BY XIAOMIN YU DISSERTATION Submitted in Partial Fulfillment of The

Total Page:16

File Type:pdf, Size:1020Kb

BY XIAOMIN YU DISSERTATION Submitted in Partial Fulfillment of The MOLECULAR CHARACTERIZATION OF PHOSPHONATE BIOSYNTHESIS IN NATURE BY XIAOMIN YU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor William W. Metcalf, Chair Associate Professor Rachel J. Whitaker Professor John E. Cronan Professor Gary J. Olsen ABSTRACT Phosphonates, compounds characterized by direct C-P bonds, comprise a structurally diverse class of natural products demonstrating an impressive range of biological activities. Although the first biologically produced phosphonate was described more than 50 years ago, the range and diversity of phosphonate production in nature is still not well understood. The biosynthetic pathways of almost all known phosphonates share the same initial step, in which phosphoenolpyruvate (PEP) is isomerized to phosphonopyruvate (PnPy) by PEP mutase (PepM). By using the pepM gene as a molecular marker for phosphonate biosynthetic capacity, I showed that phosphonate biosynthesis is both common and diverse across a wide range of environments, with pepM homologs detected in ~5% of sequenced microbial genomes and 7% of genome equivalents in metagenomic datasets. In addition, PEP mutase sequence conservation was found to be strongly correlated with conservation of other nearby genes, suggesting the diversity of phosphonate biosynthetic pathways could be inferred by examining PEP mutase diversity. By extrapolation, hundreds of unique phosphonate biosynthetic pathways were predicted to exist in nature. As part of a large screening program to uncover new phosphonate-containing natural products, two related phosphonate producers were identified by screening for the pepM gene: Glycomyces sp. NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338. These two actinomycetes produced high amounts of novel phosphonate-containing compounds, which were determined to be 2-hydroxyethylphosphonate (2-HEP) containing polysaccharides (also called phosphonoglycans). The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation and ultrafiltration. Sugar component analyses indicated the presence of various O-methylated galactoses in both phosphonoglycans; the O-methyl groups were shown to derive from S-adenosylmethionine. Partial acid hydrolysis of the purified phosphonoglycans from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose (presumably galactose) and a 2-HEP mono(2,3-dihydroxypropyl) ester. Partial acid ii hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3- dihydroxypropyl) ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis. Like other classes of natural products, most of the phosphonate biosynthetic pathways remain silent under standard laboratory culture conditions. To elicit cryptic phosphonate gene clusters from actinomycetes, two strategies were employed: co-culturing with other microorganisms and selecting for antibiotic-resistant mutants. Although none of the methods successfully turned on phosphonate production, potential avenues for further exploration in terms of inducing the production of unknown phosphonates and increasing the yields of known phosphonates remain possible. To explore the possibility of using the industrial workhorse Corynebacterium glutamicum as a heterologous host to produce phosphonates, a synthetic biology approach was described. A synthetic pathway for the synthesis of 2-HEP was assembled and reconstituted in C. glutamicum, which afforded the production of 2-HEP. However, further modifications are required to improve the stability of the construct and optimize the product yield. iii ToTo my my family iv ACKNOWLEDGEMENTS There are many people without whom I could not have finished this thesis. First and foremost, I would like to give my sincere gratitude to my mentor and thesis advisor, Dr. Bill Metcalf, for his excellent guidance and training. The research presented in this work would not have been possible without his constant support and encouragement throughout my graduate studies. My thanks also go to my thesis committee Dr. John Cronan, Dr. Gary Olsen and Dr. Rachel Whitaker for providing great advice and challenging me to think more critically about my project. I would like to thank Dr. Neil Price, Jun Kai Zhang and Dr. James Doroghazi, who have contributed much of the work presented here. I acknowledge Dr. Feng Lin, Dr. Lingyang Zhu and Dr. Xudong Guan for their assistance with NMR. I would also like to acknowledge Dr. Alvaro Hernandez and Dr. Laura Guest for assistance with DNA sequencing. I am grateful to all members of the Metcalf lab and the Mining Microbial Genome theme of IGB, past and present, for creating a