Important Odorants of Four Brassicaceae Species, and Discrepancies Between Glucosinolate Profiles and Observed Hydrolysis Products

Total Page:16

File Type:pdf, Size:1020Kb

Important Odorants of Four Brassicaceae Species, and Discrepancies Between Glucosinolate Profiles and Observed Hydrolysis Products foods Article Important Odorants of Four Brassicaceae Species, and Discrepancies between Glucosinolate Profiles and Observed Hydrolysis Products Luke Bell 1 , Eva Kitsopanou 2, Omobolanle O. Oloyede 2 and Stella Lignou 2,* 1 School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK; [email protected] 2 Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; [email protected] (E.K.); [email protected] (O.O.O.) * Correspondence: [email protected]; Tel.: +44-(0)118-378-8717 Abstract: It is widely accepted that the distinctive aroma and flavour traits of Brassicaceae crops are produced by glucosinolate (GSL) hydrolysis products (GHPs) with other non-GSL derived com- pounds also reported to contribute significantly to their aromas. This study investigated the flavour profile and glucosinolate content of four Brassicaceae species (salad rocket, horseradish, wasabi, and watercress). Solid-phase microextraction followed by gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to determine the volatile compounds and odorants present in the four species. Liquid chromatography-mass spectrometry was used to determine the glucosinolate composition, respectively. A total of 113 compounds and 107 odour-active components Citation: Bell, L.; Kitsopanou, E.; were identified in the headspace of the four species. Of the compounds identified, 19 are newly Oloyede, O.O.; Lignou, S. Important reported for ‘salad’ rocket, 26 for watercress, 30 for wasabi, and 38 for horseradish, marking a signifi- Odorants of Four Brassicaceae cant step forward in understanding and characterising aroma generation in these species. There were Species, and Discrepancies between several non-glucosinolate derived compounds contributing to the ‘pungent’ aroma profile of the Glucosinolate Profiles and Observed species, indicating that the glucosinolate-derived compounds are not the only source of these sensa- Hydrolysis Products. Foods 2021, 10, tions in Brassicaceae species. Several discrepancies between observed glucosinolates and hydrolysis 1055. https://doi.org/10.3390/ products were observed, and we discuss the implications of this for future studies. foods10051055 Academic Editors: Franziska Keywords: volatile compounds; odorants; glucosinolate; Brassicaceae; ‘salad’ rocket; wasabi; S. Hanschen and Sascha Rohn horseradish; watercress Received: 8 April 2021 Accepted: 7 May 2021 Published: 11 May 2021 1. Introduction Crops of the Brassicaceae family are grown all over the world, and they form an Publisher’s Note: MDPI stays neutral important part of many different cuisines and cultures [1]. Some species are noted for their with regard to jurisdictional claims in distinctive, and often very strong, tastes and flavours. Armoracia rusticana (horseradish), published maps and institutional affil- Eruca sativa (‘salad’ rocket), Eutrema japonicum (wasabi), and Nasturtium officinale (water- iations. cress) are four such examples, which are noted for their pungent, peppery, and aromatic organoleptic properties [2–4]. Horseradish and wasabi produce large roots that are grated and used as a condiment in many cultures across the world, most notably in Eastern Europe and the United Kingdom Copyright: © 2021 by the authors. (horseradish) and Japan (wasabi; [5]). Horseradish is a vegetative perennial that grows Licensee MDPI, Basel, Switzerland. widely in temperate regions [6], whereas wasabi can only be grown in a very few locations, This article is an open access article owing to its sensitivity to temperature change and root oxygen availability [7]. Wasabi is distributed under the terms and traditionally cultivated in damp river valleys of Japan, although commercial operations conditions of the Creative Commons have been established elsewhere, such as in the UK. Attribution (CC BY) license (https:// Salad rocket originates from the Middle East and has spread throughout the Mediter- creativecommons.org/licenses/by/ ranean basin [8]. It has become naturalised on every inhabited continent and is considered 4.0/). Foods 2021, 10, 1055. https://doi.org/10.3390/foods10051055 https://www.mdpi.com/journal/foods Foods 2021, 10, x FOR PEER REVIEW 