Art and Engineering Inspired by Swarm Robotics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering Curves – I
Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos. -
Claus Kahlert and Otto E. Rössler Institute for Physical and Theoretical Chemistry, University of Tübingen Z. Naturforsch
Chaos as a Limit in a Boundary Value Problem Claus Kahlert and Otto E. Rössler Institute for Physical and Theoretical Chemistry, University of Tübingen Z. Naturforsch. 39a, 1200- 1203 (1984); received November 8, 1984 A piecewise-linear. 3-variable autonomous O.D.E. of C° type, known to describe constant- shape travelling waves in one-dimensional reaction-diffusion media of Rinzel-Keller type, is numerically shown to possess a chaotic attractor in state space. An analytical method proving the possibility of chaos is outlined and a set of parameters yielding Shil'nikov chaos indicated. A symbolic dynamics technique can be used to show how the limiting chaos dominates the behavior even of the finite boundary value problem. Reaction-diffusion equations occur in many dis boundary conditions are assumed. This result was ciplines [1, 2], Piecewise-linear systems are especially obtained by an analytical matching method. The amenable to analysis. A variant to the Rinzel-Keller connection to chaos theory (Smale [6] basic sets) equation of nerve conduction [3] can be written as was not evident at the time. In the following, even the possibility of manifest chaos will be demon 9 ö2 — u u + p [- u + r - ß + e (ii - Ö)], strated. o t oa~ In Fig. 1, a chaotic attractor of (2) is presented. Ö The flow can be classified as an example of "screw- — r = - e u + r , (1) 0/ type-chaos" (cf. [7]). A second example of a chaotic attractor is shown in Fig. 2. A 1-D projection of a where 0(a) =1 if a > 0 and zero otherwise; d is the 2-D cross section through the chaotic flow in a threshold parameter. -
The Dual Language of Geometry in Gothic Architecture: the Symbolic Message of Euclidian Geometry Versus the Visual Dialogue of Fractal Geometry
Peregrinations: Journal of Medieval Art and Architecture Volume 5 Issue 2 135-172 2015 The Dual Language of Geometry in Gothic Architecture: The Symbolic Message of Euclidian Geometry versus the Visual Dialogue of Fractal Geometry Nelly Shafik Ramzy Sinai University Follow this and additional works at: https://digital.kenyon.edu/perejournal Part of the Ancient, Medieval, Renaissance and Baroque Art and Architecture Commons Recommended Citation Ramzy, Nelly Shafik. "The Dual Language of Geometry in Gothic Architecture: The Symbolic Message of Euclidian Geometry versus the Visual Dialogue of Fractal Geometry." Peregrinations: Journal of Medieval Art and Architecture 5, 2 (2015): 135-172. https://digital.kenyon.edu/perejournal/vol5/iss2/7 This Feature Article is brought to you for free and open access by the Art History at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Peregrinations: Journal of Medieval Art and Architecture by an authorized editor of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Ramzy The Dual Language of Geometry in Gothic Architecture: The Symbolic Message of Euclidian Geometry versus the Visual Dialogue of Fractal Geometry By Nelly Shafik Ramzy, Department of Architectural Engineering, Faculty of Engineering Sciences, Sinai University, El Masaeed, El Arish City, Egypt 1. Introduction When performing geometrical analysis of historical buildings, it is important to keep in mind what were the intentions -
The Solutions to Uncertainty Problem of Urban Fractal Dimension Calculation
The Solutions to Uncertainty Problem of Urban Fractal Dimension Calculation Yanguang Chen (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P.R. China. E-mail: [email protected]) Abstract: Fractal geometry provides a powerful tool for scale-free spatial analysis of cities, but the fractal dimension calculation results always depend on methods and scopes of study area. This phenomenon has been puzzling many researchers. This paper is devoted to discussing the problem of uncertainty of fractal dimension estimation and the potential solutions to it. Using regular fractals as archetypes, we can reveal the causes and effects of the diversity of fractal dimension estimation results by analogy. The main factors influencing fractal dimension values of cities include prefractal structure, multi-scaling fractal patterns, and self-affine fractal growth. The solution to the problem is to substitute the real fractal dimension values with comparable fractal dimensions. The main measures are as follows: First, select a proper method for a special fractal study. Second, define a proper study area for a city according to a study aim, or define comparable study areas for different cities. These suggestions may be helpful for the students who takes interest in or even have already participated in the studies of fractal cities. Key words: Fractal; prefractal; multifractals; self-affine fractals; fractal cities; fractal dimension measurement 1. Introduction A scientific research is involved with two processes: description and understanding. A study often proceeds first by describing how a system works and then by understanding why (Gordon, 2005). Scientific description relies heavily on measurement and mathematical modeling, and scientific 1 explanation is mainly to use observation, experience, and experiment (Henry, 2002). -
