Imidacloprid

Total Page:16

File Type:pdf, Size:1020Kb

Imidacloprid JOURNAL OF PESTICIDE REFORM/ SPRING 2001 • VOL. 21, NO. 1 ● INSECTICIDE FACTSHEET IMIDACLOPRID Imidacloprid is a relatively new, systemic insecticide chemically related to the tobacco toxin nicotine. Like nicotine, it acts on the nervous system. Worldwide, it is considered to be one of the insecticides used in the largest volume. It has a wide diversity of uses: in agriculture, on turf, on pets, and for household pests. Symptoms of exposure to imidacloprid include apathy, labored breathing, incoordination, emaciation, and convulsions. Longer-term exposures cause reduced ability to gain weight and thyroid lesions. In studies of how imidacloprid affects reproduction, exposure of pregnant laboratory animals resulted in more frequent miscarriages and smaller offspring. An agricultural imidacloprid product increased the incidence of a kind of genetic damage called DNA adducts. Imidacloprid is acutely toxic to some bird species, including sparrows, quail, canaries, and pigeons. Partridges have been poisoned and killed by agricultural use of imidacloprid. It has also caused eggshell thinning. The growth and size of shrimp are affected by imidacloprid concentrations of less than one part per billion (ppb). Shrimp and crustaceans are killed by concentration of less than 60 ppb. Imidacloprid is persistent. In a field test in Minnesota, the concentration of imidacloprid did not decrease for a year following treatment. It is also mobile in soil, so is considered by the U.S. Environmental Protection Agency to be a potential water contaminant. The development of resistance to imidacloprid by pest insects is a significant concern. In Michigan potato fields, the Colorado potato beetle developed resistance to imidacloprid after just two years of use. BY CAROLINE COX has a wide variety of uses; it is used in Figure 1 agricultural products for use on cotton Imidacloprid and vegetable crops,3 in turfgrass and or- 2 midacloprid (see Figure 1) is a rela- CH2 N NH namental plant products, in indoor and I = tively new insecticide, first registered for — outdoor cockroach control products,5 and use as a pesticide in the U.S. in 1994, N-NO2 in termite control products.4 It is also Cl — and was the first insecticide in its chemi- N used in products for pets, home, lawn, cal class to be developed for commercial 1-((6-chloro-3-pyridinyl)methyl)-N-nitro-2- and garden use including some, like pot- use.1 Imidacloprid is a systemic insecti- imidazolidinimine ting soil, that may not always be easily cide1; it moves through plants from the recognized as pesticides.6,8-10 place where it was applied and kills in- sects when they feed. Its major manufac- How Does Imidacloprid Figure 2 Kill Insects? turer is Bayer Corporation that markets Nicotine imidacloprid products with the brand Imidacloprid, and other insecticides in names Merit, Admire, Premise, Pre-Empt, the nicotinoid chemical family, are “simi- and Advantage, among others.2-6 N lar to and modeled after the natural nico- 7 N CH3 tine [a tobacco toxin].” (See Figure 2.) Use Because of their molecular shape, size, Although imidacloprid has not been Imidacloprid and nicotine have similar activity and charge, nicotine and nicotinoids fit in use for long relative to other common in the nervous system. into receptor molecules in the nervous pesticides, according to University of system that normally receive the molecule Arizona entomologist George Ware “very acetylcholine. Acetylcholine carries nerve possibly it is used in the greatest volume impulses from one nerve cell to another, Caroline Cox is NCAP’s staff scientist. globally of all insecticides.”7 Imidacloprid or from a nerve cell to the tissue that a NORTHWEST COALITION FOR ALTERNATIVES TO PESTICIDES/NCAP P.O. BOX 1393, EUGENE, OREGON 97440 / (541)344-5044 15 JOURNAL OF PESTICIDE REFORM/ SPRING 2001 • VOL. 21, NO. 1 nerve controls. Imidacloprid and other or “other” ingredients. There is little pub- chromosome damage in laboratory tests.17 nicotinoids