Publications for Murray Henwood 2018 2017 2016 2015 2014 2013

Total Page:16

File Type:pdf, Size:1020Kb

Publications for Murray Henwood 2018 2017 2016 2015 2014 2013 Publications for Murray Henwood 2018 hamptonii, Araliaceae): an enigmatic species with a rich history Plunkett, G., Pimenov, M., Reduron, J., Kljuykov, E., van Wyk, in bioprospecting. Telopea, 18, 297-304. <a B., Ostroumova, T., Henwood, M., Tilney, P., Spalik, K., href="http://dx.doi.org/10.7751/telopea8767">[More Watson, M., Hart, J., et al (2018). Apiaceae. In J. Kadereit, V. Information]</a> Bittrich (Eds.), Flowering Plants. Eudicots: The Families and Kodela, P., Henwood, M. (2015). Lectotypification of Actinotus Genera of Vascular Plants, (pp. 9-206). Cham: Springer, Cham. paddisonii R.T.Baker (Apiaceae: Mackinlayoideae). Telopea, <a href="http://dx.doi.org/10.1007/978-3-319-93605- 18, 57-60. <a 5_2">[More Information]</a> href="http://dx.doi.org/10.7751/telopea8465">[More Plunkett, G., Wen, J., Lowry II, P., Mitchell, A., Henwood, M., Information]</a> Fiaschi, P. (2018). Araliaceae. In J. Kadereit, V. Bittrich (Eds.), Wilson, T., Elkan, L., Henwood, M., Murray, L., Renner, M., Flowering Plants. Eudicots: The Families and Genera of Wardrop, C. (2015). Prostanthera conniana (Lamiaceae, Vascular Plants, (pp. 413-446). Cham: Springer, Cham. <a Westringieae), a new species from the Southern Tablelands, href="http://dx.doi.org/10.1007/978-3-319-93605-5_4">[More New South Wales, Australia. Telopea, 18, 519-526. <a Information]</a> href="http://dx.doi.org/10.7751/telopea10042">[More Foster, C., Henwood, M., Ho, S. (2018). Plastome sequences Information]</a> and exploration of tree-space help to resolve the phylogeny of Gibbons, K., Conn, B., Henwood, M. (2015). Status of names riceflowers (Thymelaeaceae: Pimelea). Molecular of Mitrasacme species occurring outside Australia. Telopea, 18, Phylogenetics and Evolution, 127, 156-167. <a 495-502. <a href="http://dx.doi.org/10.1016/j.ympev.2018.05.018">[More href="http://dx.doi.org/10.7751/telopea9036">[More Information]</a> Information]</a> 2017 2014 Wilson, T., Conn, B., Henwood, M. (2017). Great expectations: Emery, N., Wardle, G., Henwood, M., Offord, C. (2014). Correlations between pollinator assemblages and floral Experimental evidence confirms the interactive effect of soil characters in lamiaceae. International Journal of Plant and climate on predicted plant distributions. Ecological Society Sciences, 178(3), 170-187. <a of Australia 2014 Annual Conference, Alice Springs: ESA href="http://dx.doi.org/10.1086/690023">[More Publications Division. Information]</a> Henwood, M. (2014). Hydrocotyle rivularis: a new trifoliate Emery, N., Henwood, M., Offord, C., Wardle, G. (2017). Right species here, right now: Populations of Actinotus helianthi differ in from south-eastern Australia Telopea. Telopea, 17(2014), 217- their early performance traits and interactions. Austral Ecology, 221. <a 42(3), 367-378. <a href="http://dx.doi.org/10.7751/telopea20147840">[More href="http://dx.doi.org/10.1111/aec.12450">[More Information]</a> Information]</a> Henwood, M. (2014). Hydrocotyle rivularis: a new trifoliolate 2016 species from south-eastern Australia. Telopea, 17, 217-221. <a href="http://dx.doi.org/10.7751/telopea20147840">[More Foster, C., Cantrill, D., James, E., Syme, A., Jordan, R., Information]</a> Douglas, R., Ho, S., Henwood, M. (2016). Molecular phylogenetics provides new insights into the systematics of Foster, C., Conn, B., Henwood, M., Ho, S. (2014). Molecular Pimelea and Thecanthes (Thymelaeaceae). Australian data support Orianthera: a new genus of Systematic Botany, 29, 185-196. <a Australian Loganiaceae. Telopea, 16, 149-158. <a href="http://dx.doi.org/10.1071/SB16013">[More href="http://dx.doi.org/10.7751/telopea20147853">[More