2 of 28 cial operations have been established elsewhere, such as in the UK. Foods 10 2021, , 1055 Salad rocket originates from the Middle East and has spread throughout the Medi- 2 of 28 terranean basin [8]. It has become naturalised on every inhabited continent and is con- sidered an invasive weed in some regions. Watercress has similarly become naturalised (for example anin N invasiveorth America weed) in and some grows regions. in shallow Watercress rivers has and similarly streams. become It can be naturalised cul- (for ex- tivated commerciallyample in on North large America) scales using and artificial grows in growing shallow ‘pools’ rivers flooded and streams. with stream It can be cultivated water. Its leavescommercially and shoots on are large a popular scales usingsalad artificialand sandwich growing garnish ‘pools’, and flooded they withcan also stream water. Its be made into leavessoups [9] and. shoots are a popular salad and sandwich garnish, and they can also be made It is widelyinto accepted soups [9 ].that the distinctive aroma and flavour traits are produced by glucosinolate (GSLIt) ishydrolysis widely accepted products that (GHPs the distinctive [10]). GSLs aroma are andsulph flavourur-containing traits are sec- produced by glu- ondary metabolitescosinolate produced (GSL) hydrolysisby Brassicales products plants (GHPs in response [10]). to GSLs biotic are and sulphur-containing abiotic stress secondary [11]. Myrosinasemetabolites enzymes produced are responsible by Brassicales for the plants hydrolysis in response of GSLs to bioticin water and to abiotic form stressa [11]. My- plethora of GHPsrosinase, the enzymes conformation are responsible of which forcan thebe hydrolysisdetermined of by GSLs the inpresence water to of form en- a plethora of zyme cofactorsGHPs,, pH thelevel conformation, metallic ion of concentration which can be, and determined the precursor by the GSLs presence side of-chain enzyme cofactors, structure [8]. pHThese level, products metallic include: ion concentration, isothiocyanates and the (ITCs precursor), nitriles GSLs, epit side-chainhionitriles structure, in- [8]. These doles, oxazolidineproducts-2-thiones include:, and isothiocyanates other diverse (ITCs),products nitriles, that result epithionitriles, from tautomeric indoles, re- oxazolidine-2- arrangementsthiones, (Figure and1). other diverse products that result from tautomeric rearrangements (Figure1) . Figure 1. TheFigure glucosinolate–myrosinase 1. The glucosinolate reaction–myrosinase and hydrolysis reaction and products. hydrolysis Abbreviations: products. ESM1,Abbreviations: epithiospecifier ESM1, modifier protein 1; TFP,epithiospecifier thiocyanate forming modifier protein; protein NSP, 1; TFP nitrile, thiocyanate specifierforming formingprotein; protein;ESP, NSP epithiospecifier, nitrile specifier protein. forming protein; ESP, epithiospecifier protein. Previous work has reported olfactometry data for each of these crops; however, data Previousare work generally has reported very scarce.olfactometry Only data five studiesfor each of ofE. these sativa cropsvolatile; however compounds, data have been are generallypublished very scarce. in theOnly last five twenty studies years of [3E.,12 sativa–15]. volat Veryile little compounds information have regarding been wasabi root published in thevolatile last twenty composition years [3 and,12– aroma15]. Very is available little information outside of regarding Japanese wasabi language root journals [7,16]. volatile compositionSimilarly, and very aroma little is information available outside is available of Japanese for watercress, language with journals only four [7, papers16]. published Similarly, veryin little the last information 40 years [17 is– available20]. Horseradish for watercress is the most, with well only characterised four papers of pub- these four species, lished in the lastbut 40 still, years only [17 six–20 studies]. Horseradish of note have is the been most published well characteri in thes lasted of 50 these years four [6,21 –25]. species, but still, Thereonly six is also studies an ‘elephant of note in have the room’been regardingpublished previous in the last reports 50 ofyears GHPs present in [6,21–25]. aroma profiles of these Brassicaceae vegetables. Many of the reported GHP compounds There is arealso derived an ‘elephant from GSLin the precursors room’ regarding that are previous not regularly reports reported of