MDCT and Contrast Media: What Are the Risks?

Total Page:16

File Type:pdf, Size:1020Kb

MDCT and Contrast Media: What Are the Risks? 071_078_00_Thomsen:Thomsen 13-02-2008 9:32 Pagina 71 MDCT and Contrast Media: What are the Risks? Henrik S. Thomsen Department of Diagnostic Radiology, Copenhagen University Hospital Herlev, Herlev Department of Diagnostic Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark Introduction Renal Adverse Reactions With the advent of multi-detector computed to- Contrast-material-induced kidney damage is imme- mography (MDCT) technology, the number of pa- diate, starting as soon as the first CM molecule reach- tients undergoing contrast-enhanced CT (CECT) es the kidney; however, it takes several hours or days studies has steadily grown in the last 6 years. In for a deterioration of renal function to be detected. 2005, approximately 22 million CECT examinations Despite more than 30 years of research, the patho- were carried out in the European Union, and 32 mil- physiology of CM-induced nephropathy (CIN) is lion in the United States (The Imaging Market Guide poorly elucidated. Nonetheless, several risk factors 2005. Arlington Medical Resources, Inc., Philadel- are well-known and can be divided into CM- and pa- phia, PA). Unfortunately, post-contrast-material-re- tient-related factors. lated adverse events, i.e., all those unintended and unfavorable signs, symptoms, or diseases temporally associated with the use of an iodinated contrast ma- Contrast-Medium-Related Factors terial (CM), are a common occurrence in radiology departments. Most adverse events occur within the More than 25 years ago, Barrett and Carlisle [1] first 60 min following CM administration (“imme- showed that the incidence of CIN is significantly diate” or “acute” adverse events), with the greatest higher after the administration of high-osmolarity risk in the first 20 min. More-delayed CM adverse CM (HOCM, osmolality > 1,500 mOsm/kg) than af- events also occur, with some recorded up to 7 days ter low-osmolarity CM (LOCM, osmolality < 915 post-contrast administration (“delayed” or “late” mOsm/kg). Today, it is recommended to avoid the events) or even later (“very late” adverse events). use of HOCM in patients at increased risk of CIN. Adverse reactions to CM can also be classified as Are there differences in nephrotoxicity among the “renal” if the signs and symptoms are caused by other available CM, either LOCM or iso-osmolar CM-induced kidney damage, or they may be “non- CM (IOCM, osmolality always 290 mOSM/kg)? renal”. Some subjects are at higher than usual risk Eight non-ionic monomers (iohexol, iomeprol, for the development of post-CM complications. Risk iopamidol, iopentol, ioxilan, iopromide, ioversol, io- factors can be usually identified prior to the CECT biditrol), one ionic dimer (ioxaglate), and one non- exam; some are modifiable, but all require specific ionic dimer (iodixanol) are approved for intravas- measures to reduce or minimize the rate and sever- cular use (their use varies from country to country). ity of adverse events. This chapter addresses and dis- One non-ionic dimer is not approved for intravas- cusses the most common risk factors for adverse re- cular use (iotrolan) and another is under clinical test- actions to CM and provides practical recommenda- ing (iosimenol). tions aimed at improving the safety of CECT The appropriateness of grouping all LOCM into procedures. one class and considering all of them as equally © 2008. MDCT Technology and Applications – Selected Reviews (e-ISBN 978-88-470-0802-1 Springer-Verlag Milan Berlin Heidelberg New York). Published online at www.mdct.net 071_078_00_Thomsen:Thomsen 13-02-2008 9:32 Pagina 72 72 MDCT Technology and Applications nephrotoxic is heavily debated, as there may be dif- the analysis was carried by the NEPHRIC study, ferences in nephrotoxic potential between the vari- clearly an outlier among the various studies in the ous monomers [2, 3]. No side-by-side comparisons analysis [7]. A similar bias was described by Pan- of non-ionic monomers in risk patients, however, are nu et al. [10], who assessed the preventative effect yet available. of N-acetyl-cysteine in a meta-analysis and showed Several studies have instead compared LOCM that one study, published by Tepel et al. [11] in the with IOCM, most often following intra-arterial ad- New England Journal of Medicine, carried most of ministration of these agents, and a few following their the weight of the final results, showing a positive intravenous injection. In 2003, the results of a effect of the anti-oxidant. Tepel et al. [11] found a prospective study (the NEPHRIC study) conducted 2% incidence of CIN when acetylcysteine (600 mg by Aspelin et al. [4] in 129 patients with moderate × 2 daily × 2 days) was administered and 21% when chronic kidney disease and diabetes mellitus showed acetylcysteine was not given. Both groups received that, compared to iodixanol, the intra-arterial use of intravenous hydration