Mantis Study Group Newsletter, 8 (May 1998)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of Sexual Dimorphism on Toxic Prey Avoidance in the Chinese Praying Mantis, Tenodera Sinensis
MUShare Undergraduate Research Symposium (URS) College of Arts and Sciences 12-5-2018 The Effects of Sexual Dimorphism on Toxic Prey Avoidance in the Chinese Praying Mantis, Tenodera sinensis Sophie Podgorski [email protected] Emma Swartz [email protected] Tisa Steinmeyer [email protected] Kayla I. Miller Ph.D. [email protected] Follow this and additional works at: https://mushare.marian.edu/urs Part of the Behavior and Ethology Commons, and the Biology Commons Recommended Citation Podgorski, Sophie; Swartz, Emma; Steinmeyer, Tisa; and Miller, Kayla I. Ph.D., "The Effects of Sexual Dimorphism on Toxic Prey Avoidance in the Chinese Praying Mantis, Tenodera sinensis" (2018). Undergraduate Research Symposium (URS). 4. https://mushare.marian.edu/urs/4 This Poster is brought to you for free and open access by the College of Arts and Sciences at MUShare. It has been accepted for inclusion in Undergraduate Research Symposium (URS) by an authorized administrator of MUShare. For more information, please contact [email protected]. The Effects of Sexual Dimorphism on Toxic Prey Avoidance in the Chinese Praying Mantis, Tenodera sinensis Sophie Podgorski, Emma Swartz, Tisa Steinmeyer, and Kayla I. Miller, PhD College of Arts and Sciences, Marian University Indianapolis 3200 Cold Spring Rd, Indianapolis, IN 46222 INTRODUCTION 0 MM AND 50 MM CONCENTRATION • This experiment strives to investigate if sex based behaviors in Figure 1. Figure 2. praying mantid feeding habits hold true when sexual Ethogram Ethogram dimorphism is not obvious in juvenile mantids showing the showing the • Sensitivity to bitter tastes provides an important means for activity activity happening happening animals to detect various toxic compounds in food (Wooding et during the during the al. -
Mantodea (Insecta), with a Review of Aspects of Functional Morphology and Biology
aua o ew eaa Ramsay, G. W. 1990: Mantodea (Insecta), with a review of aspects of functional morphology and biology. Fauna of New Zealand 19, 96 pp. Editorial Advisory Group (aoimes mae o a oaioa asis MEMBERS AT DSIR PLANT PROTECTION Mou Ae eseac Cee iae ag Aucka ew eaa Ex officio ieco — M ogwo eae Sysemaics Gou — M S ugae Co-opted from within Systematics Group Dr B. A ooway Κ Cosy UIESIIES EESEAIE R. M. Emeso Eomoogy eame ico Uiesiy Caeuy ew eaa MUSEUMS EESEAIE M R. L. ama aua isoy Ui aioa Museum o iae ag Weigo ew eaa OESEAS REPRESENTATIVE J. F. awece CSIO iisio o Eomoogy GO o 1700, Caea Ciy AC 2601, Ausaia Series Editor M C ua Sysemaics Gou SI a oecio Mou Ae eseac Cee iae ag Aucka ew eaa aua o ew eaa Number 19 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy G W Ramsay SI a oecio M Ae eseac Cee iae ag Aucka ew eaa emoa us wig mooogy eosigma cooaio siuaio acousic sesiiiy eece eaiou egeeaio eaio aasiism aoogy a ie Caaoguig-i-uicaio ciaio AMSAY GW Maoea (Iseca – Weigo SI uisig 199 (aua o ew eaa ISS 111-533 ; o 19 IS -77-51-1 I ie II Seies UC 59575(931 Date of publication: see cover of subsequent numbers Suggese om o ciaio amsay GW 199 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy Fauna of New Zealand [no.] 19. —— Fauna o New Zealand is eae o uicaio y e Seies Eio usig comue- ase e ocessig ayou a ase ie ecoogy e Eioia Aisoy Gou a e Seies Eio ackowege e oowig co-oeaio SI UISIG awco – sueisio o oucio a isiuio M C Maews – assisace wi oucio a makeig Ms A Wig – assisace wi uiciy a isiuio MOU AE ESEAC CEE SI Miss M oy -
Norsk Lovtidend