Information]</a> Information]</a> Conn, B., Henwood, M., Proft, K., Wilson, T. (2016). Foster, C., Ho, S., Conn, B., Henwood, M. (2014). Molecular Molecular phylogenetics reveals a new species of Prostanthera systematics and biogeography of Logania R.Br. (Loganiaceae). from tropical Queensland with links to more southerly taxa. Molecular Phylogenetics and Evolution, 78(2014), 324-333. <a Telopea, 19, 13-22. <a href="http://dx.doi.org/10.1016/j.ympev.2014.06.001">[More href="http://dx.doi.org/10.7751/telopea10037">[More Information]</a> Information]</a> Gibbons, K., Conn, B., Henwood, M. (2014). The Australasian 2015 genus Schizacme (Loganiaceae): new combinations and new species in the New Zealand flora. Emery, N., Henwood, M., Offord, C., Wardle, G. (2015). Telopea, 17, 363-381. <a Actinotus helianthi populations across a wide geographic range href="http://dx.doi.org/10.7751/telopea20148075">[More exhibit different climatic envelopes and complex relationships Information]</a> with plant traits. International Journal of Plant Sciences, 176(8), 739-750. <a 2013 href="http://dx.doi.org/10.1086/682336">[More Information]</a> Henwood, M., Hart, J. (2013). A new combination and lectotypification in Xanthosia (Apiaceae). Telopea, 15, 215- Barrett, R., Henwood, M. (2015). Iron plant (Astrotricha 220. <a href="http://dx.doi.org/10.7751/telopea2013024">[More 22-28. Information]</a> 2010 Henwood, M. (2013). Actinotus repens Keighery ex Henwood (Apiaceae): A new species from south-west Western Australia. Henwood, M., Lu-Irving, P., Perkins, A. (2010). Can molecular Telopea, 15(2014), 221-225. <a systematics provide insights into aspects of the reproductive href="http://dx.doi.org/10.7751/telopea2013025">[More biology of Trachymene Rudge (Araliaceae)? Plant Diversity Information]</a> and Evolution, 128(1-2), 1-26. <a href="http://dx.doi.org/10.1127/1869-6155/2010/0128- Gibbons, K., Conn, B., Henwood, M. (2013). Adelphacme 0004">[More Information]</a> (Loganiaceae), a new genus from south-western Australia. Telopea, 15(1), 37-43. <a 2009 href="http://dx.doi.org/10.7751/telopea2013005">[More Information]</a> Henwood, M., Weiller, C., Thompson, I. (2009). Ammophila. In Annette Wilson (Eds.), Flora of Australia, (pp. 237-238). Conn, B., Wilson, T., Henwood, M., Proft, K. (2013). Collingwood, Australia: CSIRO Publishing. Circumscription and phylogenetic relationships of Prostanthera Densa and P. marifolia (Lamiaceae). Telopea, 15, 149-164. <a Henwood, M., Weiller, C. (2009). Australopyrum. In Annette href="http://dx.doi.org/10.7751/telopea2013019">[More Wilson (Eds.), Flora of Australia, (pp. 107-110). Collingwood, Information]</a> Australia: CSIRO Publishing. 2012 Henwood, M., Weiller, C. (2009). Brachypodieae. In Annette Wilson (Eds.), Flora of Australia, (pp. 78-80). Collingwood, Cooper, E., Henwood, M., Brown, E. (2012). A molecular Australia: CSIRO Publishing. phylogeny of the Lepidozia generic complex supports re- Henwood, M., Weiller, C. (2009). Briza. In Annette Wilson circumscription of the Lepidozioideae. Molecular (Eds.), Flora of Australia, (pp. 339-342). Collingwood, Phylogenetics and Evolution, 65(1), 10-22. <a Australia: CSIRO Publishing. href="http://dx.doi.org/10.1016/j.ympev.2012.05.008">[More Information]</a> Weiller, C., Henwood, M. (2009). Bromeae. In Annette Wilson (Eds.), Flora of Australia, (pp. 80-93). Collingwood, Australia: Cooper, E., Henwood, M., Brown, E. (2012). Are the liverworts CSIRO Publishing. really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in Pye, M., Henwood, M., Gadek, P. (2009). Differential levels of liverwort evolution. Biological Journal of the Linnean Society, genetic diversity and divergence among populations of an 107(2), 425-441. <a href="http://dx.doi.org/10.1111/j.1095- ancient Australian rainforest conifer, Araucaria cunninghamii. 