collaborative and enjoyable research environment. I am very fortunate to have them as my colleagues. In particular, I would like to thank Jun Kai Zhang, Dr. Kou-San Ju, Dr. Svetlana Borisova, Dr. James Doroghazi, Dr. Bradley Evans, Dr. Sarath Janga, Joel Cioni, Dr. Jiangta Gao, Courtney Evans, Dr. Benjamin Griffin, Dr. Benjamin Circello, Dr. Juan Velasquez, Dr. Gargi Kulkari, Dr. Annette Erb and Nannan Jiang. I am greatly indebted to their support, encouragement and advice throughout this project. I thank undergraduate students Amla Sampat and Joleen Su for assistance with strain isolation and screening. Thanks are also extended to all the friends who made my past seven years enjoyable outside of the lab, especially Dr. Yuanyuan Liu, Dr. Xuan Zhuang, Dr. Yiran Dong and Dr. Jisen Zhang. Finally, and most importantly, I would like to thank my parents for their endless love, support and understanding. v TABLE OF CONTENTS CHAPTER 1: INTRODUCTION ....................................................................................................... 1 1.1 The Biological Importance of Phosphorus ................................................................................. 1 1.2 Chemical Properties and Natural Occurrence of Phosphonates ............................................... 1 1.3 Phosphonates as Structural Components of Macromolecules .................................................. 2 1.4 Phosphonates as Antimetabolites .............................................................................................. 6 1.5 Phosphonates as Bioavailable P ............................................................................................... 8 1.6 Biosynthesis of Phosphonates ................................................................................................. 10 1.6.1 Biosynthesis of 2-AEP ...................................................................................................... 10 1.6.2 Biosynthesis of phosphinothricin ....................................................................................... 12 1.6.3 Biosynthesis of fosfomycin ................................................................................................ 16 1.6.4 Biosynthesis of dehydrophos ............................................................................................ 18 1.6.5 Biosynthesis of rhizocticins and plumbemycins ................................................................ 20 1.6.6 Biosynthesis of FR-900098 ............................................................................................... 22 1.6.7 Biosynthesis of methylphosphonate ................................................................................. 23 1.7 Outline of Work Presented in the Thesis ................................................................................. 24 1.8 References ............................................................................................................................... 26 CHAPTER 2: DIVERSITY AND ABUNDANCE OF PHOSPHONATE BIOSYNTHETIC GENES IN NATURE ...................................................................................................................... 37 2.1 Introduction .............................................................................................................................. 37 2.2 Materials and Methods ............................................................................................................. 39 2.3 Results ..................................................................................................................................... 52 2.4 Discussion ................................................................................................................................ 77 2.5 Acknowledgements .................................................................................................................. 77 2.6 References ............................................................................................................................... 78 CHAPTER 3: PURIFICATION AND CHARACTERIZATION OF PHOSPHONOGLYCANS FROM GLYCOMYCES SP. NRRL B-16210 AND STACKEBRANDTIA NASSAUENSIS NRRL B-16338 ............................................................................................................................... 82 3.1 Introduction .............................................................................................................................. 82 3.2 Materials and Methods ............................................................................................................. 82 3.3 Results ....................................................................................................................................
