PROGRAMMING LANGUAGES TENTH EDITION This Page Intentionally Left Blank CONCEPTS of PROGRAMMING LANGUAGES TENTH EDITION
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Managed Instruction in Navy Training. INSTITUTION Naval Training Equipment Center, Orlando, Fla
DOCUMENT RESUME ED 089 780 IR 000 505 AUTHOR Middleton, Morris G.; And Others TITLE Computer Managed Instruction in Navy Training. INSTITUTION Naval Training Equipment Center, Orlando, Fla. Training Analysis and Evaluation Group. REPORT NO NAVTRADQUIPCEN-TAEG-14 PUB DATE Mar 74 NOTE 107p. ERRS PRICE MF-$0.75 HC-$5.40 PLUS POSTAGE DESCRIPTORS *Computer Assisted Instruction; Computers; Cost Effectiveness; Costs; *Educational Programs; *Feasibility Studies; Individualized Instruction; *Management; *Military Training; Pacing; Programing Languages; State of the Art Reviews IDENTIFIERS CMI; *Computer Managed Instruction; Minicomputers; Shipboard Computers; United States Navy ABSTRACT An investigation was made of the feasibility of computer-managed instruction (CMI) for the Navy. Possibilities were examined regarding a centralized computer system for all Navy training, minicomputers for remote classes, and shipboard computers for on-board training. The general state of the art and feasibility of CMI were reviewed, alternative computer languages and terminals studied, and criteria developed for selecting courses for CMI. Literature reviews, site visits, and a questionnaire survey were conducted. Results indicated that despite its high costs, CMI was necessary if a significant number of the more than 4000 Navy training courses were to become individualized and self-paced. It was concluded that the cost of implementing a large-scale centralized computer system for all training courses was prohibitive, but that the use of minicomputers for particular courses and for small, remote classes was feasible. It was also concluded that the use of shipboard computers for training was both desirable and technically feasible, but that this would require the acquisition of additional minicomputers for educational purposes since the existing shipboard equipment was both expensive to convert and already heavily used for other purposes. -
Typology of Programming Languages E Early Languages E
Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language. -
Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier. -
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop ment of the algorithmic language ALGOL. Nevertheless, it seems perti nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text. -
Object-Oriented Programming Basics with Java
Object-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's. -
Simula Mother Tongue for a Generation of Nordic Programmers
Simula! Mother Tongue! for a Generation of! Nordic Programmers! Yngve Sundblad HCI, CSC, KTH! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Inspired by Ole-Johan Dahl, 1931-2002, and Kristen Nygaard, 1926-2002" “From the cold waters of Norway comes Object-Oriented Programming” " (first line in Bertrand Meyer#s widely used text book Object Oriented Software Construction) ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula concepts 1967" •# Class of similar Objects (in Simula declaration of CLASS with data and actions)! •# Objects created as Instances of a Class (in Simula NEW object of class)! •# Data attributes of a class (in Simula type declared as parameters or internal)! •# Method attributes are patterns of action (PROCEDURE)! •# Message passing, calls of methods (in Simula dot-notation)! •# Subclasses that inherit from superclasses! •# Polymorphism with several subclasses to a superclass! •# Co-routines (in Simula Detach – Resume)! •# Encapsulation of data supporting abstractions! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula example BEGIN! REF(taxi) t;" CLASS taxi(n); INTEGER n;! BEGIN ! INTEGER pax;" PROCEDURE book;" IF pax<n THEN pax:=pax+1;! pax:=n;" END of taxi;! t:-NEW taxi(5);" t.book; t.book;" print(t.pax)" END! Output: 7 ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! -
Submission Data for 2020-2021 CORE Conference Ranking Process International Symposium on Formal Methods (Was Formal Methods Europe FME)
Submission Data for 2020-2021 CORE conference Ranking process International Symposium on Formal Methods (was Formal Methods Europe FME) Ana Cavalcanti, Stefania Gnesi, Lars-Henrik Eriksson, Nico Plat, Einar Broch Johnsen, Maurice ter Beek Conference Details Conference Title: International Symposium on Formal Methods (was Formal Methods Europe FME) Acronym : FM Rank: A Data and Metrics Google Scholar Metrics sub-category url: https://scholar.google.com.au/citations?view_op=top_venues&hl=en&vq=eng_theoreticalcomputerscienceposition in sub-category: 20+Image of top 20: ACM Metrics Not Sponsored by ACM Aminer Rank 1 Aminer Rank: 28Name in Aminer: World Congress on Formal MethodsAcronym or Shorthand: FMh-5 Index: 17CCF: BTHU: âĂŞ Top Aminer Cites: http://portal.core.edu.au/core/media/conf_submissions_citations/extra_info1804_aminer_top_cite.png Other Rankings Not aware of any other Rankings Conferences in area: 1. Formal Methods Symposium (FM) 2. Software Engineering and