Nr. 7 Side 1067–1285 NORSK LOVTIDEND Avd. I Lover og sentrale forskrifter mv. Nr. 7 Utgitt 30. juli 2015 Innhold Side Lover og ikrafttredelser. Delegering av myndighet 2015 Juni 19. Ikrafts. av lov 19. juni 2015 nr. 60 om endringer i helsepersonelloven og helsetilsynsloven (spesialistutdanningen m.m.) (Nr. 674) ................................................................1079................................ Juni 19. Ikrafts. av lov 19. juni 2015 nr. 77 om endringar i lov om Enhetsregisteret m.m. (registrering av sameigarar m.m.) (Nr. 675) ................................................................................................1079 ..................... Juni 19. Deleg. av Kongens myndighet til Helse- og omsorgsdepartementet for fastsettelse av forskrift for å gi helselover og -forskrifter hel eller delvis anvendelse på Svalbard og Jan Mayen (Nr. 676) ................................................................................................................................1080............................... Juni 19. Ikrafts. av lov 19. juni 2015 nr. 59 om endringer i helsepersonelloven mv. (vilkår for autorisasjon) (Nr. 678) ................................................................................................................................1084 ..................... Juni 19. Ikrafts. av lov 13. mars 2015 nr. 12 om endringer i stiftelsesloven (stiftelsesklagenemnd) (Nr. 679) ................................................................................................................................................................1084 -
Insectivory Characteristics of the Japanese Marten (Martes Melampus): a Qualitative Review
Zoology and Ecology, 2019, Volumen 29, Issue 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2019.1.9 INSECTIVORY CHARACTERISTICS OF THE JAPANESE MARTEN (MARTES MELAMPUS): A QUALITATIVE REVIEW REVIEW PAPER Masumi Hisano Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada Corresponding author. Email: [email protected] Article history Abstract. Insects are rich in protein and thus are important substitute foods for many species of Received: 22 December generalist feeders. This study reviews insectivory characteristics of the Japanese marten (Martes 2018; accepted 27 June 2019 melampus) based on current literature. Across the 16 locations (14 studies) in the Japanese archi- pelago, a total of 80 different insects (including those only identified at genus, family, or order level) Keywords: were listed as marten food, 26 of which were identified at the species level. The consumed insects Carnivore; diet; food were categorised by their locomotion types, and the Japanese martens exploited not only ground- habits; generalist; insects; dwelling species, but also arboreal, flying, and underground-dwelling insects, taking advantage of invertebrates; trait; their arboreality and ability of agile pursuit predation. Notably, immobile insects such as egg mass mustelid of Mantodea spp, as well as pupa/larvae of Vespula flaviceps and Polistes spp. from wasp nests were consumed by the Japanese marten in multiple study areas. This review shows dietary general- ism (specifically ‘food exploitation generalism’) of the Japanese marten in terms of non-nutritive properties (i.e., locomotion ability of prey). INTRODUCTION have important functions for martens with both nutritive and non-nutritive aspects (sensu, Machovsky-Capuska Dietary generalists have capability to adapt their forag- et al. -
Cryptic Female Mantids Signal Quality Through Brightness
Functional Ecology 2015, 29, 531–539 doi: 10.1111/1365-2435.12363 Sexual signals for the colour-blind: cryptic female mantids signal quality through brightness Katherine L. Barry*, Thomas E. White, Darshana N. Rathnayake, Scott A. Fabricant and Marie E. Herberstein Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia Summary 1. Cryptic coloration may evolve in response to selective pressure imposed by predators, yet effective intraspecific communication may require some level of detectability. This creates a tension between the benefits of sexually selected visual traits and the predatory costs imposed by greater conspicuousness, and little is known about how this tension may be ameliorated in highly cryptic species. 2. We explore these competing demands in the false garden mantid Pseudomantis albofimbriata, a colour-blind and seemingly cryptic insect. We use reflectance spectrometry and receptor-noise modelling to characterize the conspicuousness of mantid body regions in the visual systems of mates (mantids), as well as potential predators (birds) and prey (bees). We then use condition manipulation and conspecific choice tests to further explore the colour traits of interest. 