with half-isotonic saline and iohexol resulted in a significantly higher incidence only 75 ml iopromide intravenously for CT. In the of CIN. The two groups differed significantly with 14 comparative studies included in the meta-analy- regard to interventional procedures and length of di- sis of Pannu et al. [10], the CM was given intra-ar- abetes, but in other aspects they were comparable. terially and at higher doses. The most striking as- The CIN endpoint was defined as an absolute in- pect is that both the study of Tepel et al. [11] and crease in serum creatinine (SCr) > 44 μmol/l (0.5 the study of Aspelin et al. [4] have had a great im- mg/dl) within 72 hours. The rate of CIN was 26% pact on the radiological world [12]. The 40–50 stud- of patients receiving iohexol and 4% of those ad- ies and more than 15 meta-analyses stimulated by ministered iodixanol intra-arterially (p < 0.001). Us- the Tepel study [11] have been of varying quality ing the same endpoint, Jo et al. [5] did not find sig- [13]. It is difficult to find two outlier studies so in- nificant differences between IOCM iodixanol and a fluential for daily routine practice. Thomsen and LOCM, the ionic dimer ioxaglate, in 275 patients Morcos [12] analyzed the various guidelines and with chronic kidney disease undergoing coronary found that, in principle, there was nothing new com- procedures. In a retrospective study of 225 patients pared with the 1999 guidelines from the European with moderate-to-severe renal impairment, Briguori Society of Urogenital Radiology (ESUR) [14] and et al. [6] could not find differences in the incidence concluded that evidence for using iodixanol and of CIN in patients receiving iodixanol or the LOCM acetylcysteine following the intra-arterial adminis- non-ionic monomer iobitridol. In these two latter tration of CM is lacking. As a matter of fact, the two studies, however, only a proportion of the study pa- first authors (M Tepel and P Aspelin) of those out- tients were diabetic. lier studies recently published a review paper [15] Recently, McCullough et al. [7] conducted a and concluded that “prospective, randomized trials... pooled analysis using a clinical trial database on significant differences between contrast agents due iodixanol, maintained by General Electric Health- to their physicochemical properties, and low-osmo- care (Waukesha, WI). This pooled analysis includ- lar or iso-osmolar contrast media should be used to ed prospective, double-blind, randomized controlled prevent contrast medium induced nephropathy in at- trials that compared iodixanol with LOCM in adult risk patients” and that there is limited evidence that patients undergoing angiographic examinations and any pharmaceutical intervention, e.g., acetylcysteine, reported SCr values at baseline and after CM ad- can prevent CIN. ministration. The vast majority of LOCM (> 89%) Regardless of the controversy about potential dif- patients had received iohexol or ioxaglate; only 5% ferences in nephrotoxicity between IOCM and had received iopamidol [8], and a similar percent- LOCM following their intra-arterial administration, age iopromide [9]. The results showed a significant it is clear that there is no difference at all following difference in CIN rates between the two groups. their intravenous injection. In a randomized, multi- Nevertheless, it was difficult to conclude that iodix- center trial (the IMPACT study), Barrett et al. [16], anol is less nephrotoxic than all other LOCM. For using the same endpoint as Aspelin et al. in the instance, the only study that included iopamidol in NEPHRIC study [4], recently showed a 2.6% inci- the analysis was conducted in patients with normal dence of CIN after intravenous injection of iodix- renal function who underwent femoral angiography, anol for CT and 0% after injection of iopamidol. All with SCr measured at baseline and at 4 and 18 h patients had reduced renal function even though the post-CM. In that study [8], there was only one case hydration regimen was left to the local centers (on- of CIN, following iodixanol. Most of the weight of ly ~65% of the patients received volume supple- 071_078_00_Thomsen:Thomsen 13-02-2008 9:32 Pagina 73 H. S. Thomsen • MDCT and Contrast Media: What are the Risks? 73 mentation). The results of the IMPACT study con- venous administration was 1.9% and after intra-ar- firmed the conclusions of previous, smaller studies terial administration 9.5%. Dialysis was necessary in by Carraro et al. [17] and Kolehmainen et al. [18], 40% of those developing anuria. However, the av- neither of which found any difference between iodix- erage dose of the gadolinium-based contrast agent anol and the non-ionic LOCM iopromide and io- was three fold or slightly higher in that study. Prince biditrol, respectively, in patients with chronic kid- et al. [20] used the standard dose. Thomsen [22] re- ney disease. Differences in nephrotoxicity due to ported a patient with diabetic nephropathy who de- iodixanol vs.