Formal Methods (SEFM), Integrated Formal Methods (IFM) 3. Fundamental Approaches to Software Engineering (FASE), NASA Formal Methods (NFM), Runtime Verification (RV) 4. Formal Aspects of Component Software (FACS), Automated Technology for Verification and Analysis (ATVA) 5. International Conference on Formal Engineering Methods (ICFEM), FormaliSE, Formal Methods in Computer-Aided Design (FMCAD), Formal Methods for Industrial Critical Systems (FMICS) 6. Brazilian Symposium on Formal Methods (SBMF), Theoretical Aspects of Software Engineering (TASE) 7. International Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA) Top People Publishing Here name: Frank de Boer justification: h-index: 42 ( https://www.cwi.nl/people/frank-de-boer) Frank S. de Boer is senior researcher at the CWI, where he leads the research group on Formal Methods, and Professor of Software Correctness at Leiden University, The Netherlands. -
Improving Learning of Programming Through E-Learning by Using Asynchronous Virtual Pair Programming
Improving Learning of Programming Through E-Learning by Using Asynchronous Virtual Pair Programming Abdullah Mohd ZIN Department of Industrial Computing Faculty of Information Science and Technology National University of Malaysia Bangi, MALAYSIA Sufian IDRIS Department of Computer Science Faculty of Information Science and Technology National University of Malaysia Bangi, MALAYSIA Nantha Kumar SUBRAMANIAM Open University Malaysia (OUM) Faculty of Information Technology and Multimedia Communication Kuala Lumpur, MALAYSIA ABSTRACT The problem of learning programming subjects, especially through distance learning and E-Learning, has been widely reported in literatures. Many attempts have been made to solve these problems. This has led to many new approaches in the techniques of learning of programming. One of the approaches that have been proposed is the use of virtual pair programming (VPP). Most of the studies about VPP in distance learning or e-learning environment focus on the use of the synchronous mode of collaboration between learners. Not much research have been done about asynchronous VPP. This paper describes how we have implemented VPP and a research that has been carried out to study the effectiveness of asynchronous VPP for learning of programming. In particular, this research study the effectiveness of asynchronous VPP in the learning of object-oriented programming among students at Open University Malaysia (OUM). The result of the research has shown that most of the learners have given positive feedback, indicating that they are happy with the use of asynchronous VPP. At the same time, learners did recommend some extra features that could be added in making asynchronous VPP more enjoyable. Keywords: Pair-programming; Virtual Pair-programming; Object Oriented Programming INTRODUCTION Delivering program of Information Technology through distance learning or E- Learning is indeed a very challenging task. -
The Joe-E Language Specification (Draft)
The Joe-E Language Specification (draft) Adrian Mettler David Wagner famettler,[email protected] February 3, 2008 Disclaimer: This is a draft version of the Joe-E specification, and is subject to change. Sections 5 - 7 mention some (but not all) of the aspects of the Joe-E language that are future work or current works in progress. 1 Introduction We describe the Joe-E language, a capability-based subset of Java intended to make it easier to build secure systems. The goal of object capability languages is to support the Principle of Least Authority (POLA), so that each object naturally receives the least privilege (i.e., least authority) needed to do its job. Thus, we hope that Joe-E will support secure programming while remaining familiar to Java programmers everywhere. 2 Goals We have several goals for the Joe-E language: • Be familiar to Java programmers. To minimize the barriers to adoption of Joe-E, the syntax and semantics of Joe-E should be familiar to Java programmers. We also want Joe-E programmers to be able to use all of their existing tools for editing, compiling, executing, debugging, profiling, and reasoning about Java code. We accomplish this by defining Joe-E as a subset of Java. In general: Subsetting Principle: Any valid Joe-E program should also be a valid Java program, with identical semantics. This preserves the semantics Java programmers will expect, which are critical to keeping the adoption costs manageable. Also, it means all of today's Java tools (IDEs, debuggers, profilers, static analyzers, theorem provers, etc.) will apply to Joe-E code. -
The History of Computer Language Selection
