On the Relevance of the Differential Expressions $ F^ 2+ F'^ 2$, $ F+ F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering Curves – I
Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos. -
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture. -
Linguistic Presentation of Objects
Zygmunt Ryznar dr emeritus Cracow Poland [email protected] Linguistic presentation of objects (types,structures,relations) Abstract Paper presents phrases for object specification in terms of structure, relations and dynamics. An applied notation provides a very concise (less words more contents) description of object. Keywords object relations, role, object type, object dynamics, geometric presentation Introduction This paper is based on OSL (Object Specification Language) [3] dedicated to present the various structures of objects, their relations and dynamics (events, actions and processes). Jay W.Forrester author of fundamental work "Industrial Dynamics”[4] considers the importance of relations: “the structure of interconnections and the interactions are often far more important than the parts of system”. Notation <!...> comment < > container of (phrase,name...) ≡> link to something external (outside of definition)) <def > </def> start-end of definition <spec> </spec> start-end of specification <beg> <end> start-end of section [..] or {..} 1 list of assigned keywords :[ or :{ structure ^<name> optional item (..) list of items xxxx(..) name of list = value assignment @ mark of special attribute,feature,property @dark unknown, to obtain, to discover :: belongs to : equivalent name (e.g.shortname) # number of |name| executive/operational object ppppXxxx name of item Xxxx with prefix ‘pppp ‘ XXXX basic object UUUU.xxxx xxxx object belonged to UUUU object class & / conjunctions ‘and’ ‘or’ 1 If using Latex editor we suggest [..] brackets -
Semiflexible Polymers
Semiflexible Polymers: Fundamental Theory and Applications in DNA Packaging Thesis by Andrew James Spakowitz In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology MC 210-41 Caltech Pasadena, California 91125 2004 (Defended September 28, 2004) ii c 2004 Andrew James Spakowitz All Rights Reserved iii Acknowledgements Over the last five years, I have benefitted greatly from my interactions with many people in the Caltech community. I am particularly grateful to the members of my thesis committee: John Brady, Rob Phillips, Niles Pierce, and David Tirrell. Their example has served as guidance in my scientific development, and their professional assistance and coaching have proven to be invaluable in my future career plans. Our collaboration has impacted my research in many ways and will continue to be fruitful for years to come. I am grateful to my research advisor, Zhen-Gang Wang. Throughout my scientific development, Zhen-Gang’s ongoing patience and honesty have been instrumental in my scientific growth. As a researcher, his curiosity and fearlessness have been inspirational in developing my approach and philosophy. As an advisor, he serves as a model that I will turn to throughout the rest of my career. Throughout my life, my family’s love, encouragement, and understanding have been of utmost importance in my development, and I thank them for their ongoing devotion. My friends have provided the support and, at times, distraction that are necessary in maintaining my sanity; for this, I am thankful. Finally, I am thankful to my fianc´ee, Sarah Heilshorn, for her love, support, encourage- ment, honesty, critique, devotion, and wisdom. -
Art and Engineering Inspired by Swarm Robotics
RICE UNIVERSITY Art and Engineering Inspired by Swarm Robotics by Yu Zhou A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved, Thesis Committee: Ronald Goldman, Chair Professor of Computer Science Joe Warren Professor of Computer Science Marcia O'Malley Professor of Mechanical Engineering Houston, Texas April, 2017 ABSTRACT Art and Engineering Inspired by Swarm Robotics by Yu Zhou Swarm robotics has the potential to combine the power of the hive with the sen- sibility of the individual to solve non-traditional problems in mechanical, industrial, and architectural engineering and to develop exquisite art beyond the ken of most contemporary painters, sculptors, and architects. The goal of this thesis is to apply swarm robotics to the sublime and the quotidian to achieve this synergy between art and engineering. The potential applications of collective behaviors, manipulation, and self-assembly are quite extensive. We will concentrate our research on three topics: fractals, stabil- ity analysis, and building an enhanced multi-robot simulator. Self-assembly of swarm robots into fractal shapes can be used both for artistic purposes (fractal sculptures) and in engineering applications (fractal antennas). Stability analysis studies whether distributed swarm algorithms are stable and robust either to sensing or to numerical errors, and tries to provide solutions to avoid unstable robot configurations. Our enhanced multi-robot simulator supports this research by providing real-time simula- tions with customized parameters, and can become as well a platform for educating a new generation of artists and engineers. The goal of this thesis is to use techniques inspired by swarm robotics to develop a computational framework accessible to and suitable for both artists and engineers. -