D'arcy Wentworth Thompson
D’ARCY WENTWORTH THOMPSON Mathematically trained maverick zoologist D’Arcy Wentworth Thompson (May 2, 1860 –June 21, 1948) was among the first to cross the frontier between mathematics and the biological world and as such became the first true biomathematician. A polymath with unbounded energy, he saw mathematical patterns in everything – the mysterious spiral forms that appear in the curve of a seashell, the swirl of water boiling in a pan, the sweep of faraway nebulae, the thickness of stripes along a zebra’s flanks, the floret of a flower, etc. His premise was that “everything is the way it is because it got that way… the form of an object is a ‘diagram of forces’, in this sense, at least, that from it we can judge of or deduce the forces that are acting or have acted upon it.” He asserted that one must not merely study finished forms but also the forces that mold them. He sought to describe the mathematical origins of shapes and structures in the natural world, writing: “Cell and tissue, shell and bone, leaf and flower, are so many portions of matter and it is in obedience to the laws of physics that their particles have been moved, molded and conformed. There are no exceptions to the rule that God always geometrizes.” Thompson was born in Edinburgh, Scotland, the son of a Professor of Greek. At ten he entered Edinburgh Academy, winning prizes for Classics, Greek Testament, Mathematics and Modern Languages. At seventeen he went to the University of Edinburgh to study medicine, but two years later he won a scholarship to Trinity College, Cambridge, where he concentrated on zoology and natural science. -
A Method of Constructing Phyllotaxically Arranged Modular Models by Partitioning the Interior of a Cylinder Or a Cone
A method of constructing phyllotaxically arranged modular models by partitioning the interior of a cylinder or a cone Cezary St¸epie´n Institute of Computer Science, Warsaw University of Technology, Poland [email protected] Abstract. The paper describes a method of partitioning a cylinder space into three-dimensional sub- spaces, congruent to each other, as well as partitioning a cone space into subspaces similar to each other. The way of partitioning is of such a nature that the intersection of any two subspaces is the empty set. Subspaces are arranged with regard to phyllotaxis. Phyllotaxis lets us distinguish privileged directions and observe parastichies trending these directions. The subspaces are created by sweeping a changing cross-section along a given path, which enables us to obtain not only simple shapes but also complicated ones. Having created these subspaces, we can put modules inside them, which do not need to be obligatorily congruent or similar. The method ensures that any module does not intersect another one. An example of plant model is given, consisting of modules phyllotaxically arranged inside a cylinder or a cone. Key words: computer graphics; modeling; modular model; phyllotaxis; cylinder partitioning; cone partitioning; genetic helix; parastichy. 1. Introduction Phyllotaxis is the manner of how leaves are arranged on a plant stem. The regularity of leaves arrangement, known for a long time, still absorbs the attention of researchers in the fields of botany, mathematics and computer graphics. Various methods have been used to describe phyllotaxis. A historical review of problems referring to phyllotaxis is given in [7]. Its connections with number sequences, e.g. -
Morphology and Mathematics. by D'arcy Wentworth Thompson. The
( 857 ) XXVII.—Morphology and Mathematics. By D'Arcy Wentworth Thompson. (Read December 7, 1914. MS. received February 1, 1915. Issued separately June 22, 1915.) The study of Organic Form, which we call by GOETHE'S name of Morphology, is but a portion of that wider Science of Form which deals with the forms assumed by matter under all aspects and conditions, and, in a still wider sense, with Forms which are theoretically imaginable. The study of Form may be descriptive merely, or it may become analytical. We begin by describing the shape of an object in the simple words of common speech : we end by denning it in the precise language of mathematics ; and the one method tends to follow the other in strict scientific order and historical continuity. Thus, fer instance, the form of the earth, of a raindrop or a rainbow, the shape of the hanging chain, or the path of a stone thrown