The History of Computer Language Selection Kevin R. Parker College of Business, Idaho State University, Pocatello, Idaho USA [email protected] Bill Davey School of Business Information Technology, RMIT University, Melbourne, Australia [email protected] Abstract: This examines the history of computer language choice for both industry use and university programming courses. The study considers events in two developed countries and reveals themes that may be common in the language selection history of other developed nations. History shows a set of recurring problems for those involved in choosing languages. This study shows that those involved in the selection process can be informed by history when making those decisions. Keywords: selection of programming languages, pragmatic approach to selection, pedagogical approach to selection. 1. Introduction The history of computing is often expressed in terms of significant hardware developments. Both the United States and Australia made early contributions in computing. Many trace the dawn of the history of programmable computers to Eckert and Mauchly’s departure from the ENIAC project to start the Eckert-Mauchly Computer Corporation. In Australia, the history of programmable computers starts with CSIRAC, the fourth programmable computer in the world that ran its first test program in 1949. This computer, manufactured by the government science organization (CSIRO), was used into the 1960s as a working machine at the University of Melbourne and still exists as a complete unit at the Museum of Victoria in Melbourne. Australia’s early entry into computing makes a comparison with the United States interesting. These early computers needed programmers, that is, people with the expertise to convert a problem into a mathematical representation directly executable by the computer. -
Simulation Higher Order Language Requirements Study
DOCUMENT RESDEE ED .162 661 IB 066 666 AUTHOR Goodenough, John B.; Eraun, Christine I. TITLE Simulation Higher Order ,Language Reguiresents Study. INSTITUTION' SofTech, Inc., Waltham, Mass. SPONS'AGENCY Air Force Human Resources Lab., Broca_APE,' Texas. REPORT NO AFHPI-TE-78-34 PUB DATE ,Aug 78 NOTE 229.; Not available in hard' copy due to iarginal legibility of parts of document AVAILABLE FROM'Superintendent of Docusents, U.S. Government Printing' Office, Washington, L.C. 20402 (1978-771-122/53) EDRS PRICE MF-$0.83 Plus Postage. EC Not Availatle from EDRS. DESCRIPTORS *Comparative Analysis; Computer Assisted Instruction; *Computer Programs; Evaluation Criteria; Military Training; *Needs Assessment; *Prograaing Iangbaqes; *Simulation IDENTIFIERS FORTRAN; IRCNMAN; JOVIAL; PASCAL ABSTRACT The definitions provided for high order language (HOL) requirements for programming flight/ training simulators are based on the analysis of programs written fcr.a variety of simulators. Examples drawn from these programs are used to justify' the need for certain HOL capabilities. A description of the general 'K..structure and organization of the TRONEAN requirements for the DOI) Common Language effort IS followed-tyditailed specifications of simulator HOL requirements., pvi, FORTRAN, JCVIAI J3E, JCVIAL.J73I, and PASCAL are analyzed to see how well" each language satisfies the simulator HOL requirements. Results indicate that PL/I and JOVIAL J3D are the best suited for simulator programming, chile TOBIRANis clearly the least suitable language. All the larguages failed to satisfy some simulator requirements and improvement modificationsare specified Analysis of recommended modifications shows:that PL/I is the m st easily modified language. (CMV) *********************************************************************** Reproductions suppliid by EDRS are the best that can be made from the original dccumett. -
CSC 272 - Software II: Principles of Programming Languages
CSC 272 - Software II: Principles of Programming Languages Lecture 1 - An Introduction What is a Programming Language? • A programming language is a notational system for describing computation in machine-readable and human-readable form. • Most of these forms are high-level languages , which is the subject of the course. • Assembly languages and other languages that are designed to more closely resemble the computer’s instruction set than anything that is human- readable are low-level languages . Why Study Programming Languages? • In 1969, Sammet listed 120 programming languages in common use – now there are many more! • Most programmers never use more than a few. – Some limit their career’s to just one or two. • The gain is in learning about their underlying design concepts and how this affects their implementation. The Six Primary Reasons • Increased ability to express ideas • Improved background for choosing appropriate languages • Increased ability to learn new languages • Better understanding of significance of implementation • Better use of languages that are already known • Overall advancement of computing Reason #1 - Increased ability to express ideas • The depth at which people can think is heavily influenced by the expressive power of their language. • It is difficult for people to conceptualize structures that they cannot describe, verbally or in writing. Expressing Ideas as Algorithms • This includes a programmer’s to develop effective algorithms • Many languages provide features that can waste computer time or lead programmers to logic errors if used improperly – E. g., recursion in Pascal, C, etc. – E. g., GoTos in FORTRAN, etc. Reason #2 - Improved background for choosing appropriate languages • Many professional programmers have a limited formal education in computer science, limited to a small number of programming languages.