3. Based on visual modelling, we find that male mantids are inconspicuous to conspecifics, prey and predators – that is, they are chromatically and achromatically cryptic. In contrast, female mantids are chromatically cryptic to all potential receivers, but their abdomens are achromatically conspicuous. Our food manipulation experiment shows that females in good condition (and therefore with more eggs) have brighter abdomens than females in poor condition. Choice assays show male mantids are consistently attracted to females bearing brighter abdomens. 4. Our results reveal brightness-mediated sexual signalling in a colour-blind and classically cryptic insect. -
Mantis Study Group Newsletter 12 (May 1999)
ISSN 1364-3193 Mantis Study Group Newsletter 12 May 1999 Newslener Editor Membership Secretary Phil Bragg Paul Taylor 8 The Lane 24 Forge Road Awsworth Shustoke Noningham Coleshill NG162QP Birmingham B46 2AD Editorial Again, many thanks to Andy Lasebny for his large contribution to the newsletter. It is time for everyone else to start writing articles for the next issue! The next issue should be out in early August; however, this assumes that it is ready for printing in mid July, a delay of a day or two could mean it may not be out until mid or late September because of clashes with holidays. You have been warned! Exhibitions Dates to note are: Saturday 10th July 1999 and Sunday 21st November 1999. West of England Creepy Crawly Show, Newton Abbot racecourse, Devon. Sunday 16th May 1999. British Tarantula Society Show, Wood Green High School, Wood Green Road, Wenesbury, West Midlands (2 minutes from J9 of the M6). Open 1030-1630. 6th June 1999. Oldham Creepy Crawly Show, Queen Elizabeth Hall, Oldham. Open 1200-1700. Adults £1.00 children free. We have not booked a table for this, if anyone wants to run a stand for the MSG at this event please contact me for more details. Message from the Livestock co-ordinator - Jo Wheat. I wish to say a special thank you to all who have returned your forms to me stating what you have available in the way of our special friends, the mantids. I would just like to say that the role of the Livestock Co-ordinator is to put people in touch with others who may have surplus stock, oothecae etc. -
Visual Distance Discrimination Between Stationary Targets in Praying Mantis: an Index of the Use of Motion Parallax
The Journal of Experimental Biology 198, 2127–2137 (1995) 2127 Printed in Great Britain © The Company of Biologists Limited 1995 VISUAL DISTANCE DISCRIMINATION BETWEEN STATIONARY TARGETS IN PRAYING MANTIS: AN INDEX OF THE USE OF MOTION PARALLAX MICHAEL POTESER AND KARL KRAL* Institut für Zoologie, Karl-Franzens-Universität, Universitätsplatz 2, A-8010 Graz, Austria Accepted 7 June 1995 Summary 1. When larvae of the praying mantis Polyspilota sp. and It is supposed that the distance measurement involves the Tenodera sinensis want to leave an exposed position and larger and faster retinal image shifts that near, as opposed can choose to move between stationary objects at different to more distant, objects evoke. distances, they usually choose the nearest. Their ability to 4. Mantid larvae can distinguish a black-and-white select the nearest object is greatest when the background rectangle in the foreground from a black-and-white striped has horizontal stripes and is least when it has vertical background, even when both are similar with respect to stripes. Object preference is based on a successive distance luminance, contrast and texture. The ability to distinguish comparison, which may involve content-related memory between figures and background could be explained by processes. motion parallaxes, i.e. by the fact that during peering 2. Mantid larvae can determine the absolute distance to movements the nearer object moves faster and by a larger a stationary object. Vertical contrasting borders play an angle than the background structure. important role in this process. 5. From birth onwards, even when the eyes have yet to 3. Side-to-side head movements (peering) are directly develop foveal specialization, mantids are capable of this involved in the distance measurement, as shown (i) by the visually controlled behaviour. -