irreversibly block acetylcho- licly available information about the iden- Other symptoms of naphthalene expo- line receptors.7 tity of these ingredients. Inerts that have sure include anemia, liver damage, cata- Why is imidacloprid less toxic to mam- been identified in imidacloprid products racts, and skin allergies.18 mals’ nervous systems than to insects’? include the following: Whenever possible, the remaining sec- Both insect and mammal nervous systems Crystalline quartz silica (in Merit 0.5 tions of this article will specify whether have acetylcholine receptors that are G13) is classified by the International tests were conducted with imidacloprid blocked by imidacloprid; most of the sen- Agency for Research on Cancer as “car- alone or with an imidacloprid-contain- sitive receptors are in the central nervous cinogenic to humans”14 and as “known ing product (imidacloprid plus inerts). system of insects, but in nerves associ- to be a human carcinogen”15 by the Na- Toxicity of inerts to cats: An uniden- ated with muscles in mammals.7 How- tional Toxicology Program because it tified inert ingredient in Advantage, an ever, insect acetylcholine receptors are causes lung cancer. It also causes emphy- imidacloprid flea insecticide applied as more sensitive to imidacloprid than are sema and obstructive airway disease and drops on the back of a pet’s neck, can be mammalian receptors,11 although for has also caused genetic damage in exposed toxic to kittens when applied above the some of imidacloprid’s breakdown prod- people and laboratory tests.15 label rate. In laboratory tests, death, coma, ucts this relationship is reversed.12 Naphthalene (in Leverage 2.716) has and incoordination were observed in kit- recently been classified by the National tens receiving five times the recommended Inert Ingredients Toxicology Program as having “clear evi- dose of Advantage.19 Further experiments Commercial imidacloprid insecticides, dence of carcinogenic activity”17 (through showed that the toxicity was probably like nearly all pesticides, contain ingredi- inhalation exposure) because it causes na- caused by the inert present in the largest ents other than imidacloprid called “inert” sal cancers. It also caused two kinds of amount.20 No publicly available studies show the effects of smaller overdoses. Vomiting, salivation, and depression were Figure 3 also observed in cats fed Advantage or its Persistence of Acute Neurological Symptoms Caused by inert ingredients.21 Imidacloprid and a Commercial Imidacloprid Product 12 Acute Toxicity In laboratory animals, symptoms of 10 acute (short-term) oral exposure to imida- cloprid included apathy, labored breath- ing, loss of the ability to move, stagger- 8 ing, trembling, and spasms. Some symp- toms lasted for five days following expo- 6 sure.22 Symptoms following acute expo- sure to an agricultural imidacloprid prod- 4 uct (imidacloprid plus “inerts”) included Days after exposure reduced activity, incoordination, tremors, diarrhea, and emaciation. Some symp- 2 toms lasted 12 days after exposure,23 twice as long as the symptoms of exposure to 0 imidacloprid alone. (See Figure 3.) Symp- Imidacloprid Gaucho toms following acute exposure to an (imidacloprid + “inert” ingredients) imidacloprid flea control product in- Sources: U.S. EPA. Office of Pesticides and Toxic Substances. 1992. Request for experimental use cluded reduced activity, convulsions, and permit 00315-EUP-ENG and 003125 EUP-ENR for NTN 33893 (Imidacloprid-proposed) a labored breathing.24 crystalline end-use formulation containing 0.62% NTN 33893 active ingredient. Memo from M.S. Ottley, Health Effects Div., to D. Edwards, Registration Div. Washington, D.C., Mar. 24. (See Also in laboratory animals, symptoms attached Data Evaluation Report for MRID No. 420553-31.) of breathing imidacloprid (for four hours) U.S. EPA. Office of Prevention, Pesticides and Toxic Substances. 