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions. -
Spiral Pdf, Epub, Ebook
SPIRAL PDF, EPUB, EBOOK Roderick Gordon,Brian Williams | 496 pages | 01 Sep 2011 | Chicken House Ltd | 9781906427849 | English | Somerset, United Kingdom Spiral PDF Book Clear your history. Cann is on the run. Remark: a rhumb line is not a spherical spiral in this sense. The spiral has inspired artists throughout the ages. Metacritic Reviews. Fast, Simple and effective in getting high quality formative assessment in seconds. It has been nominated at the Globes de Cristal Awards four times, winning once. Name that government! This last season has two episodes less than the previous ones. The loxodrome has an infinite number of revolutions , with the separation between them decreasing as the curve approaches either of the poles, unlike an Archimedean spiral which maintains uniform line-spacing regardless of radius. Ali Tewfik Jellab changes from recurring character to main. William Schenk Christopher Tai Looking for a movie the entire family can enjoy? Looking for a movie the entire family can enjoy? Edit Cast Series cast summary: Caroline Proust June Assess in real-time or asynchronously. Time Traveler for spiral The first known use of spiral was in See more words from the same year. A hyperbolic spiral appears as image of a helix with a special central projection see diagram. TV series to watch. External Sites. That dark, messy, morally ambivalent universe they live in is recognisable even past the cultural differences, such as the astonishing blurring of the boundary between investigative police work and judgement — it's not so much uniquely French as uniquely modern. Photo Gallery. Some familiar faces, and some new characters, keep things ticking along nicely. -
Archimedean Spirals ∗
Archimedean Spirals ∗ An Archimedean Spiral is a curve defined by a polar equation of the form r = θa, with special names being given for certain values of a. For example if a = 1, so r = θ, then it is called Archimedes’ Spiral. Archimede’s Spiral For a = −1, so r = 1/θ, we get the reciprocal (or hyperbolic) spiral. Reciprocal Spiral ∗This file is from the 3D-XploreMath project. You can find it on the web by searching the name. 1 √ The case a = 1/2, so r = θ, is called the Fermat (or hyperbolic) spiral. Fermat’s Spiral √ While a = −1/2, or r = 1/ θ, it is called the Lituus. Lituus In 3D-XplorMath, you can change the parameter a by going to the menu Settings → Set Parameters, and change the value of aa. You can see an animation of Archimedean spirals where the exponent a varies gradually, from the menu Animate → Morph. 2 The reason that the parabolic spiral and the hyperbolic spiral are so named is that their equations in polar coordinates, rθ = 1 and r2 = θ, respectively resembles the equations for a hyperbola (xy = 1) and parabola (x2 = y) in rectangular coordinates. The hyperbolic spiral is also called reciprocal spiral because it is the inverse curve of Archimedes’ spiral, with inversion center at the origin. The inversion curve of any Archimedean spirals with respect to a circle as center is another Archimedean spiral, scaled by the square of the radius of the circle. This is easily seen as follows. If a point P in the plane has polar coordinates (r, θ), then under inversion in the circle of radius b centered at the origin, it gets mapped to the point P 0 with polar coordinates (b2/r, θ), so that points having polar coordinates (ta, θ) are mapped to points having polar coordinates (b2t−a, θ). -
Analysis of Spiral Curves in Traditional Cultures
Forum _______________________________________________________________ Forma, 22, 133–139, 2007 Analysis of Spiral Curves in Traditional Cultures Ryuji TAKAKI1 and Nobutaka UEDA2 1Kobe Design University, Nishi-ku, Kobe, Hyogo 651-2196, Japan 2Hiroshima-Gakuin, Nishi-ku, Hiroshima, Hiroshima 733-0875, Japan *E-mail address: [email protected] *E-mail address: [email protected] (Received November 3, 2006; Accepted August 10, 2007) Keywords: Spiral, Curvature, Logarithmic Spiral, Archimedean Spiral, Vortex Abstract. A method is proposed to characterize and classify shapes of plane spirals, and it is applied to some spiral patterns from historical monuments and vortices observed in an experiment. The method is based on a relation between the length variable along a curve and the radius of its local curvature. Examples treated in this paper seem to be classified into four types, i.e. those of the Archimedean spiral, the logarithmic spiral, the elliptic vortex and the hyperbolic spiral. 