Curriculum Vitae
CURRICULUM VITAE Lawrence E. Hurd Phone: (540) 458-8484 Department of Biology FAX: 540-458-8012 Washington & Lee University Email: [email protected] Lexington, Virginia 24450 USA Education: B.A., Hiram College, 1969 Ph.D., Syracuse University, 1972 Positions (in reverse chronological order): Herwick Professor of Biology, Washington & Lee University 2008-present; Pesquisador Visitante Especial, Universidade Federal do Amazonas (UFAM) 2013-2015. Editor- in-Chief,Annals of the Entomological Society of America, 2007 – present. Research supported by John T. Herwick Endowment, Brazilian research fellowship from CAPES, and by Lenfest faculty research grants from Washington and Lee University. Head of Department of Biology, Washington and Lee University, 1993-2008. Editorial Board of Oecologia, 1997 - 2003. Professor of Biology, Program in Ecology, School of Life and Health Sciences, and member of Graduate Faculty, University of Delaware, 1973-1993. Joint appointments: (1) College of Marine Studies (1974-1984); (2) Department of Entomology and Applied Ecology, College of Agriculture (1985-1993). Research supported by grants from NSF, NOAA (Sea Grant), and UDRF (U. Del.). Postdoctoral Fellow, Cornell University, 1972 - 1973. Studies of population genetics and agro-ecosystems with D. Pimentel. Supported by grant from Ford Foundation to DP. Postdoctoral Fellow, Costa Rica, summer 1972. Behavioral ecology of tropical hummingbirds with L. L. Wolf. Supported by NSF grant to LLW. Memberships: American Association for the Advancement of Science Linnean Society -
Mantis Study Group Newsletter, 10 (November 1998)
ISSN 1364-3193 Mantis Study Group Newsletter 10 November 1998 Newsletter Editor Membership Secretary Phil Bragg Paul Taylor 8 The Lane 24 Forge Road Awsworth Shustoke Nottingham Coleshill NG162QP Birmingham B46 2AD Editorial I apologise for the late publication of this newsletter. This is due largely to moving house - the last newsletter was not really affected since it was more or less done before I moved - and starting a new job, and a large number of exhibitions to attend at weekends have caused a backlog of correspondence. Thanks to those of you that have sent in contributions for the newsletter, and apologies to the two people whose articles are still waiting to be typed up, they will appear in the next issue. On the subject of typing up articles, it is helpful if you can submit your articles on disk. However, if you send articles on disk please send them in WordPerfect 5.1 if possible (Users of Word can save files in Wordperfect 5.1 by using the "save as" option under the "File" menu). If this is not possible please send a copy in ASCII (DOS-text). Please note that I cannot read Word files and with my current job I only have access to a machine which can convert the files about once every ten weeks, and that cannot read versions as recent as Word 97. Membership renewals - Paul Taylor. Members will find attached to this Newsletter membership renewal forms for 1999. Members will be pleased to note that there is no increase in membership fees for this coming year. -
The Complete Mitochondrial Genome of Mantis Religiosa (Mantodea: Mantidae) from Canada and Its Phylogeny
Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20 The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada and its phylogeny Yi-Yang Jia, Le-Ping Zhang, Xiao-Dong Xu, Xin-Yi Dai, Dan-Na Yu, Kenneth B. Storey & Jia-Yong Zhang To cite this article: Yi-Yang Jia, Le-Ping Zhang, Xiao-Dong Xu, Xin-Yi Dai, Dan-Na Yu, Kenneth B. Storey & Jia-Yong Zhang (2019) The complete mitochondrial genome of Mantisreligiosa (Mantodea: Mantidae) from Canada and its phylogeny, Mitochondrial DNA Part B, 4:2, 3797-3799, DOI: 10.1080/23802359.2019.1681912 To link to this article: https://doi.org/10.1080/23802359.2019.1681912 © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 25 Oct 2019. Submit your