8312.2012.01946.x">[More Information]</a> Plant Systematics and Evolution, 277(3-4), 173-185. <a href="http://dx.doi.org/10.1007/s00606-008-0120-1">[More Wilson, T., Conn, B., Henwood, M. (2012). Molecular Information]</a> phylogeny and systematics of Prostanthera (Lamiaceae). Australian Systematic Botany, 25(5), 341-352. <a Quinnell, R., Henwood, M., Brownlee, R., Hanfling, S. (2009). href="http://dx.doi.org/10.1071/SB12006">[More eBot: an image bank of Australian flora. 26th Australian Information]</a> Society for Computers in Learning in Tertiary Education Conference ASCILITE 2009, Auckland: University of Gibbons, K., Henwood, M., Conn, B. (2012). Phylogenetic Auckland, Auckland University of Technology, ASCILITE. relationships in Loganieae (Loganiaceae) inferred from nuclear ribosomal and chloroplast DNA sequence data. Australian Wang, S., Henwood, M., Weiller, C. (2009). Elymus. In Systematic Botany, 25(5), 331-340. <a Annette Wilson (Eds.), Flora of Australia, (pp. 96-99). href="http://dx.doi.org/10.1071/SB12002">[More Collingwood, Australia: CSIRO Publishing. Information]</a> Henwood, M., Weiller, C. (2009). Elytrigia. In Annette Wilson Wilson, T., Henwood, M., Conn, B. (2012). Status of the genus (Eds.), Flora of Australia, (pp. 99-102). Collingwood, Wrixonia F.Muell (Lamiaceae). Telopea, 14, 1-3. <a Australia: CSIRO Publishing. href="http://dx.doi.org/10.7751/telopea2012001">[More Information]</a> Pellow, B., Henwood, M., Carolin, R. (2009). Flora of the Sydney Region. Australia: Sydney University Press. 2011 Henwood, M., Weiller, C. (2009). Hordeum. In Annette Cooper, E., Shaw, A., Shaw, B., Henwood, M., Heslewood, M., Wilson (Eds.), Flora of Australia, (pp. 110-116). Collingwood, Brown, E. (2011). A multi-locus molecular phylogeny of the Australia: CSIRO Publishing. Lepidoziaceae: Laying the foundations for a stable Conn, B., Streiber, N., Brown, E., Henwood, M., Olmstead, R. classification. Molecular Phylogenetics and Evolution, 59(2), (2009). Infrageneric phylogeny of Chloantheae (Lamiaceae) 489-509. <a based
Recommended publications
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Aegopodium Podagraria
    Aegopodium podagraria INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE EFFECTS AND MANAGEMENT MANAGEMENT CONSIDERATIONS APPENDIX: FIRE REGIME TABLE REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION NRCS PLANT CODE COMMON NAMES TAXONOMY SYNONYMS LIFE FORM Variegated goutweed. All-green goutweed. Photos by John Randall, The Nature Conservancy, Bugwood.org AUTHORSHIP AND CITATION: Waggy, Melissa, A. 2010. Aegopodium podagraria. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [ 2010, January 21]. FEIS ABBREVIATION: AEGPOD NRCS PLANT CODE [87]: AEPO COMMON NAMES: goutweed bishop's goutweed bishop's weed bishopsweed ground elder herb Gerard TAXONOMY: The scientific name of goutweed is Aegopodium podagraria L. (Apiaceae) [40]. SYNONYMS: Aegopodium podagraria var. podagraria [71] Aegopodium podagraria var. variegatum Bailey [40,71] LIFE FORM: Forb DISTRIBUTION AND OCCURRENCE SPECIES: Aegopodium podagraria GENERAL DISTRIBUTION HABITAT TYPES AND PLANT COMMUNITIES GENERAL DISTRIBUTION: Goutweed was introduced in North America from Europe [82]. In the United States, goutweed occurs from Maine south to South Carolina and west to Minnesota and Missouri. It also occurs in the Pacific Northwest from Montana to Washington and Oregon. It occurs in all the Canadian provinces excepting Newfoundland and Labrador, and Alberta. Plants Database provides a distributional map of goutweed. Globally, goutweed occurs primarily in the northern hemisphere, particularly in Europe, Asia Minor ([28,36,58,92], reviews by [14,27]), and Russia (review by [27,63]). Goutweed's native distribution is unclear. It may have been introduced in England (review by [2]) and is considered a "weed" in the former Soviet Union, Germany, Finland (Holm 1979 cited in [14]), and Poland [44].