Recommended publications
  • Pharmacologyonline 2: 727-753 (2010) Ewsletter Bradu and Rossini
    Pharmacologyonline 2: 727-753 (2010) ewsletter Bradu and Rossini COTRAST AGETS - IODIATED PRODUCTS. SECOD WHO-ITA / ITA-OMS 2010 COTRIBUTIO O AGGREGATE WHO SYSTEM-ORGA CLASS DISORDERS AD/OR CLUSTERIG BASED O REPORTED ADVERSE REACTIOS/EVETS Dan Bradu and Luigi Rossini* Servizio Nazionale Collaborativo WHO-ITA / ITA-OMS, Università Politecnica delle Marche e Progetto di Farmacotossicovigilanza, Azienda Ospedaliera Universitaria Ospedali Riuniti di Ancona, Regione Marche, Italia Summary From the 2010 total basic adverse reactions and events collected as ADRs preferred names in the WHO-Uppsala Drug Monitoring Programme, subdivided in its first two twenty years periods as for the first seven iodinated products diagnostic contrast agents amidotrizoate, iodamide, iotalamate, iodoxamate, ioxaglate, iohexsol and iopamidol, their 30 WHO-system organ class disorders (SOCDs) aggregates had been compared. Their common maximum 97% levels identified six SOCDs only, apt to evaluate the most frequent single ADRs for each class, and their percentual normalization profiles for each product. The WILKS's chi square statistics for the related contingency tables, and Gabriel’s STP procedure applied to the extracted double data sets then produced profile binary clustering, as well as Euclidean confirmatory plots. They finally showed similar objectively evaluated autoclassificative trends of these products, which do not completely correspond to their actual ATC V08A A, B and C subdivision: while amidotrizoate and iotalamate, and respectively iohesol and iopamidol are confirmed to belong to the A and B subgroups, ioxaglate behaves fluctuating within A, B and C, but iodamide looks surprizingly, constantly positioned together with iodoxamate as binary/ternary C associated. In view of the recent work of Campillos et al (Science, 2008) which throws light on the subject, the above discrepancies do not appear anymore unexpected or alarming.