1994. Imidacloprid. included difficult breathing, loss of the Evaluation of toxicity data submitted and identification of outstanding toxicology data requirements. Memo from M.S. Ottley, Health Effects Div., to P. Jenkins and D. Edwards, ability to move, and slight tremors. Symp- Registration Div. Washington, D.C., June 8. (See attached Data Evaluation Report for MRID No. toms of breathing two agricultural imida- 428557-02. cloprid products were similar: incoordi- In laboratory tests, symptoms of exposure to a commercial imidacloprid product lasted over nation, convulsions, reduced activity, twice as long as symptoms of exposure to imidacloprid alone. tremors, and salivation. Some symptoms NORTHWEST COALITION FOR ALTERNATIVES TO PESTICIDES/NCAP 16 P.O. BOX 1393, EUGENE, OREGON 97440 / (541)344-5044 JOURNAL OF PESTICIDE REFORM/ SPRING 2001 • VOL. 21, NO. 1 persisted two days after exposure.25 Eye Irritation: Several imidacloprid Figure 4 products (Merit 0.5 G,26 Merit 75 WP,2 Effects of Imidacloprid Exposure on Successful Pregnancy 4 27 Premise 75, Provado Solupak, and Ad- Weight of Newborn Offspring vantage6) cause eye irritation. Subchronic Toxicity Unexposed Subchronic (medium-term; 10-day) exposure of rats to imidacloprid reduced weight gain at a dose of 10 mg/kg per 28 day. Exposed There are no publicly available sub- chronic studies of commercial imida- cloprid products. 5.0 5.5 6.0 Chronic Toxicity Weight of newborn rats (milligrams) Chronic (long-term; lifetime) feeding Frequency of miscarriages studies with rats showed that the thyroid is especially sensitive to imidacloprid. Thyroid lesions were caused by doses of Unexposed 17 milligrams per kilogram (mg/kg) of body weight per day in males. Slightly higher doses (25 mg/kg per day) reduced 29 weight gain in females. At higher doses Exposed (100 mg/kg per day), effects included at- rophy of the retina in females.30 There are no publicly available chronic 04 812 studies of commercial imidacloprid Miscarriages (% of total rabbit embryos) Source: products. U.S. EPA. Office of Prevention, Pesticides and Toxic Substances. 1993. Imidacloprid. Evaluation of toxicity data submitted and identification of outstanding toxicology data Effects on Reproduction requirements. Memo from M.S. Ottley, Health Effects Div., to P. Jenkins and D. Edwards, Registration Div.
Recommended publications
  • What Is the Difference Between Pesticides, Insecticides and Herbicides? Pesticide Effects on Food Production
    What is the Difference Between Pesticides, Insecticides and Herbicides? Pesticides are chemicals that may be used to kill fungus, bacteria, insects, plant diseases, snails, slugs, or weeds among others. These chemicals can work by ingestion or by touch and death may occur immediately or over a long period of time. Insecticides are a type of pesticide that is used to specifically target and kill insects. Some insecticides include snail bait, ant killer, and wasp killer. Herbicides are used to kill undesirable plants or “weeds”. Some herbicides will kill all the plants they touch, while others are designed to target one species. Pesticide Effects on Food Production As the human population continues to grow, more and more crops are needed to meet this growing demand. This has increased the use of pesticides to increase crop yield per acre. For example, many farmers will plant a field with Soybeans and apply two doses of Roundup throughout the growing year to remove all other plants and prepare the field for next year’s crop. The Roundup is applied twice through the growing season to kill everything except the soybeans, which are modified to be pesticide resistant. After the soybeans are harvested, there is little vegetative cover on the field creating potential erosion issues for the reason that another crop can easily be planted. With this method, hundreds of gallons of chemicals are introduced into the environment every year. All these chemicals affect wildlife, insects, water quality and air quality. One greatly affected “good” insect are bees. Bees play a significant role in the pollination of the foods that we eat.
    [Show full text]
  • Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R.