article to this journal Article views: 29 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 MITOCHONDRIAL DNA PART B 2019, VOL. 4, NO. 2, 3797–3799 https://doi.org/10.1080/23802359.2019.1681912 MITOGENOME ANNOUNCEMENT The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada and its phylogeny Yi-Yang Jiaa, Le-Ping Zhanga, Xiao-Dong Xua, Xin-Yi Daia, Dan-Na Yua,b , Kenneth B. Storeyc and Jia-Yong Zhanga,b aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China; bKey Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, China; cDepartment of Biology, Carleton University, Ottawa, Canada ABSTRACT ARTICLE HISTORY The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada was suc- Received 11 September 2019 cessfully sequenced. -
Forskrift Om Fremmede Organismer
Forskrift om fremmede organismer Fastsatt ved kgl. res. 19. juni 2015 med hjemmel i lov 19. juni 2009 nr. 100 om forvaltning av naturens mangfold (naturmangfoldloven) §§ 2, 28, 29, 30, 31, 32 og 66, lov 29. mai 1981 nr. 38 om jakt og fangst av vilt (viltloven) § 7 og lov 27. februar 1930 nr. 2 om Jan Mayen (lov om Jan Mayen) § 2. Fremmet av Klima- og miljødepartementet. Kapittel I. Formål, virkeområde og definisjoner § 1. Formål Formålet med forskriften er å hindre innførsel, utsetting og spredning av fremmede organismer som medfører, eller kan medføre, uheldige følger for naturmangfoldet. § 2. Stedlig virkeområde Forskriften gjelder på norsk landterritorium, herunder vassdrag, i Norges territorialfarvann og på Jan Mayen. Forskriften gjelder ikke for Svalbard. § 3. Saklig virkeområde og forholdet til annet regelverk (1) Forskriften regulerer innførsel av organismer, omsetning og utsetting av fremmede organismer, samt utilsiktet spredning av fremmede organismer. (2) Forskriften gjelder ikke ved a) utsetting som reguleres av forskrift 25. mai 2012 nr. 460 om utsetting av utenlandske treslag til skogbruksformål, b) utsetting av norske treslag, jf. naturmangfoldloven § 31, c) håndtering av ballastvann som reguleres av forskrift 7. juli 2009 nr. 992 om hindring av spredning av fremmede organismer via ballastvann og sedimenter fra skip, d) hold av vilt, jf. viltloven § 7, med unntak av hold som angitt i forskriften § 13, e) gjenutsetting av viltlevende marine organismer som er unntatt fra ilandføringsplikten i forskrift gitt i medhold av havressurslova -
Chemical Constituents of the Egg Cases of Tenodera Angustipennis (Mantidis Ootheca) with Intracellular Reactive Oxygen Species Scavenging Activity
biomolecules Article Chemical Constituents of the Egg Cases of Tenodera angustipennis (Mantidis ootheca) with Intracellular Reactive Oxygen Species Scavenging Activity Seung Mok Ryu 1, Hyeon-hwa Nam 1, Joong Sun Kim 1 , Jun-ho Song 1 , Young Hye Seo 1, Hyo Seon Kim 1, A Yeong Lee 1 , Wook Jin Kim 1, Dongho Lee 2, Byeong Cheol Moon 1 and Jun Lee 1,* 1 Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Korea; [email protected] (S.M.R.); [email protected] (H.-h.N.); [email protected] (J.S.K.); [email protected] (J.-h.S.); [email protected] (Y.H.S.); [email protected] (H.S.K.); [email protected] (A.Y.L.); [email protected] (W.J.K.); [email protected] (B.C.M.) 2 Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-61-338-7129 Abstract: As a traditional medicine with potential antioxidant effects, Tenodera angustipennis egg cases (Mantidis ootheca) are a potential source of new bioactive substances. Herein, three new N-acetyldopamine derivatives, namely, (+)-tenoderin A (1a), (−)-tenoderin A (1b), and tenoderin B(2), along with thirteen known compounds (3–15), were isolated from a 70% EtOH extract of T. angustipennis egg cases. Compound 1 was isolated as a racemic mixture, and two enantiomers (1a and Citation: Ryu, S.M.; Nam, H.-h.; 1b) were successfully separated by chiral-phase preparative HPLC. The chemical structures of the Kim, J.S.; Song, J.-h.; Seo, Y.H.; Kim, new compounds were established by NMR spectroscopy and high-resolution electrospray ionization H.S.; Lee, AY.; Kim, W.J.; Lee, D.; mass spectrometry, and the absolute configurations of enantiomers 1a and 1b were determined by Moon, B.C.; et al.