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • The Classification System of the Family Apiaceae in the Flora of Mongolia
    Proceedings of the Mongolian Academy of Sciences Vol. 54 No 04 (212) 2014 DOI: http://dx.doi.org/10.5564/pmas.v54i4.624 THE CLASSIFICATION SYSTEM OF THE FAMILY APIACEAE IN THE FLORA OF MONGOLIA Urgamal M. Institute of Botany, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia E-mail: [email protected] Abstract At present time is family Apiaceae consists of 74 species and 37 genera, 5 sub- tribes belong to 12 tribes (4 clades) and 2 sub-families (Saniculoideae and Apioideae) disjunctly distributed in the Mongolian flora. We updated classification system of the family Apiaceae in the flora of Mongolia. Keywords: Classification system, Apiaceae, flora, Mongolia INTRODUCTION The V.I. Grubov (1955) firstly registered species of 30 genera. 46 species, 26 genera in the family Apiaceae. The family Apiaceae family is one of the Then, Ts. Jamsran et al (1972) reported to biggest families in the flora of Mongolia. 14 species of 9 genera and D. Magsar & U. Doing detailed systematical study of the Ligaa (1977) to 6 species of 4 genera, in family, we aimed to reveal species composition addition to previous and D. Magsar & U. of the family in the flora of Mongolia, do Ligaa (1977) concluded the information and morphological, ecological geographical facts of classification, distribution, ecology analysis and molecul biological method of the and habitat on 53 species of 31 genera and V.I. each species, to compare some features used Grubov (1982) on 55 species of 28 genera; for identifying the taxa and revealing higher N. Ulziykhutag (1984) on 65 species of 36 level relationships in the family, and to revise genera; D.
    [Show full text]
  • PLANT LIST Family Genus Species
    LIFE IN A SOUTHERN FOREST – PLANT LIST Family Genus Species Subspecies Common Name AntheriCaCeae Caesia parviflora parviflora Pale Grass-lily ApiaCeae Hydrocotyle laxiflora Stinking Pennywort " " Platysace lanceolata Shrubby Platysace " " Xanthosia pilosa Woolly Xanthosia " " Xanthosia tridentata Rock Xanthosia ApocynaCeae Marsdenia rostrata Milk Vine " " Tylophora barbata Bearded Tylophora AraliaCeae Polyscias sambucifolia Ferny Panax AsparagaCeae (subf. Eustrephus latifolius Wombat Berry Lomandroideae) " " Lomandra confertifolia leptostachya Mat-rush " " " " filiformis filiformis Wattle Mat-Rush " " " " glauca Pale Mat-rush " " " " longifolia Spiny-headed Mat-rush " " " " multiflora multiflora Many-flowered Mat-rush " " Thysanotus juncifolius Branching Fringe Lily AspleniaCeae Asplenium flabellifolium NeCklaCe Fern AsteraCeae Cassinia longifolia Long-leaf, Shiny Cassinia " " " " uncata StiCky Cassinia " " Coronidium elatum Tall Everlasting " " " " scorpioides Button Everlasting " " Cotula australis Common Cotula " " Gamochaeta coarctata Spike Cudweed* " " Helichrysum leucopsideum Satin Everlasting " " Hypochaeris glabra Smooth Catsear* " " " " radicata Flatweed* " " Lagenophora gracilis Slender Bottle-daisy " " Olearia rugosa distalilobata Wrinkled Daisy-bush " " Ozothamnus obcordatus major Grey Everlasting " " Senecio linearifolius arachnoideus Fireweed Groundsel " " " " pinnatifolius pinnatifolius Coast Groundsel " " " " prenanthoides Beaked Fireweed BleChnaCeae Blechnum cartilagineum Gristle-fern Page 1 of 8 www.southernforestlife.net
    [Show full text]
  • The Vegetation Communities Native Grassland
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Native grassland Themeda australis Edition 2 From Forest to Fjaeldmark (revised - October 2017) 1 Native grassland Community (Code) Page Coastal grass and herbfield (GHC) 5 Highland Poa grassland (GPH) 7 Lowland grassland complex (GCL) 9 Lowland grassy sedgeland (GSL) 11 Lowland Poa labillardierei grassland (GPL) 12 Lowland Themeda triandra grassland (GTL) 14 Rockplate grassland (GRP) 16 General description align the key and the description of Lowland grassland complex ( ) with respect to the Native grasslands are defined as areas of native GCL required cover of native grass species. In 2017 vegetation dominated by native grasses with few or further minor revisions were made to improve no emergent woody species. Different types of information for general management issues, and to native