    [Show full text]
  • Page 1 Note: Within Nine Months from the Publication of the Mention
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 411 992 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 49/04 (2006.01) A61K 49/18 (2006.01) 13.12.2006 Bulletin 2006/50 (86) International application number: (21) Application number: 02758379.8 PCT/EP2002/008183 (22) Date of filing: 23.07.2002 (87) International publication number: WO 2003/013616 (20.02.2003 Gazette 2003/08) (54) IONIC AND NON-IONIC RADIOGRAPHIC CONTRAST AGENTS FOR USE IN COMBINED X-RAY AND NUCLEAR MAGNETIC RESONANCE DIAGNOSTICS IONISCHES UND NICHT-IONISCHES RADIOGRAPHISCHES KONTRASTMITTEL ZUR VERWENDUNG IN DER KOMBINIERTEN ROENTGEN- UND KERNSPINTOMOGRAPHIEDIAGNOSTIK SUBSTANCES IONIQUES ET NON-IONIQUES DE CONTRASTE RADIOGRAPHIQUE UTILISEES POUR ETABLIR DES DIAGNOSTICS FAISANT APPEL AUX RAYONS X ET A L’IMAGERIE PAR RESONANCE MAGNETIQUE (84) Designated Contracting States: (74) Representative: Minoja, Fabrizio AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Bianchetti Bracco Minoja S.r.l. IE IT LI LU MC NL PT SE SK TR Via Plinio, 63 20129 Milano (IT) (30) Priority: 03.08.2001 IT MI20011706 (56) References cited: (43) Date of publication of application: EP-A- 0 759 785 WO-A-00/75141 28.04.2004 Bulletin 2004/18 US-A- 5 648 536 (73) Proprietor: BRACCO IMAGING S.p.A. • K HERGAN, W. DORINGER, M. LÄNGLE W.OSER: 20134 Milano (IT) "Effects of iodinated contrast agents in MR imaging" EUROPEAN JOURNAL OF (72) Inventors: RADIOLOGY, vol. 21, 1995, pages 11-17, • AIME, Silvio XP002227102 20134 Milano (IT) • K.M.
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]
  • ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / I
    ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media ACR Manual on Contrast Media – Version 9, 2013 Table of Contents / i ACR Manual on Contrast Media Version 9 2013 ACR Committee on Drugs and Contrast Media © Copyright 2013 American College of Radiology ISBN: 978-1-55903-012-0 Table of Contents Topic Last Updated Page 1. Preface. V9 – 2013 . 3 2. Introduction . V7 – 2010 . 4 3. Patient Selection And Preparation Strategies . V7 – 2010 . 5 4. Injection of Contrast Media . V7 – 2010 . 13 5. Extravasation Of Contrast Media . V7 – 2010 . 17 6. Allergic-Like And Physiologic Reactions To Intravascular Iodinated Contrast Media . V9 – 2013 . 21 7. Contrast Media Warming . V8 – 2012 . 29 8. Contrast-Induced Nephrotoxicity . V8 – 2012 . 33 9. Metformin . V7 – 2010 . 43 10. Contrast Media In Children . V7 – 2010 . 47 11. Gastrointestinal (GI) Contrast Media In Adults: Indications And Guidelines V9 – 2013 . 55 12. Adverse Reactions To Gadolinium-Based Contrast Media . V7 – 2010 . 77 13. Nephrogenic Systemic Fibrosis . V8 – 2012 . 81 14. Treatment Of Contrast Reactions . V9 – 2013 . 91 15. Administration Of Contrast Media To Pregnant Or Potentially Pregnant Patients . V9 – 2013 . 93 16. Administration Of Contrast Media To Women Who Are Breast-Feeding . V9 – 2013 . 97 Table 1 – Indications for Use of Iodinated Contrast Media . V9 – 2013 . 99 Table 2 – Organ and System-Specific Adverse Effects from the Administration of Iodine-Based or Gadolinium-Based Contrast Agents. V9 – 2013 . 100 Table 3 – Categories of Acute Reactions . V9 – 2013 . 101 Table 4 – Treatment of Acute Reactions to Contrast Media in Children . V9 – 2013 .