GHPs as partpresent of the profile for in aroma profileseach respectiveof these Brassicaceae species. In E.vegetables. sativa, for Many example, of the GHPs reported such as GHP methyl com- ITC, 3-butenyl pounds are derivedITC, 1-isothiocyanato-4-methylpentane, from GSL precursors that are not andregularly 5-(methylsulfanyl)pentanenitrile reported as part of the have all profile for eachbeen respective previously speci reportedes. In E. [13 sativa]. The, for GSL example precursors, GHPs to thesesuch compoundsas methyl ITC (glucocapparin,, GCP; gluconapin, GNP; 4-methylpentyl GSL, 4MP; and glucoberteroin, GBT; respectively) have never been reliably or consistently reported as being part of the GSL profile in this species [26,27]. This begs the question whether these identifications are correct
Recommended publications
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Eucalyptol (1,8 Cineole) from Eucalyptus As COVID-19 Mpro Inhibitor
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2020 doi:10.20944/preprints202003.0455.v1 Eucalyptol (1,8 cineole) from eucalyptus as COVID-19 Mpro inhibitor. However, essential oil a potential inhibitor of further research is necessary to investigate COVID 19 corona virus infection by their potential medicinal use. Molecular docking studies Arun Dev Sharma* and Inderjeet Kaur Keywords: COVID-19, Essential oil, Eucalyptol, Molecular docking PG dept of Biotechnology, Lyallpur Khalsa College Jalandhar *Corresponding author, e mail: [email protected] Graphical abstract Abstract Background: COVID-19, a member of corona virus family is spreading its tentacles across the world due to lack of drugs at present. Associated with its infection are cough, fever and respiratory problems causes more than 15% mortality worldwide. It is caused by a positive, single stranded RNA virus from the enveloped coronaviruse family. However, the main viral proteinase (Mpro/3CLpro) has recently been regarded as a suitable target for drug design against SARS infection due to its vital role in polyproteins processing necessary for coronavirus reproduction. Objectives: The present in silico study was designed to evaluate the effect of Eucalyptol (1,8 cineole), a essential oil component from eucalyptus oil, on Mpro by docking study. Methods: In the present study, molecular docking studies were conducted by using 1- click dock and swiss dock tools. Protein interaction mode was calculated by Protein Interactions Calculator. Results: The calculated parameters such as RMSD, binding energy, and binding site similarity indicated effective binding of eucalyptol to COVID-19 proteinase. Active site prediction further validated the role of active site residues in ligand binding.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Taxa Named in Honor of Ihsan A. Al-Shehbaz
    TAXA NAMED IN HONOR OF IHSAN A. AL-SHEHBAZ 1. Tribe Shehbazieae D. A. German, Turczaninowia 17(4): 22. 2014. 2. Shehbazia D. A. German, Turczaninowia 17(4): 20. 2014. 3. Shehbazia tibetica (Maxim.) D. A. German, Turczaninowia 17(4): 20. 2014. 4. Astragalus shehbazii Zarre & Podlech, Feddes Repert. 116: 70. 2005. 5. Bornmuellerantha alshehbaziana Dönmez & Mutlu, Novon 20: 265. 2010. 6. Centaurea shahbazii Ranjbar & Negaresh, Edinb. J. Bot. 71: 1. 2014. 7. Draba alshehbazii Klimeš & D. A. German, Bot. J. Linn. Soc. 158: 750. 2008. 8. Ferula shehbaziana S. A. Ahmad, Harvard Pap. Bot. 18: 99. 2013. 9. Matthiola shehbazii Ranjbar & Karami, Nordic J. Bot. doi: 10.1111/j.1756-1051.2013.00326.x, 10. Plocama alshehbazii F. O. Khass., D. Khamr., U. Khuzh. & Achilova, Stapfia 101: 25. 2014. 11. Alshehbazia Salariato & Zuloaga, Kew Bulletin …….. 2015 12. Alshehbzia hauthalii (Gilg & Muschl.) Salariato & Zuloaga 13. Ihsanalshehbazia Tahir Ali & Thines, Taxon 65: 93. 2016. 14. Ihsanalshehbazia granatensis (Boiss. & Reuter) Tahir Ali & Thines, Taxon 65. 93. 2016. 15. Aubrieta alshehbazii Dönmez, Uǧurlu & M.A.Koch, Phytotaxa 299. 104. 2017. 16. Silene shehbazii S.A.Ahmad, Novon 25: 131. 2017. PUBLICATIONS OF IHSAN A. AL-SHEHBAZ 1973 1. Al-Shehbaz, I. A. 1973. The biosystematics of the genus Thelypodium (Cruciferae). Contrib. Gray Herb. 204: 3-148. 1977 2. Al-Shehbaz, I. A. 1977. Protogyny, Cruciferae. Syst. Bot. 2: 327-333. 3. A. R. Al-Mayah & I. A. Al-Shehbaz. 1977. Chromosome numbers for some Leguminosae from Iraq. Bot. Notiser 130: 437-440. 1978 4. Al-Shehbaz, I. A. 1978. Chromosome number reports, certain Cruciferae from Iraq.
    [Show full text]
  • The Direct and Functional Interaction of Tubulin with Transient Receptor Potential Melastatin 2
    The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 by Colin Elliott Seepersad A thesis submitted in conformity with the requirements for the degree of Masters of Science Cell & Systems Biology University of Toronto © Copyright by Colin Elliott Seepersad 2011 The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 Colin Elliott Seepersad Masters of Science Cell & Systems Biology University of Toronto 2011 Abstract Transient Receptor Potential Melastatin 2 (TRPM2) is a widely expressed, non-selective cationic channel with implicated roles in cell death, chemokine production and oxidative stress. This study characterizes a novel interactor of TRPM2. Using fusion proteins comprised of the TRPM2 C-terminus we established that tubulin interacted directly with the predicted C-terminal coiled-coil domain of the channel. In vitro studies revealed increased interaction between tubulin and TRPM2 during LPS-induced macrophage activation and taxol-induced microtubule stabilization. We propose that the stabilization of microtubules in activated macrophages enhances the interaction of tubulin with TRPM2 resulting in the gating and/or localization of the channel resulting in a contribution to increased intracellular calcium and downstream production of chemokines. ii Acknowledgments I would like to thank my supervisor Dr. Michelle Aarts for providing me with the opportunity to pursuit a Master’s of Science Degree at the University of Toronto. Since my days as an undergraduate thesis student, Michelle has provided me with the knowledge, tools and environment to succeed. I am very grateful for the experience and will move forward a more rounded and mature student. Special thanks to my committee members, Dr.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Biogeography and Diversification of Brassicales
    Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0).
    [Show full text]
  • Study of the Potential Synergistic Antibacterial Activity of Essential Oil Components Using the Thiazolyl Blue Tetrazolium Bromide (MTT) Assay T
    LWT - Food Science and Technology 101 (2019) 183–190 Contents lists available at ScienceDirect LWT - Food Science and Technology journal homepage: www.elsevier.com/locate/lwt Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay T ∗ Raquel Requena , María Vargas, Amparo Chiralt Institute of Food Engineering for Development, Universitat Politècnica de València, Valencia, Spain ARTICLE INFO ABSTRACT Keywords: The thiazolyl blue tetrazolium bromide (MTT) assay was used to study the potential interactions between several Antimicrobial synergy active compounds from plant essential oils (carvacrol, eugenol, cinnamaldehyde, thymol and eucalyptol) when Listeria innocua used as antibacterial agents against Escherichia coli and Listeria innocua. The minimum inhibitory concentration Escherichia coli (MIC) of each active compound and the fractional inhibitory concentration (FIC) index for the binary combi- MIC nations of essential oil compounds were determined. According to FIC index values, some of the compound FIC index binary combinations showed an additive effect, but others, such as carvacrol-eugenol and carvacrol-cinna- maldehyde exhibited a synergistic effect against L. innocua and E. coli, which was affected by the compound ratios. Some eugenol-cinnamaldehyde ratios exhibit an antagonistic effect against E. coli, but a synergistic effect against L. innocua. The most remarkable synergistic effect was observed for carvacrol-cinnamaldehyde blends for both E. coli and L. innocua, but using different compound ratios (1:0.1 and 0.5:4 respectively for each bacteria). 1. Introduction some important foodborne fungal pathogens (Abbaszadeh, Sharifzadeh, Shokri, Khosravi, & Abbaszadeh, 2014). Carvacrol is also present in Foodborne pathogens and spoilage bacteria are the major concerns thyme EO, where thymol is the most abundant active compound.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptNicotine Author Manuscript Tob Res. Author Author Manuscript manuscript; available in PMC 2016 October 01. Published in final edited form as: Nicotine Tob Res. 2015 October ; 17(10): 1270–1278. doi:10.1093/ntr/ntu279. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH and Selected Flavors in e-Cigarette Cartridges and Refill Solutions Joseph G. Lisko, M.S.*, Hang Tran, M.S., Stephen B. Stanfill, M.S., Benjamin C. Blount, Ph.D., and Clifford H. Watson, Ph. D. Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341 Abstract Introduction—Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH and flavors in 36 e- liquids brands from four manufacturers. Methods—We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control (QC) validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH and flavors. Results—Three-quarters of the products contained lower measured nicotine levels than the stated label values (6% - 42% by concentration). The pH for e-liquids ranged from 5.1 – 9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers.
    [Show full text]
  • Phytogeographic Basis Plant Breeding
    PHYTOGEOGRAPHIC BASIS of PLANT BREEDING 1. Local Varieties and Their Significance :— The -varieties of cultivated plants grown in the different regions of the Soviet Union until recently were varieties introduced from various localities and countries, and were inseparable from human migration and colonization. The list of cultivated plants reflects the history of our country in its recent past, it shows the effects of individual peasant farming. In the separate groups and varieties of plants one can trace the routes by which they were brought from Western Europe, the United States, Asia Minor, Mongolia, and Iran. In the pre-revolutionary period, the introduction of new varieties in our country was haphazard. Beginning with the eighteenth century, individual amateur growers and societies unsystemati- cally introduced new varieties from abroad. Sometimes these new varieties were quite valuable but because of the vastness of our country and the com- plete absence of any state-planned system of plant introduction, the imported varieties usually restricted themselves to very limited areas and disappeared. It may be considered that pedigree seed production, in the real meaning of the term, did not exist in our country before the October Revolution. We have just begun a planned distribution of varieties in accordance with the needs of our large-scale socialized and mechanized agricultural economy. Yet, there is no doubt that the varietal materials which were introduced in our country and cultivated for decades and centuries were subjected to natural selection, and also to deliberate or casual artificial selection, and that some local varieties evolved that were ecologically adapted. The proximity of the Soviet Union to the basic centers of origin of numer- ous cultivated plants facilitated the selection of exceptionally valuable forms.
    [Show full text]
  • Template for Single Ingredient Monographs
    NATURAL HEALTH PRODUCT COUNTERIRRITANTS This monograph is intended to serve as a guide to industry for the preparation of Product Licence Applications (PLAs) and labels for natural health product market authorization. It is not intended to be a comprehensive review of the medicinal ingredients. Definition of Counterirritant An externally applied substance that causes irritation or mild inflammation of the skin for the purpose of relieving pain in muscles or joints by reducing inflammation in deeper adjacent structures (Medline 2012; MediLexicon 2012; US FDA 1983). Notes Text in parentheses is additional optional information which can be included on the PLA and product label at the applicant’s discretion. The solidus (/) indicates that the terms and/or statements are synonymous. Either term or statement may be selected by the applicant. Date April 29, 2019 Proper name(s), Common name(s), Source material(s) Table 1. Proper name(s), Common name(s), Source material(s) – Medicinal ingredients Source ingredient(s) Source material(s)1 Proper name(s) Common name(s) Common name(s) Proper name(s) Part(s) 3-isothiocyanato-1- Allyl Allyl isothiocyanate N/A N/A propene isothiocyanate Allyl isothiocyanate Isothiocyanic acid allyl ester Ammonium hydroxide Ammonia water Ammonium N/A N/A Ammonium hydroxide hydroxide (1R, 4R)-1,7,7- (+)- Camphor d-camphor N/A N/A trimethylbicyclo[2.2. Camphor 1]heptan-2-one d-camphor d-camphor natural camphor (1RS, 4RS)-1,7,7- (+-)- camphor dl-camphor N/A N/A trimethylbicyclo[2.2. dl-camphor 1]heptan-2-one Racemic dl-camphor
    [Show full text]
  • In Vitro Evaluation of the Whitening Effect of Mouth Rinses Containing Hydrogen Peroxide
    Aesthetic Dentistry Restorative Dentistry In vitro evaluation of the whitening effect of mouth rinses containing hydrogen peroxide Abstract: The aim of this study was to evaluate the bleaching effect of two mouth rinses containing hydrogen peroxide. Thirty premolars were randomly Fábio Garcia Lima(a) Talita Aparecida Rotta(b) divided into two groups (n = 15): Listerine Whitening (LW) and Colgate Plax Sonara Penso(b) Whitening (PW). The teeth were fixed on a wax plate and with acrylic resin, (c) Sônia Saeger Meireles at a distance of 5 mm between each other, exposing the buccal surfaces. All Flávio Fernando Demarco(a) teeth were stored in artificial saliva for 45 days, being removed twice a day to be immersed for 1 min in each mouthwash, followed by 10-second wash- (a) Department of Restorative Dentistry, School ing in tap water. The pH of each product was measured. Digital images of of Dentistry, Federal University of Pelotas, each tooth were captured under standardized conditions. These images were Pelotas, RS, Brazil. cut in areas previously demarcated and analyzed in Adobe Photoshop 7.0 us- (b) Private practice, Joaçaba, SC, Brazil. ing the CIEL*a*b* color space system. Data were statistically analyzed by a (c) Department of Restorative Dentistry, School paired t test and an independent samples t test (p < 0.05). The pH values were of Dentistry, Federal University of João 5.6 and 3.4 for LW and PW, respectively. Both treatment groups showed a de- Pessoa, João Pessoa, PB, Brazil. crease in the b* parameter (p < 0.01), but a decrease of a* was observed only for PW (p < 0.01).
    [Show full text]