grassland can be found in a variety of habitats, improve the description of Coastal grass and including coastal fore-dunes, dry slopes and valley herbfield (GHC) and its differentiation from Lowland bottoms, rock plates and subalpine flats. The lowland Poa labillardierei grassland (GPL). This is reflected in temperate grassland types have been recognised as the key to this Section. some of the most threatened vegetation communities in Australia. General management issues Some areas of native grassland are human-induced Most lowland native grassland in Tasmania has been and exist as a result of heavy burning, tree clearing cleared for agriculture since European settlement or dieback of the tree layer in grassy woodlands. (Barker 1999, Gilfedder 1990, Kirkpatrick et al. 1988, There are seven grassland communities recognised Kirkpatrick 1991, Williams et al. 2007).
    [Show full text]
  • Значение Признаков Анатомии И Морфологии Плода Для Систематики Эндемичного Бразильского Рода Klotzschia Cham
    56 БЮЛ. МОСК. О-ВА ИСПЫТАТЕЛЕЙ ПРИРОДЫ. ОТД. БИОЛ. 2016. Т. 121. ВЫП. 6 УДК 582.89 ЗНАЧЕНИЕ ПРИЗНАКОВ АНАТОМИИ И МОРФОЛОГИИ ПЛОДА ДЛЯ СИСТЕМАТИКИ ЭНДЕМИЧНОГО БРАЗИЛЬСКОГО РОДА KLOTZSCHIA CHAM. (APIACEAE) А.И. Константинова1 Показаны морфологические и анатомические особенности строения зрелых плодов 3 видов эндемичного для Бразилии рода Klotzschia. Отмечены общие и различные для этих видов карпологические признаки, скорректированы признаки, ошибочно описанные ранее (число ребер, тип секреторных канальцев). Проведено анатомо- карпологическое сравнение Klotzschia c представителями подcемейства Azorel- loideae как с ближайшей родственной группой и показана значительная степень обособленности этого рода. Установлено, что секреторная система у Klotzschia близка к устройству секреторной системы Araliaceae или видов рода Hermas (Sani- culoideae), а по типу и характеру расположения одревесневших тканей в перикарпии Klotzschia обнаруживает сходство с видами Xanthosia (Mackinlayoideae). Отмечено, что карпологические признаки не указывают на тесное родство Klotzschia с австралийским родом Uldinia. Некоторые анатомические признаки строения плодов Klotzschia связаны с особенностями их распространения. Характеристики плода в совокупности поддерживают выработанное на основании данных геносистематики представление об изолированном положении рода в системе порядка Apiales и скорее свидетельствуют в пользу взглядов на дивергенцию Klotzschia от общего ствола Apiaceae после Azorelloi- deae, чем подтверждают сестринские отношения с этим подсемейством. Ключевые
    [Show full text]
  • Taxonomy, Origin and Importance of the Apiaceae Family
    1 TAXONOMY, ORIGIN AND IMPORTANCE OF THE APIACEAE FAMILY JEAN-PIERRE REDURON* Mulhouse, France The Apiaceae (or Umbelliferae) is a plant family comprising at the present time 466 genera and about 3800 species (Plunkett et al., 2018). It is distributed nearly worldwide, but is most diverse in temperate climatic areas, such as Eurasia and North America. It is quite rare in tropical humid regions where it is limited to high mountains. Mediterranean and arid climatic conditions favour high species diversification. The Apiaceae are present in nearly all types of habi- tats, from sea-level to alpine zones: aquatic biotopes, grasslands, grazed pas- tures, forests including their clearings and margins, cliffs, screes, rocky hills, open sandy and gravelly soils, steppes, cultivated fields, fallows, road sides and waste grounds. The largest number of genera, 289, and the largest generic endemism, 177, is found in Asia. There are 126 genera in Europe, but only 17 are en- demic. Africa has about the same total with 121 genera, where North Africa encompasses the largest occurrence of 82 genera, 13 of which are endemic. North and Central America have a fairly high level of diversity with 80 genera and 44 endemics, where South America accommodates less generic diversity with 35 genera, 15 of which are endemic. Oceania is home to 27 genera and 18 endemics (Plunkett et al., 2018). The Apiaceae family appears to have originated in Australasia (region including Australia, Tasmania, New Zealand, New Guinea, New Caledonia and several island groups), with this origin dated to the Late Cretaceous/ early Eocene, c.87 Ma (Nicolas and Plunkett, 2014).