    [Show full text]
  • CHLORPYRIFOS 2.5% GRANULAR INSECTICIDE for Professional Use Only
    CHLORPYRIFOS 2.5% GRANULAR INSECTICIDE For professional use only. Not for sale to homeowners. For Control of Various Insects (and Other Arthropods) Infesting Sod Farms, Golf Course Turf, Outdoor Areas around Industrial Plant Sites, and Ornamental Nurseries for Commercial Production Only. Active Ingredient: Chlorpyrifos: O,O-diethyl-0-(3,5,6-trichloro- 2-pyridinyl) phosphorothioate .... 2.5% Other Ingredients ....................... 97.5% Total ............................................ 100.0% FIRST AID ORGANOPHOSPHATE IF SWALLOWED: Call a physician or Poison Control Center. Drink 1 or 2 glasses of water and induce vomiting by touching back of throat with finger, or if available by administering syrup of ipecac. If person is unconscious, do not give anything by mouth and do not induce vomiting. IF ON SKIN: Wash with plenty of soap and water. Get medical attention if irritation persists. IF INHALED: Remove victim to fresh air. If not breathing, give artificial respiration, preferably mouth-to-mouth. Get medical attention. IF IN EYES: Flush eyes with plenty of water. Call a physician if irritation persists. FOR CHEMICAL EMERGENCY: Spill, leak, fire, exposure, or accident call CHEMTREC 1-800-424-9300. Have the product container or label with you when calling a poison control center or doctor, or going for treatment. For more information on this product (including health concerns, medical emergencies, or pesticide incidents), call the National Pesticide Information Center at: 1-800-858-7378. NOT TO PHYSICIAN: Chlorpyrifos is a cholinesterase inhibitor. Treat symptomatically. Atropine, only by injection, is the preferable antidote. PRECAUTIONARY STATEMENTS HAZARDS TO HUMANS AND DOMESTIC ANIMALS CAUTION: Harmful if swallowed or absorbed through skin or inhaled.
    [Show full text]
  • Historical Use of Lead Arsenate and Survey of Soil Residues in Former Apple Orchards in Virginia
    HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA by Therese Nowak Schooley Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LIFE SCIENCES in Entomology Michael J. Weaver, Chair Donald E. Mullins, Co-Chair Matthew J. Eick May 4, 2006 Blacksburg, Virginia Keywords: arsenic, lead, lead arsenate, orchards, soil residues, historical pesticides HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA Therese Nowak Schooley Abstract Inorganic pesticides including natural chemicals such as arsenic, copper, lead, and sulfur have been used extensively to control pests in agriculture. Lead arsenate (PbHAsO4) was first used in apple orchards in the late 1890’s to combat the codling moth, Cydia pomonella (Linnaeus). The affordable and persistent pesticide was applied in ever increasing amounts for the next half century. The persistence in the environment in addition to the heavy applications during the early 1900’s may have led to many of the current and former orchards in this country being contaminated. In this study, soil samples were taken from several apple orchards across the state, ranging from Southwest to Northern Virginia and were analyzed for arsenic and lead. Based on naturally occurring background levels and standards set by other states, two orchards sampled in this study were found to have very high levels of arsenic and lead in the soil, Snead Farm and Mint Spring Recreational Park. Average arsenic levels at Mint Spring Recreational Park and Snead Farm were found to be 65.2 ppm and 107.6 ppm, respectively.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Imidacloprid Movement Into Fungal Conidia Is Lethal to Mycophagous Beetles
    insects Communication Imidacloprid Movement into Fungal Conidia Is Lethal to Mycophagous Beetles 1, 2, , 3 4 Robin A. Choudhury y , Andrew M. Sutherland * y, Matt J. Hengel , Michael P. Parrella and W. Douglas Gubler 5 1 School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; [email protected] 2 University of California Cooperative Extension, Alameda County, Hayward, CA 94544, USA 3 Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA; [email protected] 4 Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; [email protected] 5 Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to the writing, design and completion of this work. y Received: 1 July 2020; Accepted: 30 July 2020; Published: 3 August 2020 Simple Summary: Some insects are beneficial to plants because they eat pest insects and disease-causing fungi; integrating the use of these insects into pest management can help to reduce the need for costly pesticide applications. Twenty-spotted ladybeetles eat plant pathogenic fungi, which helps to reduce disease severity for many economically important crops. In this study, we applied a systemic insecticide to the roots of pumpkin plants and monitored to see if it would be detectable in the spores of a plant pathogenic fungus and whether the insecticide-tainted fungal spores would hurt the ladybeetle larvae. We were able to chemically detect the systemic insecticide in the fungal spores up to 21 days after the plants had been treated with the fungus.