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Injection of Contrast Media V7 – 2010 13 5
    ACR Manual on Contrast Media Version 8 2012 ACR Committee on Drugs and Contrast Media ACR Manual on Contrast Media Version 8 2012 ACR Committee on Drugs and Contrast Media © Copyright 2012 American College of Radiology ISBN: 978-1-55903-009-0 Table of Contents Topic Last Updated Page 1. Preface. V8 – 2012 . 3 2. Introduction . V7 – 2010 . 4 3. Patient Selection and Preparation Strategies . V7 – 2010 . 5 4. Injection of Contrast Media . V7 – 2010 . 13 5. Extravasation of Contrast Media . V7 – 2010 . 17 6. Adverse Events After Intravascular Iodinated Contrast Media . V8 – 2012 . 21 Administration 7. Contrast Media Warming . V8 – 2012 . 29 8. Contrast-Induced Nephrotoxicity . V8 – 2012 . 33 9. Metformin . V7 – 2010 . 43 10. Contrast Media in Children . V7 – 2010 . 47 11. Iodinated Gastrointestinal Contrast Media in Adults: Indications . V7 – 2010 . 55 and Guidelines 12. Adverse Reactions to Gadolinium-Based Contrast Media . V7 – 2010 . 59 13. Nephrogenic Systemic Fibrosis (NSF) . V8 – 2012 . 63 14. Treatment of Contrast Reactions . V8 – 2012 . 73 15. Administration of Contrast Media to Pregnant or Potentially . V6 – 2008. 75 Pregnant Patients 16. Administration of Contrast Media to Breast-Feeding Mothers . V6 – 2008 . 79 Table 1 – Indications for Use of Iodinated Contrast Media . V6 – 2008 . 81 Table 2 – Organ or System-Specific Adverse Effects from the Administration . V7 – 2010 . 82 of Iodine-Based or Gadolinium-Based Contrast Agents Table 3 – Categories of Reactions . V7 – 2010 . 83 Table 4 – Management of Acute Reactions in Children . V7 – 2010 . 84 Table 5 – Management of Acute Reactions in Adults . V6 – 2008 . 86 Table 6 – Equipment for Emergency Carts . V6 – 2008 .
    [Show full text]
  • The Risk of Contrast Media-Induced Ventricular Fibrillation Is Low in Canine Coronary Arteriography with Ioxilan
    FULL PAPER Surgery The Risk of Contrast Media-Induced Ventricular Fibrillation is Low in Canine Coronary Arteriography with Ioxilan Kazuhiro MISUMI, Oki TATENO, Makoto FUJIKI, Naoki MIURA and Hiroshi SAKAMOTO Department of Veterinary Medicine, Kagoshima University, 21–24 Korimoto 1-chome, Kagoshima 890–0065, Japan (Received 5 August 1999/Accepted 28 December 1999) ABSTRACT. Previous studies have proposed that sodium supplement to nonionic contrast media (CM) can decrease the risk of ventricular fibrillation (VF). This study was designed to compare the occurence of VF induced by ioxilan (containing 9 mmol/LNa+) with other nonionic CMs. After wedging a catheter in the right coronary artery, test solutions including ioxilan, ioversol, iomeprol, and iopromide were infused for 30 sec at the rate of 0.4 ml/sec or until VF occurred. Then, incidence of VF, contact time (i.e. the time required to produce VF), and QTc were measured. Also, the CMs other than ioxilan were investigated at sodium levels adjusted to 9 and 20 mmol/L Na+. The incidence of VF with ioxilan (0% ) was the lowest of all. In the other CMs, the incidence decreased in accordance with increase of sodium. Iomeprol and iopromide showed significant reduction of VF incidence at the sodium level of 20 mmol/L. The higher sodium supplements also prolonged the contact times. The increase of QTc was the greatest in ioxilan. Ioxilan has the least arrythmogenic property among the current low-osmolality nonionic CMs. This property might be attributable to an optimal sodium concentration of 9 mmol/L in the CM.—KEY WORDS: contrast media, coronary arteriography, ioxilan, ventricular fibrillation.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Delayed Adverse Reaction to Contrast-Enhanced CT: CONSTRAST MEDIA
    Note: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. Delayed Adverse Reaction to Contrast-enhanced CT: CONSTRAST MEDIA n A Prospective Single-Center Study Comparison to Control Group without Enhancement 1 ORIGINAL RESEARCH Shaun Loh , MD , MBA Purpose: To prospectively assess the incidence of delayed adverse Sepideh Bagheri , MD reactions (DARs) in patients undergoing contrast material– Richard W. Katzberg , MD enhanced computed tomography (CT) with the low osmo- Maxwell A. Fung , MD lar nonionic contrast agent iohexol and compare with the Chin-Shang Li , PhD incidence of DARs in patients undergoing unenhanced CT as control subjects. Materials and Institutional review board approval and informed written Methods: consent for this prospective study were obtained. The study was HIPAA compliant. Patients undergoing CT for routine indications were enrolled from a random next-available scheduling template by an on-site clinical trials monitor. All subjects received a questionnaire asking them to indicate any DAR occurring later than 1 hour after their examina- tion. Sixteen manifestations were listed and included rash, skin redness, skin swelling, nausea, vomiting, and dizziness, among others. To ensure maximal surveillance, a clinical tri- als coordinator initiated direct telephone contact for further assessment. Patients suspected of having moderately severe cutaneous reactions were invited to return for a complete dermatologic clinical assessment including skin biopsy, if in- dicated. Statistical analysis was performed by using a two- sided Wilcoxon-Mann-Whitney test, a logistic regression utilizing a x 2 test to adjust for sex and age, and a two-sided Fisher exact test.