Recommended publications
  • Quantitative and Qualitative Evaluation of the Impact of the G2 Enhancer
    bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Quantitative and qualitative evaluation of the impact of the G2 2 enhancer, bead sizes and lysing tubes on the bacterial community 3 composition during DNA extraction from recalcitrant soil core 4 samples based on community sequencing and qPCR 5 6 Alex Gobbi1¶, Rui G. Santini2¶, Elisa Filippi1, Lea Ellegaard-Jensen1, Carsten S. 7 Jacobsen1, Lars H. Hansen1* 8 9 1 Department of Environmental Science, Aarhus University, Roskilde, Denmark 10 2 Natural History Museum, Centre for GeoGenetics, University of Copenhagen, Copenhagen, 11 Denmark 12 13 14 * Corresponding author 15 E-mail: [email protected] (LHH) 16 17 18 ¶ These authors contributed equally to this work. 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/365395; this version posted July 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 Soil DNA extraction encounters numerous challenges that can affect both yield and 23 purity of the recovered DNA. Clay particles lead to reduced DNA extraction efficiency, 24 and PCR inhibitors from the soil matrix can negatively affect downstream analyses 25 when applying DNA sequencing.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • Alloactinosynnema Sp
    University of New Mexico UNM Digital Repository Chemistry ETDs Electronic Theses and Dissertations Summer 7-11-2017 AN INTEGRATED BIOINFORMATIC/ EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES Wubin Gao University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds Part of the Bioinformatics Commons, Chemistry Commons, and the Other Microbiology Commons Recommended Citation Gao, Wubin. "AN INTEGRATED BIOINFORMATIC/EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES." (2017). https://digitalrepository.unm.edu/chem_etds/73 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Wubin Gao Candidate Chemistry and Chemical Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Jeremy S. Edwards, Chairperson Charles E. Melançon III, Advisor Lina Cui Changjian (Jim) Feng i AN INTEGRATED BIOINFORMATIC/EXPERIMENTAL APPROACH FOR DISCOVERING NOVEL TYPE II POLYKETIDES ENCODED IN ACTINOBACTERIAL GENOMES by WUBIN GAO B.S., Bioengineering, China University of Mining and Technology, Beijing, 2012 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Chemistry The University of New Mexico Albuquerque, New Mexico July 2017 ii DEDICATION This dissertation is dedicated to my altruistic parents, Wannian Gao and Saifeng Li, who never stopped encouraging me to learn more and always supported my decisions on study and life.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Glycomyces Phytohabitans Sp. Nov., a Novel Endophytic Actinomycete Isolated from the Coastal Halophyte in Jiangsu, East China
    The Journal of Antibiotics (2014) 67, 559–563 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja ORIGINAL ARTICLE Glycomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte in Jiangsu, East China Ke Xing1, Sheng Qin2, Wen-Di Zhang1,2, Cheng-Liang Cao2, Ji-Sheng Ruan3, Ying Huang3 and Ji-Hong Jiang2 A novel endophytic actinomycete, designated strain KLBMP 1483T, was isolated from the stem of the coastal plant Dendranthema indicum (Linn.) Des Moul collected from Nantong, in East China. Phylogenetic analysis showed that strain KLBMP 1483T was affiliated with the genus Glycomyces within the family Glycomycetaceae and shared the highest 16S rRNA gene sequence similarities with the type strains of Glycomyces arizonensis NRRL B-16153T (96.7%) and Glycomyces tenuis IFO 15904T (96.2%), and lower similarities (94.1–95.1%) to the other members of the genus Glycomyces, which distinguished KLBMP 1483T from representatives of the genus Glycomyces. The whole-cell hydrolysates contained meso-diaminopimelic acid, glucose, xylose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, two unknown aminophospholipids, two phosphoglycolipids, two unknown phospholipids and one unknown lipid. MK-10(H4) was the predominant menaquinone. The major fatty acids were iso-C15:0, anteiso-C15:0, iso-C16:0, iso-C16:1 G and anteiso-C17:0. On the basis of the phenotypic and genotypic characteristics presented in this study, strain KLBMP 1483T represents a novel species, for which the name Glycomyces phytohabitans sp. nov. is proposed. The type strain is KLBMP 1483T (NBRC 109116T ¼ DSM 45766T).
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Bibliography
    Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me­ filamentous phototrophic bacteria in holomictic freshwater lakes. Hy­ thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap­ Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam­ pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac­ Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep­ of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano­ 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti­ the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther­ 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B.