    [Show full text]
  • Apiaceae Lindley (= Umbelliferae A.L.De Jussieu) (Carrot Family)
    Apiaceae Lindley (= Umbelliferae A.L.de Jussieu) (Carrot Family) Herbs to lianas, shrubs, or trees, aromatic; stems often hol- Genera/species: 460/4250. Major genera: Schefflera (600 low in internodal region; with secretory canals containing ethe- spp.), Eryngium (230), Polyscias (200), Ferula (150), real oils and resins, triterpenoid saponins, coumarins, falcri- Peucedanum (150), Pimpinella (150), Bupleurum (100), Ore- none polyacetylenes, monoterpenes, and sesquiterpenes; with opanax (90), Hydrocotyle (80), Lomatium (60), Heracleum umbelliferose(a trisaccharide) as carbohydrate storage (60), Angelica (50), Sanicula (40), Chaerophyllum (40), and product. Hairs various, sometimes with prickles. Leaves Aralia (30). Some of the numerous genera occurring in alternate, pinnately or palmately compound to simple, then the continental United States and/or Canada are Angeli- often deeply dissected or lobed, entire to serrate, with pinnate ca, Apium, Aralia, Carum, Centella, Chaerophyllum, Cicuta, to palmate venation; petioles ± sheathing; stipules pres- Conioselinum, Daucus, Eryngium, Hedera, Heradeum, ent to absent. Inflorescences determinate, modified and Hydrocotyle, Ligusticum, Lomatium, Osmorhiza, Oxypolis, forming simple umbels, these arranged in umbels, Panax, Pastinaca, Ptilimnium, Sanicula, Sium, Spermolepis, racemes, spikes, or panicles, sometimes condensed into Thaspium, Torilis, and Zizia. a head, often subtended by an involucre of bracts, termi- nal. Flowers usually bisexual but sometimes unisexual Economic plants and products: Apiaceae contain many (plants then monoecious to dioecious), usually radial, food and spice plants: Anethum (dill), Apium (celery), small. Sepals usually 5, distinct, very reduced. Petals usual- Carum (caraway), Coriandrum (coriander), Cyuminum ly 5, occasionally more, distinct, but developing from a ring (cumin), Daucus (carrot), Foeniculum (fennel), Pastinaca primordium, sometimes clearly connate, often inflexed, (parsnip), Petroselinum (parsley), and Pimpinella (anise).
    [Show full text]
  • Apiaceae (Carrot Family)
    APIACEAE – CARROT OR PARSELY FAMILY Plant: mostly herbs (annual, biennial or perennial), a few shrubs and trees, often aromatic Stem: often hollow between stem nodes, commonly branched Root: Leaves: usually finely pinnate, sometimes palmate but rarely simple; leaf bases often broad; base of petioles usually sheathed; alternate and/or basal but rarely opposite or whorled; no stipules Flowers: mostly perfect; mostly small; sepals 5 and united, very small, or sometimes absent; petals 5 and small, bracts common; flowers mostly in compound (branching) umbels (radial sprays) – branches of umbels are termed ‘rays’ and bracts, if present, of individual umbels or umbellets termed ‘bractlets or bracteoles’; 5 stamens alternate with petals; ovary inferior, 1 pistil, 2 styles, most have 2 carpels Fruit: 2 dry, one-seeded, fruits (schizocarp with 2 mericarps); may be winged; some with aromatic oils Other: Old family name was Umbelliferae ; Dicotyledons Group Genera: 300-450+ genera; many local genera WARNING – family descriptions are only a layman’s guide and should not be used as definitive Apiaceae (Carrot Family) - 5 petals (often white or yellow, mostly small), sepals small or absent; flowers in umbels or mostly compound umbels; leaf petiole usually sheathed; leaves often pinnate; fruit a schizocarp – many local genera compound umbels most common 5 petals, often small, usually white or yellow Single umbels Often with a sheath at base of petiole Fruit a schizocarp – a dry fruit that splits into one-seed portions, some bur-like Leaves often pinnately compound but not always APIACEAE – CARROT OR PARSELY FAMILY Bishop's Goutweed; Aegopodium podagraria L. (Introduced) Purple-Stemmed Angelica; Angelica atropurpurea L.