1. Introduction Spiral patterns are seen in many cultures in the world from ancient ages. They give us a strong impression and remind us of energy of the nature. Human beings have been familiar to natural phenomena and natural objects with spiral motions or spiral shapes, such as swirling water flows, swirling winds, winding stems of vines and winding snakes. It is easy to imagine that powerfulness of these phenomena and objects gave people a motivation to design spiral shapes in monuments, patterns of cloths and crafts after spiral shapes observed in their daily lives. Therefore, it would be reasonable to expect that spiral patterns in different cultures have the same geometrical properties, or at least are classified into a small number of common types. -
Mathematics of the Extratropical Cyclone Vortex in the Southern
ACCESS Freely available online y & W OPEN log ea to th a e im r l F C o f r e o c l Journal of a a s n t r i n u g o J ISSN: 2332-2594 Climatology & Weather Forecasting Case Report Mathematics of the Extra-Tropical Cyclone Vortex in the Southern Atlantic Ocean Gobato R1*, Heidari A2, Mitra A3 1Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil; 2Aculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA; 3Department of Marine Science, University of Calcutta, 35 B.C. Road Kolkata, 700019, India ABSTRACT The characteristic shape of hurricanes, cyclones, typhoons is a spiral. There are several types of turns, and determining the characteristic equation of which spiral CB fits into is the goal of the work. In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. An “explosive extra-tropical cyclone” is an atmospheric phenomenon that occurs when there is a very rapid drop in central atmospheric pressure. This phenomenon, with its characteristic of rapidly lowering the pressure in its interior, generates very intense winds and for this reason it is called explosive cyclone, bomb cyclone. It was determined the mathematical equation of the shape of the extratropical cyclone, being in the shape of a spiral called "Cotes' Spiral". In the case of Cyclone Bomb (CB), which formed in the south of the Atlantic Ocean, and passed through the south coast of Brazil in July 2020, causing great damages in several cities in the State of Santa Catarina. -
A Dynamic Rod Model to Simulate Mechanics of Cables and Dna
A DYNAMIC ROD MODEL TO SIMULATE MECHANICS OF CABLES AND DNA by Sachin Goyal A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering and Scientific Computing) in The University of Michigan 2006 Doctoral Committee: Professor Noel Perkins, Chair Associate Professor Edgar Meyhofer, Co-Chair Assistant Professor Ioan Andricioaei Assistant Professor Krishnakumar Garikipati Assistant Professor Jens-Christian Meiners Dedication To my parents ii Acknowledgements I am extremely grateful to my advisor Prof. Noel Perkins for his highly conducive and motivating research guidance and overall mentoring. I sincerely appreciate many engaging discussions of DNA mechanics and supercoiling with Prof. E. Meyhofer and Prof. K. Garikipati in Mechanical Engineering Program, Prof. C. Meiners in the Biophysics Program, Prof. I. Andricioaei in the Biochemistry/ Biophysics Program and and Dr. S. Blumberg in Medical school at the University of Michigan and Dr. C. L. Lee at the Lawrence Livermore National Laboratory, California. I also appreciate Professor Jason D. Kahn (Department of Chemistry and Biochemistry, University of Maryland) for providing the sequences used in his experiments, and Professor Wilma K. Olson (Department of Chemistry and Chemical Biology, Rutgers University) for suggesting alternative binding topologies in DNA-protein complexes. I also acknowledge recent graduate students T. Lillian in Mechanical Engineering Program, D. Wilson in Physics Program and J. Wereszczynski in Chemistry Program to extend my work and collaborate on ongoing studies beyond the scope of dissertation. I also gratefully acknowledge the research support provided by the U. S. Office of Naval Research, Lawrence Livermore National Laboratories, and the National Science Foundation. -
Flexible Fluidic Actuators for Soft Robotic Applications
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2019 Flexible Fluidic Actuators for Soft Robotic Applications Weiping Hu University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Hu, Weiping, Flexible Fluidic Actuators for Soft Robotic Applications, Doctor of Philosophy thesis, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, 2019. https://ro.uow.edu.au/theses1/717 Research Online is the open access institutional repository for the University of Wollongong.