    [Show full text]
  • Structure and Properties of X-Ray Contrast Media
    STRUCTURE AND PROPERTIES OF X-RAY CONTRAST MEDIA Optimal use of CM in radiology requires a knowl- edge of the nature and relevant properties of the available substances. This chapter describes the properties of currently used and newly developed contrast-giving agents that infuence their behav- ior in the human body, their side effects, and their practical utility. The main X-ray contrast agents in use today are insoluble barium sulfate for the diagnostic evalu- ation of the GI tract and water-soluble CM for the radiological assessment of the different vascular systems, body cavities and organs. In addition, a water-soluble CM based on tri-iodobenzene is the alternative agent of choice for oral use when bari- um sulfate is contraindicated. Barium Sulfate Barium is used in the form of the insoluble sulfate for radiography of the GI tract. If perforation is suspected, however, only water-soluble, iodinated agents (Gastrografn, Ultravist-370) can be used since the body is virtually incapable of eliminating barium sulfate once it has entered the peritoneum. Barium sulfate is available either as a powder to be prepared directly before use or as a ready-to-use suspension. For double-contrast examinations (fll- ing of the lumen with gas, coating of the wall with barium sulfate), barium sulfate is either mixed with a carbon dioxide additive, or a gas-forming agent is taken in addition. © The Author(s) 2018 20 U. Speck, X-Ray Contrast Media, https://doi.org/10.1007/978-3-662-56465-3_3 Common to all barium preparations is concentra- tion of barium sulfate which may diluted according to the needs of the examination.
    [Show full text]
  • Active Moiety Name FDA Established Pharmacologic Class (EPC) Text
    FDA Established Pharmacologic Class (EPC) Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: Active Moiety Name “(Drug) is a (FDA EPC Text Phrase) indicated for [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13.
    [Show full text]
  • Premedication for Contrast Medium Allergies Factfinder
    Published March 2014 Premedication for Contrast Medium Allergies FactFinder Committed to providing helpful information to International Spine Intervention Society members about key patient safety issues, the Society’s Patient Safety Committee has developed a FactFinder series. FactFinders will explore and debunk myths surrounding patient safety issues. The intent of this FactFinder is to present the evidence regarding the effectiveness of premedication for contrast medium allergies that impact the delivery of spinal procedures. Myth #1: In patients with radiocontrast media (RCM) allergy, it is safe to proceed with RCM injection as long as the patient is premedicated with steroids and antihistamines. Fact: Although premedication likely reduces the risks associated with injecting RCM, no premedication regimen has been proven safe for a RCM allergic reaction. Conclusions & Recommendations The International Spine Intervention Society Guidelines recommend the use of RCM for nearly all spinal diagnostic and treatment procedures.1 An understanding of the severity and frequency of reactions to RCM is paramount prior to discussing premedication. Reactions to RCM are immediate, defined as within the first hour, with 70% occurring within the first five minutes; or late, occurring between one hour and one week later. The late reactions are typically cutaneous.2 There are three types of immediate reactions: mild, moderate, and severe. Mild reactions: include nausea, vomiting, and mild urticaria. These signs and symptoms appear self-limited without evidence of progression. Treatment usually entails only observation and reassurance, however, these reactions may progress into a more severe category. Moderate reactions: include moderate urticaria, vasovagal reaction, mild bronchospasm, and tachycardia. These reactions require treatment, but are not immediately life threatening.
    [Show full text]