    [Show full text]
  • Imidacloprid Does Not Enhance Growth and Yield of Muskmelon In
    HORTSCIENCE 30(5):997–999. 1995. plant growth and yield responses of muskmel- ons to imidacloprid in the presence and ab- Imidacloprid Does Not Enhance sence of whiteflies. Growth and Yield of Muskmelon in the Materials and Methods Greenhouse studies. All plants used in the Absence of Whitefly greenhouse tests were direct-seeded ‘Topmark’ muskmelons in a 3 soil : 3 perlite : 1 peat J.C. Palumbo and C.A. Sanchez mixture in 1.5-liter pots. Each pot contained 500 g of soil mixture and was planted with four University of Arizona, Yuma Valley Agricultural Center, 6425 West 8th Street, to five seeds. Seedlings were grown during Yuma, AZ 85364 Mar. and Apr. 1994 in a glasshouse under natural light with adequate water and nutrients Additional index words. Bemisia tabaci, Bemisia argentifolii, Cucumis melo, relative growth for maximum growth. Upon emergence, seed- rate, net assimilation rate ling plants were thinned to one per pot. Pots Abstract. Imidacloprid is a new, chloronicotinyl insecticide currently being used to control were then placed in wooden-frame exclusion × × sweetpotato whitefly [Bemisia tabaci Genn, also known as silverleaf whitefly (Bemisia cages (1.7 m width 1.2 m long 0.6 m high) argentifolii Bellows and Perring)]. Large growth and yield increases of muskmelon screened with fine organdy cloth to exclude (Cucumis melo L.) following the use of imidacloprid have caused some to speculate that this whitefly adults and other insects. The cages ± compound may enhance growth and yield above that expected from insect control alone. were maintained in the glasshouse at 28 4C. Greenhouse and field studies were conducted to evaluate the growth and yield response of Whitefly adults used in these studies were melons to imidacloprid in the presence and absence of whitefly pressure.
    [Show full text]
  • Large-Scale Field Trials of Imidacloprid for Control of The
    PEST MANAGEMENT HORTSCIENCE 38(4):555–559. 2003. 5 mL/100 L (half-rate), were compared with endosulfan (350 g·L–1 a.i.) at the industry standard rate of 57 mL/100 L. The higher of Large-scale Field Trials of the two rates for imidacloprid corresponds to the discriminate dose (100% kill) of the Imidacloprid for Control of the insecticide against SCB (James and Nicholas, 2000). A water-only treatment was provided as Spined Citrus Bug control in all but one trial. Applications of the treatments were made with air-blast sprayers J. Mo1 and K. Philpot at a spray volume of 10 L/tree. Yanco Agricultural Institute, PMB Yanco, NSW 2703, Australia Trial-1 was conducted from 25 Oct. to 24 Nov. 2000 in Leeton. Lemon trees from three Additional index words. endosulfan withdrawal, alternative insecticide, beneficials, lemon, neighbouring citrus farms (separated by 1–2 Biprorulus bibax km) were used in this trial. The test trees were in six separate blocks (>100 m apart) containing Abstract. Four large-scale field trials were carried out in 2001 and 2002 in lemon or- from 60 to 453 trees. Fifteen plots of 60–100 chards in south-western New South Wales to assess the suitability of imidacloprid as a trees each were set up in the six lemon blocks. replacement for endosulfan in controlling the spined citrus bug (SCB), Biprorulus bibax Where more than one plot was set up in a Breddin (Hemiptera: Pentatomidae). The results showed that imidacloprid was at least single block, the boundaries were chosen in as effective as endosulfan in controlling SCB, even when it was applied at a rate cor- such a way that each plot contained a similar responding to half of its discriminate dose (100% kill).
    [Show full text]
  • 11–20–03 Vol. 68 No. 224 Thursday Nov. 20, 2003 Pages 65383–65626
    11–20–03 Thursday Vol. 68 No. 224 Nov. 20, 2003 Pages 65383–65626 VerDate jul 14 2003 18:31 Nov 19, 2003 Jkt 203001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\20NOWS.LOC 20NOWS 1 II Federal Register / Vol. 68, No. 224 / Thursday, November 20, 2003 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records PUBLIC Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public Subscriptions: interest. Paper or fiche 202–741–6005 Documents are on file for public inspection in the Office of the Assistance with Federal agency subscriptions 202–741–6005 Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Endosulfan 3EC Insecticide
    RESTRICTED USE PESTICIDE Due to acute toxicity to humans, aquatic organisms, and avian species. For retail sale to and use only by certified applicators or persons under their direct supervision, and only for those uses covered by the certified applicator's certification. Endosulfan 3EC Insecticide For Agricultural or Commercial Use Only. Not for use or storage PRECAUTIONARY STATEMENTS in or around residential sites - see DIRECTIONS FOR USE Hazards to Humans and Domestic Animals / GENERAL INFORMATION for prohibited areas. DANGER: Fatal if swallowed, inhaled, or absorbed through skin. ACTIVE INGREDIENT: Corrosive. Causes irreversible eye damage. Do not get in eyes, on skin or on clothing. Do not breathe vapor or spray mist. Pro- Endosulfan . 34.0% longed or frequently repeated skin contact may cause allergic reactions OTHER INGREDIENTS:*. 66.0% in some individuals. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using to- TOTAL: . 100.0% bacco. Wear appropriate protective clothing listed below. Remove *This product contains 3 pounds of Endosulfan per gallon. and wash contaminated clothing before reuse. *Contains xylene range aromatic solvent. Do not contaminate food or feed. Keep out of reach of domestic animals. Food utensils such as spoons and measuring cups must KEEP OUT OF REACH OF CHILDREN not be used for food purposes after use in measuring pesticides. PERSONAL PROTECTIVE EQUIPMENT (PPE) Some materials that are chemical-resistant to this product are made DANGER PELIGRO of barrier laminate or viton. If you want more options, follow the instructions for category G on an EPA chemical-resistance category POISON VENENO selection chart.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Chlorpyrifos, Part 1: Toxicology
    JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 ■ INSECTICIDE FACTSHEET CHLORPYRIFOS, PART 1: TOXICOLOGY The broad spectrum organophosphate insecticide chlorpyrifos is the most widely used insecticide in the U.S. Total use is estimated at almost 30 million pounds per year. Like all organophosphate insecticides, chlorpyrifos affects the nervous system by inhibiting an enzyme that is important in the transmission of nerve impulses. Symptoms of acute poisoning include headache, nausea, muscle twitching, and convulsions. Chlorpyrifos poisonings are reported to state and federal agencies more often than poisonings of almost every other insecticide. In both laboratory animals and humans, chlorpyrifos can also cause delayed effects on the nervous system. Some effects have been measured years after exposure. Human birth defects have been associated with exposure to chlorpyrifos products. In pregnant laboratory animals, chlorpyrifos exposure caused fetal death. Pups that did survive were smaller pups and did not survive as well as pups from unexposed mothers. Chlorpyrifos also affects the male reproductive system; exposure to a chlorpyrifos product has caused death of cells in male rat testes and a decrease in sperm production in cattle. Chlorpyrifos has caused genetic damage in human blood and lymph cells, mice spleen cells, and hamster bone marrow cells. Immune system abnormalities have been reported from patients exposed to chlorpyrifos. Many individuals report developing sensitivities to a broad array of substances following chlorpyrifos exposure. The second part of this factsheet will discuss human exposure to chlorpyrifos and the ecological effects of chlorpyrifos. BY CAROLINE COX mary agricultural uses are for oranges, al- plications are made annually.
    [Show full text]