up into the air, may all be described, however inadequately, in common words ; but when we have learned to comprehend and to define the sphere, the catenary, or the parabola, we have made a wonderful and perhaps a manifold advance. The mathematical definition of a "form" has a quality of precision which was quite lacking in our earlier stage of mere description ; it is expressed in few words, or in still briefer symbols, and these words or symbols are so pregnant with meaning that thought itself is economised ; we are brought by means of it in touch with GALILEO'S aphorism, that " the Book of Nature is written in characters of Geometry." Next, we soon reach through mathematical analysis to mathematical synthesis ; we discover homologies or identities which were not obvious before, and which our descriptions obscured rather than revealed : as, for instance, when we learn that, however we hold our chain, or however we fire our bullet, the contour of the one or the path of the other is always mathematically homologous. -
(12) United States Patent (10) Patent No.: US 6,948,910 B2 Polacsek (45) Date of Patent: Sep
USOO694891 OB2 (12) United States Patent (10) Patent No.: US 6,948,910 B2 PolacSek (45) Date of Patent: Sep. 27, 2005 (54) SPIRAL-BASED AXIAL FLOW DEVICES William C. Elmore, Mark A. Heald- “Physics of Waves” (C) 1969 PP 5–35, 203–205, 234-235, ISBN-0486 64926–1, (76) Inventor: Ronald R. Polacsek, 73373 Joshua Dover Publ., Canada. Tree St., Palm Desert, CA (US) 92260 A.A. Andronov, AA. Viti, “Theory of Oscillators.” (C) 1966, (*) Notice: Subject to any disclaimer, the term of this pp. 56–58, 199-200, ISBDN-0486-65508–3, Dover Pub patent is extended or adjusted under 35 lishing, Canada. U.S.C. 154(b) by 375 days. Erik Anderson et al., Journal of Experimental Biology, “The Boundary Layer of Swimming Fish' pp 81-102 (C) Dec. 5, (21) Appl. No.: 10/194,386 2000, (C) The Company of Biologists, Great Britain. Stephen Strogatz, “Nonlinear Dynamics and Chaos” (C) 1994 (22) Filed: Jul. 12, 2002 pp. 262-279, ISBDN 0-7382-0453–6 (C) Perseus Books, (65) Prior Publication Data USA. US 2004/0009063 A1 Jan. 15, 2004 (Continued) (51) Int. Cl. ................................................ B64C 11/18 (52) U.S. Cl. ........................................ 416/1; 416/227 R Primary Examiner Edward K. Look (58) Field of Search ................................. 416/1, 227 R, Assistant Examiner Richard Edgar 416/227A, 223 R, 223 A (57) ABSTRACT (56) References Cited Axial flow devices using rigid spiral band profiled blade U.S. PATENT DOCUMENTS catenaries attached variably along and around an axially elongated profiled hub, of axially oriented profile Section 547,210 A 10/1895 Haussmann 1864,848 A 6/1932 Munk .................... -
Examples of the Golden Ratio You Can Find in Nature
Examples Of The Golden Ratio You Can Find In Nature It is often said that math contains the answers to most of universe’s questions. Math manifests itself everywhere. One such example is the Golden Ratio. This famous Fibonacci sequence has fascinated mathematicians, scientist and artists for many hundreds of years. The Golden Ratio manifests itself in many places across the universe, including right here on Earth, it is part of Earth’s nature and it is part of us. In mathematics, the Fibonacci sequence is the ordering of numbers in the following integer sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… and so on forever. Each number is the sum of the two numbers that precede it. The Fibonacci sequence is seen all around us. Let’s explore how your body and various items, like seashells and flowers, demonstrate the sequence in the real world. As you probably know by now, the Fibonacci sequence shows up in the most unexpected places. Here are some of them: 1. Flower petals number of petals in a flower is often one of the following numbers: 3, 5, 8, 13, 21, 34 or 55. For example, the lily has three petals, buttercups have five of them, the chicory has 21 of them, the daisy has often 34 or 55 petals, etc. 2. Faces Faces, both human and nonhuman, abound with examples of the Golden Ratio. The mouth and nose are each positioned at golden sections of the distance between the eyes and the bottom of the chin. -
Analysis of Spiral Curves in Traditional Cultures
Forum _______________________________________________________________ Forma, 22, 133–139, 2007 Analysis of Spiral Curves in Traditional Cultures Ryuji TAKAKI1 and Nobutaka UEDA2 1Kobe Design University, Nishi-ku, Kobe, Hyogo 651-2196, Japan 2Hiroshima-Gakuin, Nishi-ku, Hiroshima, Hiroshima 733-0875, Japan *E-mail address: [email protected] *E-mail address: [email protected] (Received November 3, 2006; Accepted August 10, 2007) Keywords: Spiral, Curvature, Logarithmic Spiral, Archimedean Spiral, Vortex Abstract. A method is proposed to characterize and classify shapes of plane spirals, and it is applied to some spiral patterns from historical monuments and vortices observed in an experiment. The method is based on a relation between the length variable along a curve and the radius of its local curvature. Examples treated in this paper seem to be classified into four types, i.e. those of the Archimedean spiral, the logarithmic spiral, the elliptic vortex and the hyperbolic spiral. 1. Introduction Spiral patterns are seen in many cultures in the world from ancient ages. They give us a strong impression and remind us of energy of the nature. Human beings have been familiar to natural phenomena and natural objects with spiral motions or spiral shapes, such as swirling water flows, swirling winds, winding stems of vines and winding snakes. It is easy to imagine that powerfulness of these phenomena and objects gave people a motivation to design spiral shapes in monuments, patterns of cloths and crafts after spiral shapes observed in their daily lives. Therefore, it would be reasonable to expect that spiral patterns in different cultures have the same geometrical properties, or at least are classified into a small number of common types. -
Consensus and Coherence in Fractal Networks Stacy Patterson, Member, IEEE and Bassam Bamieh, Fellow, IEEE
1 Consensus and Coherence in Fractal Networks Stacy Patterson, Member, IEEE and Bassam Bamieh, Fellow, IEEE Abstract—We consider first and second order consensus algo- determined by the spectrum of the Laplacian, though in a rithms in networks with stochastic disturbances. We quantify the slightly more complex way [5]. deviation from consensus using the notion of network coherence, Several recent works have studied the relationship between which can be expressed as an H2 norm of the stochastic system. We use the setting of fractal networks to investigate the question network coherence and topology in first-order consensus sys- of whether a purely topological measure, such as the fractal tems. Young et al. [4] derived analytical expressions for dimension, can capture the asymptotics of coherence in the large coherence in rings, path graphs, and star graphs, and Zelazo system size limit. Our analysis for first-order systems is facilitated and Mesbahi [11] presented an analysis of network coherence by connections between first-order stochastic consensus and the in terms of the number of cycles in the graph. Our earlier global mean first passage time of random walks. We then show how to apply similar techniques to analyze second-order work [5] presented an asymptotic analysis of network coher- stochastic consensus systems. Our analysis reveals that two ence for both first and second order consensus algorithms in networks with the same fractal dimension can exhibit different torus and lattice networks in terms of the number of nodes asymptotic scalings for network coherence. Thus, this topological and the network dimension. These results show that there characterization of the network does not uniquely determine is a marked difference in coherence between first-order and coherence behavior. -
Structural Properties of Vicsek-Like Deterministic Multifractals
S S symmetry Article Structural Properties of Vicsek-like Deterministic Multifractals Eugen Mircea Anitas 1,2,* , Giorgia Marcelli 3 , Zsolt Szakacs 4 , Radu Todoran 4 and Daniela Todoran 4 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russian 2 Horia Hulubei, National Institute of Physics and Nuclear Engineering, 77125 Magurele, Romania 3 Faculty of Mathematical, Physical and Natural Sciences, Sapienza University of Rome, 00185 Rome, Italy; [email protected] 4 Faculty of Science, Technical University of Cluj Napoca, North University Center of Baia Mare, Baia Mare, 430122 Maramures, Romania; [email protected] (Z.S.); [email protected] (R.T.); [email protected] (D.T.) * Correspondence: [email protected] Received: 13 May 2019; Accepted: 15 June 2019; Published: 18 June 2019 Abstract: Deterministic nano-fractal structures have recently emerged, displaying huge potential for the fabrication of complex materials with predefined physical properties and functionalities. Exploiting the structural properties of fractals, such as symmetry and self-similarity, could greatly extend the applicability of such materials. Analyses of small-angle scattering (SAS) curves from deterministic fractal models with a single scaling factor have allowed the obtaining of valuable fractal properties but they are insufficient to describe non-uniform structures with rich scaling properties such as fractals with multiple scaling factors. To extract additional information about this class of fractal structures we performed an analysis of multifractal spectra and SAS intensity of a representative fractal model with two scaling factors—termed Vicsek-like fractal. We observed that the box-counting fractal dimension in multifractal spectra coincide with the scattering exponent of SAS curves in mass-fractal regions.