    [Show full text]
  • A Phylogeny of the Flowering Plant
    American Journal of Botany 87(2): 273±292. 2000. A PHYLOGENY OF THE FLOWERING PLANT FAMILY APIACEAE BASED ON CHLOROPLAST DNA RPL16 AND RPOC1 INTRON SEQUENCES: TOWARDS A SUPRAGENERIC CLASSIFICATION OF SUBFAMILY APIOIDEAE1 STEPHEN R. DOWNIE,2,4 DEBORAH S. KATZ-DOWNIE,2 AND MARK F. W ATSON3 2Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 USA; and 3Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK The higher level relationships within Apiaceae (Umbelliferae) subfamily Apioideae are controversial, with no widely acceptable modern classi®cation available. Comparative sequencing of the intron in chloroplast ribosomal protein gene rpl16 was carried out in order to examine evolutionary relationships among 119 species (99 genera) of subfamily Apioideae and 28 species from Apiaceae subfamilies Saniculoideae and Hydrocotyloideae, and putatively allied families Araliaceae and Pittosporaceae. Phylogenetic analyses of these intron sequences alone, or in conjunction with plastid rpoC1 intron sequences for a subset of the taxa, using maximum parsimony and neighbor-joining methods, reveal a pattern of relationships within Apioideae consistent with previously published chloroplast DNA and nuclear ribosomal DNA ITS based phylogenies. Based on consensus of relationship, seven major lineages within the subfamily are recognized at the tribal level. These are referred to as tribes Heteromorpheae M. F. Watson & S. R. Downie Trib. Nov., Bupleureae Spreng. (1820), Oenantheae Dumort. (1827), Pleurospermeae M. F. Watson & S. R. Downie Trib. Nov., Smyrnieae Spreng. (1820), Aciphylleae M. F. Watson & S. R. Downie Trib. Nov., and Scandiceae Spreng. (1820). Scandiceae comprises subtribes Daucinae Dumort. (1827), Scan- dicinae Tausch (1834), and Torilidinae Dumort. (1827).
    [Show full text]
  • Fire Persistence Mechanisms in Mediterranean Plants: Ecological and Evolutionary Consequences
    Fire persistence mechanisms in Mediterranean plants: ecological and evolutionary consequences Memoria presentada por: Bruno Ricardo Jesus Moreira Para optar al grado de doctor en Ciencias Biológicas Departamento de Ecología, Universidad de Alicante Director de tesis: Dr. Juli G. Pausas Alicante, Diciembre de 2012. Acknowledgments Numerous people were involved and contributed in many ways to the completion of this thesis. Firstly I would like to thank to Juli, my scientific advisor. He is sincerely thanked for his good advices, the encouragement and help in this thesis. This thesis was definitively a starting point where first steps towards the realisation of my future career were taken. As I have written elsewhere, “I was supervised by an outstanding researcher which inculcated me independent thinking and encouraged to openly question his opinions and suggestions with scientific arguments (…) Although, under the careful supervision of my supervisor, I was expected to lead my research, define the project goals, methodologies and main milestones to achieve.” I am really glad and proud that all of this is true. Susana has been of utmost importance for my Ph.D. She has been my role model since from the beginning; a model for friendship, dedication, scientific rigour, suffering capacity and perseverance. I know I always could count on her and that I will always can. I would also like to thank the people at CEAM and CIDE for their company and support, especially to my office mates and all the students and research assistants that passed by and which help was invaluable. Particularly to the ones who had to work with me for endless hours in the field and/or laboratory.
    [Show full text]