pale lilac, pale pink, yellow to pale = salmon, yellowish brown, rust purplish brown, orange pinkish brown brown, cinnamon, clay chocolate brown, Stature Type brown smoky, black Amanitoid Amanita [Agaricus] Vaginatoid Amanita Volvariella, [Agaricus, Coprinus+] Volvopluteus Lepiotoid Amanita, Lepiota+, Limacella Agaricus, Coprinus+ Pluteotoid [Amanita, Lepiota+] Limacella Pluteus, Bolbitius [Agaricus], Coprinus+ [Volvariella] Armillarioid [Amanita], Armillaria, Hygrophorus, Limacella, Agrocybe, Cortinarius, Coprinus+, Hypholoma, Neolentinus, Pleurotus, Tricholoma Cyclocybe, Gymnopilus Lacrymaria, Stropharia Hebeloma, Hemipholiota, Hemistropharia, Inocybe, Pholiota Tricholomatoid Clitocybe, Hygrophorus, Laccaria, Lactarius, Entoloma Cortinarius, Hebeloma, Lyophyllum, Megacollybia, Melanoleuca, Inocybe, Pholiota Russula, Tricholoma, Tricholomopsis Naucorioid Clitocybe, Hygrophorus, Hypsizygus, Laccaria, Entoloma Agrocybe, Cortinarius, Hypholoma Lactarius, Rhodocollybia, Rugosomyces, Hebeloma, Gymnopilus, Russula, Tricholoma Pholiota, Simocybe Clitocyboid Ampulloclitocybe, Armillaria, Cantharellus, Clitopilus Paxillus, [Pholiota], Clitocybe, Hygrophoropsis, Hygrophorus, Phylloporus, Tapinella Laccaria, Lactarius, Lactifluus, Lentinus, Leucopaxillus, Lyophyllum, Omphalotus, Panus, Russula Galerinoid Galerina, Pholiotina, Coprinus+, -
Molecular Identification of Lepiota Acutesquamosa and L. Cristata
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 12–1007/2013/15–2–313–318 http://www.fspublishers.org Full Length Article Molecular Identification of Lepiota acutesquamosa and L. cristata (Basidiomycota, Agaricales) Based on ITS-rDNA Barcoding from Himalayan Moist Temperate Forests of Pakistan Abdul Razaq1*, Abdul Nasir Khalid1 and Sobia Ilyas1 1Department of Botany, University of the Punjab, Lahore 54590, Pakistan *For correspondence: [email protected] Abstract Lepiota acutesquamosa and L. cristata (Basidiomycota, Agaricales) collected from Himalayan moist temperate forests of Pakistan were characterized using internal transcribed spacers (ITS) of rNDA, a fungal molecular marker. The ITS-rDNA of both species was analyzed using polymerase chain reaction (PCR) and DNA sequencing. The target region when amplified using universal fungal primers (ITS1F and ITS4) generated 650-650bp fragments. Consensus sequences of both species were submitted for initial blast analysis which revealed and confirmed the identification of both species by comparing the sequences of these respective species already present in the GenBank. Sequence of Pakistani collection of L. acutesquamosa matched 99% with sequences of same species (FJ998400) and Pakistani L. cristata matched 97% with its sequences (EU081956, U85327, AJ237628). Further, in phylogenetic analysis both species distinctly clustered with their respective groups. Morphological characters like shape, size and color of basidiomata, basidiospore size, basidial lengths, shape and size of cheilocystidia of both collections were measured and compared. Both these species have been described first time from Pakistan on morph-anatomical and molecular basis. © 2013 Friends Science Publishers Keywords: Internal transcribed spacers; Lepiotaceous fungi; Molecular marker; Phylogeny Introduction of lepiotaceous fungi (Vellinga, 2001, 2003, 2006). -
Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12). -
Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil
Mycosphere Doi 10.5943/mycosphere/3/6/11 Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil Ferreira AJ1* and Cortez VG1 1Universidade Federal do Paraná, Rua Pioneiro 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil Ferreira AJ, Cortez VG 2012 – Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil. Mycosphere 3(6), 962–976, Doi 10.5943 /mycosphere/3/6/11 A macromycete survey at the São Camilo State Park, a seasonal semideciduous forest fragment in Southern Brazil, State of Paraná, was undertaken. Six lepiotoid fungi were identified: Lepiota elaiophylla, Leucoagaricus lilaceus, L. rubrotinctus, Leucocoprinus cretaceus, Macrolepiota colombiana and Rugosospora pseudorubiginosa. Detailed descriptions and illustrations are presented for all species, as well as a brief discussion on their taxonomy and geographical distribution. Macrolepiota colombiana is reported for the first time in Brazil and Leucoagaricus rubrotinctus is a new record from the State of Paraná. Key words – Agaricales – Brazilian mycobiota – new records Article Information Received 30 October 2012 Accepted 14 November 2012 Published online 3 December 2012 *Corresponding author: Ana Júlia Ferreira – e-mail: [email protected] Introduction who visited and/or studied collections from the Agaricaceae Chevall. (Basidiomycota) country in the 19th century. More recently, comprises the impressive number of 1340 researchers have studied agaricoid diversity in species, classified in 85 agaricoid, gasteroid the Northeast (Wartchow et al. 2008), and secotioid genera (Kirk et al. 2008), and Southeast (Capelari & Gimenes 2004, grouped in ten clades (Vellinga 2004). The Albuquerque et al. 2010) and South (Rother & family is of great economic and medical Silveira 2008, 2009a, 2009b). -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix