THE DEVELOPMENT of JOVIAL Jules L Schwartz Computer

Total Page:16

File Type:pdf, Size:1020Kb

THE DEVELOPMENT of JOVIAL Jules L Schwartz Computer THE DEVELOPMENT OF JOVIAL Jules L Schwartz Computer Sciences Corp. 1. THE BACKGROUND One of the significant things that got the JOVIAL lan- guage and compiler work started was an article on 1.1 The Environmental and Personnel Setting Expression Analysis that appeared in the 1958 ACM Communications (Wolpe 1958). The fact that this was The time was late 1958. Computers that those who were actually quite a revelation to us at that time seems involved with the first JOVIAL project had been using interesting now. Since that day, of course, there have included the JOHNNIAC (built at Rand Corporation), the been many developments in the parsing of mathematical IBM AN/FSQ-7 (for SAGE), 701, and 704. A few had and logical expressions. However, that article was the worked with board wired calculators. Some had never first exposure many of us had to the subject. Some of programmed. For those using IBM, the 709 was the us who had just finished work on some other projects current machine. There were various other manufactur- (including SAGE) began experimentation with the proc- ers at the time, some of whom do not exist today as essing of complex expressions to produce an interme- computer manufacturers. diate language utilizing the techniques described. There was no compiler language at the time in our plans, but The vacuum tube was still in vogue, Very large memo- the idea of being able to understand and parse complex ries, either high speed direct access or peripheral expressions in itself was of sufficient interest to moti- storage, didn't exist, except for magnetic tape and vate our efforts. drums on some computers. Another article which was to have great influence on our The first large scale system which was built and main- future development was also published in the ACM Com- tained by thousands of people was in the process of being munications in 1958. This was the description of what installed after a considerable amount of effort, expense, was then called the International Algebraic Language and technological innovation. Called SAGE, it was a (IAL, later called ALGOL), which had been defined by large real-time system (very large by 1958 standards). what became (and for the most part had been) an It had, among other things, an interesting and very val- esteemed group of computer people (Perlis and uable (even by today's standards) utility system for Samuelson 1958). assisting in development. This included the Communi- cation Pool. The Comm Pool's purpose was to permit 1.2 The Economic and Situation Stimulus the sharing of System Data among many programs by providing a centralized data description. Programming JOVIAL really got its beginning because of the launching for SAGE had been done in machine language, as was by the Air Force of another large system. This one almost all programming up to that time. followed SAGE and it was called the SACCS System. SACCS was to be developed from scratch. This meant FORTRAN existed and had been in use for a few years, new computers, a new system, new programming tech- but use of higher level languages wasn't nearly as com- niques, and a new operating (executive) system. All of mon as the use of such languages today. Certainly the these had to be developed before the operational pro- majority of people involved in compiler efforts at that gram could be developed. The main computer was the time, and in particular the initial JOVIAL language IBM AN/FSQ-31. Other Communications Computers development and compiler effort, had almost no expe- (built by ITT) were also utilized. rience with such activities. I had had experience with the language and compiler called PACT (Project for 1.3 The Technical Base for JOVIAL Automatic Coding Techniques) which was developed and described in 1954-1955 (Melahn 1956). But actually this The two major influences on the language of JOVIAL experience, largely because of the nature of that lan- were, first, the International Algebraic Language, guage and the computer the first version ran on (the which served as the language architectural base, and IBM 701), was not particularly valuable for the develop- SAGE, which contributed to the knowledge of many of ment of languages in the ALGOL class. the problems and ideas needed to solve the large ¢1978 Association for Computing Machinery, Inc. 2 03 ACM SIGPLAN Notices, Vol. 13, No. 8, August 1978 programming system problem. IAL was chosen as the which at the time was serving as a subcontractor to IEC. base language for several reasons. One was that at the IEC was part of the ITT complex, formed specifically to time it appeared as ff it would become the commonly develop the SACCS system. accepted standard for languages. Secondly, it seemed like a better technical basis for a new language than During this period of the organization and beginning of FORTRAN, which was the only other possibility. SAGE the JOVIAL effort in New Jersey, the other members of influenced such matters as data handling, Communica- the team who did some of the initial language investiga- tion Pool, and the need for a variety of types of varia- tion also started a project to develop a language. Even- bles (items or elements). These things were deemed tually this language was called CLIP (Compiler Lan- essential to the programming of SACCS and served as guage for Information Processing) (Bratman 1959), the basis for the first definition of JOVIAL. (Englund and Clark 1961). These two activities, the one in New Jersey and the one in California, were rather 1.4 Organizational and People Beginnings independent efforts, the one in California being some- what research oriented, while the one in New Jersey on The first actual contribution to the language effort that JOVIAL was operationally oriented - and in fact with a eventually led to JOVIAL was the small study which took fairly difficult schedule (which wasn't met). place at SDC in California in the latter part of 1958. As stated before, it started with experimentation with the The people on the CUSS project were primarily imple- analysis of logical and mathematical expressions. And, mentors. With the exception of my own experience with although the intent was not, at the time, to start develop- the language PACT in 1954 and 1955, nobody else on the ing a language, that was not completely out of the realm project had any experience with compilers or languages. of possibility. (But it should be remembered that up Some had had experience in the development of the SAGE until then language development was not a wide-spread system. For some members of the project, this was phenomenon. Within a year or two, it would bee~ome as their first programming experience. The list of people wide-spread as certain viruses. ) Key members of this who served at least sometime on the CUSS project (and study were Erwin Book, Harvey Bratman, and myself. their current, or last known affiliation, where known) During the latter months of 1958 I was transferred to follows: New Jersey to work on the SACCS project. This trans- fer came shortly after the publication of the description Jules Schwartz (Manager) of IAL in the ACM Communications that was referenced Moe Spierer (Manager 709 JOVIAL)(CSC) above. Based on the experience with SAGE and the Hank Howell (Manager Q-31 JOVIAL)(SDC) reading of the IAL description, I recommended to the Paul MeIsaac (Data Vantage) SACCS development managers, prior to my transfer, John Rafferty (IBM) the use of a higher level language to program the sys- Patricia Weaver (Unaffiliated) tem. To my and a number of other people's surprise, Emmanuel Hayes (Century Data Systems) this recommendation was accepted. Lynn Shirley (Consultant) Jack Friedland (Consultant) Actually the final recommendation was made in New Donna Neeb (CSC) Jersey where the SACCS program was to be developed. Richard Brewer (Litton Systems) This written recommendation was done with a paper Start Cohn (Unknown) typed on about seven or eight onion-skin pages around Mike Denlinger (Unknown) December 1958. The title of it was "OVIAL - Our John Bockhorst (Northrop) Version of the International Algebraic Language". It Phil Bartram (Unknown) was a brief description of some of the language concepts Frank Palmer (SDC) which could be implemented in order to develop the Ed Foote (IBM) SACCS program. This paper was accepted as the begin- John Dolan (Unknown) ning of the project, and the first work was begun. (I Patrieia Metz (Unknown) realized some years later that I had not kept that paper. There were not many copies, and it was never a for- Some of the members of the CLIP Project, in addition mally issued document. At the time it seemed like a to Book and Bratman mentioned previously, were: relatively small item and hot likely to be continued much in the future, at least outside of the particular SACCS Howard Manelowitz development environment. So the paper didn't seem Don Englnnd very important to me. Now it would be of great interest Harold Isbitz to me for several reasons. One is its historical inter- Ellen Clark est to me and perhaps some others. Secondly, I am Ellis Myer quite curious what my first ideas were at that time for the language I called OVIAL. ) 1.5 History of the Name The project that was formed to develop this language and Since it has been stated that this paper on JOVIAL will compilers for it was called the CUSS (Compiler and serve as some sort of permanent record of the language, Utility System for SACCS) project. It was part of the this seems like the right place to describe the origin of SACCS Division of System Development Corporation the name.
Recommended publications
  • A Quick Guide to Southeast Florida's Coral Reefs
    A Quick Guide to Southeast Florida’s Coral Reefs DAVID GILLIAM NATIONAL CORAL REEF INSTITUTE NOVA SOUTHEASTERN UNIVERSITY Spring 2013 Prepared by the Land-based Sources of Pollution Technical Advisory Committee (TAC) of the Southeast Florida Coral Reef Initiative (SEFCRI) BRIAN WALKER NATIONAL CORAL REEF INSTITUTE, NOVA SOUTHEASTERN Southeast Florida’s coral-rich communities are more valuable than UNIVERSITY the Spanish treasures that sank nearby. Like the lost treasures, these amazing reefs lie just a few hundred yards off the shores of Martin, Palm Beach, Broward and Miami-Dade Counties where more than one-third of Florida’s 19 million residents live. Fishing, diving, and boating help attract millions of visitors to southeast Florida each year (30 million in 2008/2009). Reef-related expen- ditures generate $5.7 billion annually in income and sales, and support more than 61,000 local jobs. Such immense recreational activity, coupled with the pressures of coastal development, inland agriculture, and robust cruise and commercial shipping industries, threaten the very survival of our reefs. With your help, reefs will be protected from local stresses and future generations will be able to enjoy their beauty and economic benefits. Coral reefs are highly diverse and productive, yet surprisingly fragile, ecosystems. They are built by living creatures that require clean, clear seawater to settle, mature and reproduce. Reefs provide safe havens for spectacular forms of marine life. Unfortunately, reefs are vulnerable to impacts on scales ranging from local and regional to global. Global threats to reefs have increased along with expanding ART SEITZ human populations and industrialization. Now, warming seawater temperatures and changing ocean chemistry from carbon dioxide emitted by the burning of fossil fuels and deforestation are also starting to imperil corals.
    [Show full text]
  • Typology of Programming Languages E Early Languages E
    Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language.
    [Show full text]
  • RML Algol 60 Compiler Accepts the Full ASCII Character Set Described in the Manual
    I I I · lL' I I 1UU, Alsol 60 CP/M 5yst.. I I , I I '/ I I , ALGOL 60 VERSION 4.8C REI.!AS!- NOTE I I I I CP/M Vers1on·2 I I When used with CP/M version 2 the Algol Ifste. will accept disk drive Dames extending from A: to P: I I I ASSEMBLY CODE ROUTINES I I .'n1~ program CODE.ALG and CODE.ASe 1s an aid to users who wish ·to add I their own code routines to the runtime system. The program' produc:es an I output file which contains a reconstruction of the INPUT, OUTPUT, IOC and I ERROR tables described in the manual. 1111s file forms the basis of an I assembly code program to which users may edit in their routines... Pat:ts I not required may be removed as desired. The resulting program should I then be assembled and overlaid onto the runtime system" using DDT, the I resulti;lg code being SAVEd as a new runtime system. It 1s important that. I the CODE program be run using the version of the runtimesY$tem to. which I the code routines are to be linked else the tables produced DUly, be·\, I incompatible. - I I I I Another example program supplied. 1. QSORT. the sortiDI pro~edure~, I described in the manual. I I I I I I I I I I , I I I -. I I 'It I I I I I I I I I I I ttKL Aleol 60 C'/M Systea I LONG INTEGER ALGOL Arun-L 1s a version of the RML zao Algol system 1nwh1c:h real variables are represented, DOt in the normal mantissalexponent form but rather as 32 .bit 2 s complement integers.
    [Show full text]
  • Workplace Learning Connection Annual Report 2019-20
    2019 – 2020 ANNUAL REPORT SERVING SCHOOLS, STUDENTS, EMPLOYERS, AND COMMUNITIES IN BENTON, CEDAR, IOWA, JOHNSON, JONES, LINN, AND WASHINGTON COUNTIES Connecting today’s students to tomorrow’s careers LINN COUNTY JONES COUNTY IOWA COUNTY CENTER REGIONAL CENTER REGIONAL CENTER 200 West St. 1770 Boyson Rd. 220 Welter Dr. Williamsburg, Iowa 52361 Hiawatha, Iowa 52233 Monticello, Iowa 52310 866-424-5669 319-398-1040 855-467-3800 KIRKWOOD REGIONAL CENTER WASHINGTON COUNTY AT THE UNIVERSITY OF IOWA REGIONAL CENTER 2301 Oakdale Blvd. 2192 Lexington Blvd. Coralville, Iowa 52241 Washington, Iowa 52353 319-887-3970 855-467-3900 BENTON COUNTY CENTER CEDAR COUNTY CENTER 111 W. 3rd St. 100 Alexander Dr., Suite 2 WORKPLACE LEARNING Vinton, Iowa 52349 Tipton, Iowa 52772 CONNECTION 866-424-5669 855-467-3900 2019 – 2020 AT A GLANCE Thank you to all our contributors, supporters, and volunteers! Workplace Learning Connection uses a diverse funding model that allows all partners to sustain their participation in an equitable manner. Whether a partners’ interest are student career development, future workforce development, or regional economic development, all funds provide age-appropriate career awareness and exploration services matching the mission of WLC and our partners. Funding the Connections… 2019 – 2020 Revenue Sources Kirkwood Community College (General Fund) $50,000 7% State and Federal Grants (Kirkwood: Perkins, WTED, IIG) $401,324 54% Grant Wood Area Education Agency $40,000 5% K through 12 School Districts Fees for Services $169,142 23% Contributions,
    [Show full text]
  • Think Complexity: Exploring Complexity Science in Python
    Think Complexity Version 2.6.2 Think Complexity Version 2.6.2 Allen B. Downey Green Tea Press Needham, Massachusetts Copyright © 2016 Allen B. Downey. Green Tea Press 9 Washburn Ave Needham MA 02492 Permission is granted to copy, distribute, transmit and adapt this work under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: https://thinkcomplex.com/license. If you are interested in distributing a commercial version of this work, please contact the author. The LATEX source for this book is available from https://github.com/AllenDowney/ThinkComplexity2 iv Contents Preface xi 0.1 Who is this book for?...................... xii 0.2 Changes from the first edition................. xiii 0.3 Using the code.......................... xiii 1 Complexity Science1 1.1 The changing criteria of science................3 1.2 The axes of scientific models..................4 1.3 Different models for different purposes............6 1.4 Complexity engineering.....................7 1.5 Complexity thinking......................8 2 Graphs 11 2.1 What is a graph?........................ 11 2.2 NetworkX............................ 13 2.3 Random graphs......................... 16 2.4 Generating graphs........................ 17 2.5 Connected graphs........................ 18 2.6 Generating ER graphs..................... 20 2.7 Probability of connectivity................... 22 vi CONTENTS 2.8 Analysis of graph algorithms.................. 24 2.9 Exercises............................. 25 3 Small World Graphs 27 3.1 Stanley Milgram......................... 27 3.2 Watts and Strogatz....................... 28 3.3 Ring lattice........................... 30 3.4 WS graphs............................ 32 3.5 Clustering............................ 33 3.6 Shortest path lengths...................... 35 3.7 The WS experiment....................... 36 3.8 What kind of explanation is that?............... 38 3.9 Breadth-First Search.....................
    [Show full text]
  • Simulation Higher Order Language Requirements Study
    DOCUMENT RESDEE ED .162 661 IB 066 666 AUTHOR Goodenough, John B.; Eraun, Christine I. TITLE Simulation Higher Order ,Language Reguiresents Study. INSTITUTION' SofTech, Inc., Waltham, Mass. SPONS'AGENCY Air Force Human Resources Lab., Broca_APE,' Texas. REPORT NO AFHPI-TE-78-34 PUB DATE ,Aug 78 NOTE 229.; Not available in hard' copy due to iarginal legibility of parts of document AVAILABLE FROM'Superintendent of Docusents, U.S. Government Printing' Office, Washington, L.C. 20402 (1978-771-122/53) EDRS PRICE MF-$0.83 Plus Postage. EC Not Availatle from EDRS. DESCRIPTORS *Comparative Analysis; Computer Assisted Instruction; *Computer Programs; Evaluation Criteria; Military Training; *Needs Assessment; *Prograaing Iangbaqes; *Simulation IDENTIFIERS FORTRAN; IRCNMAN; JOVIAL; PASCAL ABSTRACT The definitions provided for high order language (HOL) requirements for programming flight/ training simulators are based on the analysis of programs written fcr.a variety of simulators. Examples drawn from these programs are used to justify' the need for certain HOL capabilities. A description of the general 'K..structure and organization of the TRONEAN requirements for the DOI) Common Language effort IS followed-tyditailed specifications of simulator HOL requirements., pvi, FORTRAN, JCVIAI J3E, JCVIAL.J73I, and PASCAL are analyzed to see how well" each language satisfies the simulator HOL requirements. Results indicate that PL/I and JOVIAL J3D are the best suited for simulator programming, chile TOBIRANis clearly the least suitable language. All the larguages failed to satisfy some simulator requirements and improvement modificationsare specified Analysis of recommended modifications shows:that PL/I is the m st easily modified language. (CMV) *********************************************************************** Reproductions suppliid by EDRS are the best that can be made from the original dccumett.
    [Show full text]
  • Coral 66 Language Reference Makrjal
    CORAL 66 LANGUAGE REFERENCE MAKRJAL The Centre for Computing History Nl www.CompuUngHistofy.ofg.uk \/ k > MICRO FOCUS CORAL 66 LANGUAGE REFERENCE MANUAL Version 3 Micro Focus Ltd. Issue 2 March 1982 Not to be copied without the consent of Micro Focus Ltd. This language definition reproduces material from the British Standard BS5905 which is hereby acknowledged as a source. / \ / N Micro Focus Ltd. 58,Acacia Rood, St. Johns Wbod, MICRO FOCUS London NW8 6AG Telephones: 017228843/4/5/6/7 Telex: 28536 MICROFG CX)PYRI(fflT 1981, 1982 by Micro Focus Ltd. ii CORAL 66 LANGUAGE REFERENCE MANUAL AMENDMENT RECORD AMENDMENT DATED INSERTED BY SIGNATURE DATE NUMBER iii PREFACE This manual defines the programming language CORAL 66 as implemented in Version 3 of the CORAL compilers known as RCC80 and RCC86. Now that British Standard BS5905 has become the main source for CORAL implementation its structure and style have been adopted. Con5)ared to previous version's of the RCC compilers. Version 3 incorporates 'TABLE' and 'OVERLAY', and allows additional forms of Real numbers in line with the British Standard. Coiiq}iler error reporting has been .modified slightly - in particular all error messages now have identifying numbers and are listed in appendices to the operating manuals. Micro Focus has now assumed direct responsibility for production of all RCC CORAL manuals and believes that this will offer users a better service than has been possible in the past. iv AUDIENCE This manual is intended as a description of CORAL 66 for reference and assumes familiarity with use of the language.
    [Show full text]
  • Numerical Models Show Coral Reefs Can Be Self -Seeding
    MARINE ECOLOGY PROGRESS SERIES Vol. 74: 1-11, 1991 Published July 18 Mar. Ecol. Prog. Ser. Numerical models show coral reefs can be self -seeding ' Victorian Institute of Marine Sciences, 14 Parliament Place, Melbourne, Victoria 3002, Australia Australian Institute of Marine Science, PMB No. 3, Townsville MC, Queensland 4810, Australia ABSTRACT: Numerical models are used to simulate 3-dimensional circulation and dispersal of material, such as larvae of marine organisms, on Davies Reef in the central section of Australia's Great Barner Reef. Residence times on and around this reef are determined for well-mixed material and for material which resides at the surface, sea bed and at mid-depth. Results indcate order-of-magnitude differences in the residence times of material at different levels in the water column. They confirm prevlous 2- dimensional modelling which indicated that residence times are often comparable to the duration of the planktonic larval life of many coral reef species. Results reveal a potential for the ma~ntenanceof local populations of vaiious coral reef organisms by self-seeding, and allow reinterpretation of the connected- ness of the coral reef ecosystem. INTRODUCTION persal of particles on reefs. They can be summarised as follows. Hydrodynamic experiments of limited duration Circulation around the reefs is typified by a complex (Ludington 1981, Wolanski & Pickard 1983, Andrews et pattern of phase eddies (Black & Gay 1987a, 1990a). al. 1984) have suggested that flushing times on indi- These eddies and other components of the currents vidual reefs of Australia's Great Barrier Reef (GBR) are interact with the reef bathymetry to create a high level relatively short in comparison with the larval life of of horizontal mixing on and around the reefs (Black many different coral reef species (Yamaguchi 1973, 1988).
    [Show full text]
  • Coral Populations on Reef Slopes and Their Major Controls
    Vol. 7: 83-115. l982 MARINE ECOLOGY - PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. l l REVIE W Coral Populations on Reef Slopes and Their Major Controls C. R. C. Sheppard Australian Institute of Marine Science, P.M.B. No. 3, Townsville M.S.O.. Q. 4810, Australia ABSTRACT: Ecological studies of corals on reef slopes published in the last 10-15 y are reviewed. Emphasis is placed on controls of coral distributions. Reef slope structures are defined with particular reference to the role of corals in providing constructional framework. General coral distributions are synthesized from widespread reefs and are described in the order: shallowest, most exposed reef slopes; main region of hermatypic growth; deepest studies conducted by SCUBA or submersible, and cryptic habitats. Most research has concerned the area between the shallow and deep extremes. Favoured methods of study have involved cover, zonation and diversity, although inadequacies of these simple measurements have led to a few multivariate treatments of data. The importance of early life history strategies and their influence on succession and final community structure is emphasised. Control of coral distribution exerted by their dual nutrition requirements - particulate food and light - are the least understood despite being extensively studied Well studied controls include water movement, sedimentation and predation. All influence coral populations directly and by acting on competitors. Finally, controls on coral population structure by competitive processes between species, and between corals and other taxa are illustrated. Their importance to general reef ecology so far as currently is known, is described. INTRODUCTION ecological studies of reef corals beyond 50 m to as deep as 100 m.
    [Show full text]
  • The Secret Life of Coral Reefs: a Dominican Republic Adventure TEACHER's GUIDE
    The Secret Life of Coral Reefs: A Dominican Republic Adventure TEACHER’S GUIDE Grades: All Subjects: Science and Geography Live event date: May 10th, 2019 at 1:00 PM ET Purpose: This guide contains a set of discussion questions and answers for any grade level, which can be used after the virtual field trip. It also contains links to additional resources and other resources ranging from lessons, activities, videos, demonstrations, experiments, real-time data, and multimedia presentations. Dr. Joseph Pollock Event Description: Coral Strategy Director Is it a rock? Is it a plant? Or is it something else entirely? Caribbean Division The Nature Conservancy Discover the amazing world of coral reefs with coral scientist Joe Pollock, as he takes us on a virtual field trip to the beautiful coastline of the Dominican Republic. We’ll dive into the waters of the Caribbean to see how corals form, the way they grow into reefs, and how they support an incredible array of plants and animals. Covering less than 1% of the ocean floor, coral reefs are home to an estimated 25% of all marine species. That’s why they’re often called the rainforests of the sea! Explore this amazing ecosystem and learn how the reefs are more than just a pretty place—they provide habitat for the fish we eat, compounds for the medicines we take, and even coastal protection during severe weather. Learn how these fragile reefs are being damaged by human activity and climate change, and how scientists from The Nature Conservancy and local organizations are developing ways to restore corals in the areas where they need the most help.
    [Show full text]
  • Cape Coral, Fl 2018-2021
    :: CAPE CORAL, FL 2018-2021 STRATEGIC PLAN ECONOMY • ENVIRONMENT • QUALITY OF LIFE IDOWU KOYENIKAN “Someone is sitting in the shade today because someone planted a tree a long time ago”. Warren Buffet said this, and I am struck by how true, yet simple, it is. The key to success is planning. Not the plan, not the goal, but the actual process during which visions are established, goals are set, and plans are made for successful achievement of those goals. As we continue to implement our strategic plan for smart, sustainable growth, our stakeholders, consisting of City Staff, City Council, Landowners, Residents, and Business Owners, all have Cape Coral’s best interest at heart. If we are to create desirable employment opportunities, we must be able to attract and WHEN A GROUP OF PEOPLE WITH SIMILAR TO WORK TOWARDS THE SAME GOALS.” TO WORK TOWARDS retain businesses and commercial interests that are motivated to succeed. Cape Coral’s preplatted community structure is a liability we must offset to increase our market value and competitiveness. Centric to this concept is the steadfast pursuit of sustaining our ability to meet the future infra-structure and ancillary needs of these new stakeholders. It is with the utmost humility and fervent resolve that your City Council seeks to join with you and all stakeholders in support of this plan which will perpetuate the ongoing journey of this great city. Regards, Joe Coviello GETS TOGETHER IMMENSE POWER Mayor “THERE IS INTERESTS 2 | Cape Coral Strategic Plan “Functional leadership is key to economic sustainability.” On behalf of the City Council and City staff, I am proud to present the City of Cape Coral’s Fiscal Year 2018-2021 Strategic Plan.
    [Show full text]
  • An Interview with Tony Hoare ACM 1980 A.M. Turing Award Recipient
    1 An Interview with 2 Tony Hoare 3 ACM 1980 A.M. Turing Award Recipient 4 (Interviewer: Cliff Jones, Newcastle University) 5 At Tony’s home in Cambridge 6 November 24, 2015 7 8 9 10 CJ = Cliff Jones (Interviewer) 11 12 TH = Tony Hoare, 1980 A.M. Turing Award Recipient 13 14 CJ: This is a video interview of Tony Hoare for the ACM Turing Award Winners project. 15 Tony received the award in 1980. My name is Cliff Jones and my aim is to suggest 16 an order that might help the audience understand Tony’s long, varied, and influential 17 career. The date today is November 24th, 2015, and we’re sitting in Tony and Jill’s 18 house in Cambridge, UK. 19 20 Tony, I wonder if we could just start by clarifying your name. Initials ‘C. A. R.’, but 21 always ‘Tony’. 22 23 TH: My original name with which I was baptised was Charles Antony Richard Hoare. 24 And originally my parents called me ‘Charles Antony’, but they abbreviated that 25 quite quickly to ‘Antony’. My family always called me ‘Antony’, but when I went to 26 school, I think I moved informally to ‘Tony’. And I didn’t move officially to ‘Tony’ 27 until I retired and I thought ‘Sir Tony’ would sound better than ‘Sir Antony’. 28 29 CJ: Right. If you agree, I’d like to structure the discussion around the year 1980 when 30 you got the Turing Award. I think it would be useful for the audience to understand 31 just how much you’ve done since that award.
    [Show full text]