    [Show full text]
  • Diversity of Cultivated Aerobic Poly-Hydrolytic Bacteria in Saline Alkaline Soils
    Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils Dimitry Y. Sorokin1,2, Tatiana V. Kolganova3, Tatiana V. Khijniak1, Brian E. Jones4 and Ilya V. Kublanov1,5 1 Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia 2 Department of Biotechnology, Delft University of Technology, Delft, Netherlands 3 Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia 4 DuPont Industrial Biosciences/Genencor International BV, Leiden, Netherlands 5 Immanuel Kant Baltic Federal University, Kaliningrad, Russia ABSTRACT Alkaline saline soils, known also as ``soda solonchaks'', represent a natural soda habitat which differs from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we investigate the diversity of culturable aerobic haloalkalitolerant bacteria with various hydrolytic activities from soda soils at different locations in Central Asia, Africa, and North America. In total, 179 pure cultures were obtained by using media with various polymers at pH 10 and 0.6 M total Na+. According to the 16S rRNA gene sequence analysis, most of the isolates belonged to Firmicutes and Actinobacteria. Most isolates possessed multiple hydrolytic activities, including endoglucanase, xylanase, amylase and protease. The pH profiling of selected representatives of actinobacteria and endospore-forming bacteria showed, that the former were facultative alkaliphiles, while the latter were mostly obligate alkaliphiles. The hydrolases of selected representatives from both groups were active at a broad pH range from six to 11. Overall, this work demonstrates the presence of a rich hydrolytic Submitted 9 June 2017 bacterial community in soda soils which might be explored further for production of Accepted 21 August 2017 haloalkalistable hydrolases.
    [Show full text]
  • Identification and Partial Characterization of A
    IDENTIFICATION AND PARTIAL CHARACTERIZATION OF A TRANSPOSON INSERTION MUTANT OF BURKHOLDERIA MULTIVORANS WITH REDUCED RESISTANCE TO POLYMYXIN B by BARBARA R. STEEN B. Sc., The University of British Columbia, 1990 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Microbiology and Immunology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September 1999 © Barbara R. Steen, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. oto Department of Hvcr°k\ 9) H The University of British Columbia Vancouver, Canada Date rhex-,,3 3 i °\°)°) DE-6 (2/88) Abstract Abstract Burkholderia multivorans is an antibiotic resistant opportunistic pathogen that is being isolated with an increased frequency from immunocompromised patients. B. multivorans can cause serious lung infections in patients with cystic fibrosis but the mechanism of pathogenesis is not understood. As well, B. multivorans causes lung infections in chronic granulomatous disease patients. Neutrophils from these patients are unable to elicit an oxidative burst and are therefore dependent on nonoxidative killing mechanisms for destroying phagocytosed microbes.
    [Show full text]
  • Nematological Research Vol 48
    Vol. 48 No. 1 Nematological Research July , 2018 [Short Communication] microhabitats and by displaying freeze tolerance (Tanaka et al., 2012; Mullins, 2015). Recently, we discovered that The composition of hindgut microbiota P. japonica is naturally infected by thelastomatid of Periplaneta japonica in the presence parasitic nematodes from genus Protrellus and is capable of thelastomatid parasitic nematodes of being artificially infected by the broad host range nematode, Leidynema appendiculatum (Ozawa and Hasegawa, 2018). These thelastomatid nematodes are not Cláudia Sofia Leite Vicente1,2, Sota Ozawa1 and pathogenic parasites for the cockroaches, still their Koichi Hasegawa1,* function in the biology of the insect is unknown (Ozawa et al., 2014; Ozawa et al., 2016; Sriwati et al., 2016). Cockroaches are interesting insect models to study Thelastomatid nematodes (Nematoda: Oxyurida: multi-trophic interactions due to their long-term Thelastomatoidea) are obligatory parasites that occur evolution and resilience (Mullins, 2015). As key-elements naturally in the hindgut of arthropods. Their origin and of insect’s lifestyle, microbial communities (in particular impact in the host is still unknown. Previous studies showed that the presence of thelastomatid nematodes in the gut of gut residents) are involved in a wide range of functions cockroaches (Periplaneta fuliginosa and P. americana) (i.e. colonization and resistance to parasites and/or could influence the composition of their hindgut microflora. pathogens, diet breakdown, nutrient recycling and Through a metagenomic approach (16S rRNA V3-V4 production of pheromones and/or kairomones) (Engel sequencing), we have characterized the hindgut microbiome and Moran, 2013). The diversity of these communities is of P. japonica in the presence of thelastomatid nematodes host-dependent, mainly determined by its habitat, diet, (L1986, natural parasitic nematode Protrellus sp.
    [Show full text]