Chlorpyrifos, Part 1: Toxicology

Total Page:16

File Type:pdf, Size:1020Kb

Chlorpyrifos, Part 1: Toxicology JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 ■ INSECTICIDE FACTSHEET CHLORPYRIFOS, PART 1: TOXICOLOGY The broad spectrum organophosphate insecticide chlorpyrifos is the most widely used insecticide in the U.S. Total use is estimated at almost 30 million pounds per year. Like all organophosphate insecticides, chlorpyrifos affects the nervous system by inhibiting an enzyme that is important in the transmission of nerve impulses. Symptoms of acute poisoning include headache, nausea, muscle twitching, and convulsions. Chlorpyrifos poisonings are reported to state and federal agencies more often than poisonings of almost every other insecticide. In both laboratory animals and humans, chlorpyrifos can also cause delayed effects on the nervous system. Some effects have been measured years after exposure. Human birth defects have been associated with exposure to chlorpyrifos products. In pregnant laboratory animals, chlorpyrifos exposure caused fetal death. Pups that did survive were smaller pups and did not survive as well as pups from unexposed mothers. Chlorpyrifos also affects the male reproductive system; exposure to a chlorpyrifos product has caused death of cells in male rat testes and a decrease in sperm production in cattle. Chlorpyrifos has caused genetic damage in human blood and lymph cells, mice spleen cells, and hamster bone marrow cells. Immune system abnormalities have been reported from patients exposed to chlorpyrifos. Many individuals report developing sensitivities to a broad array of substances following chlorpyrifos exposure. The second part of this factsheet will discuss human exposure to chlorpyrifos and the ecological effects of chlorpyrifos. BY CAROLINE COX mary agricultural uses are for oranges, al- plications are made annually. Over 17 per- monds, and walnuts.4 Structural pest con- cent of U.S. households use chlorpyrifos. trol uses much more chlorpyrifos than does Most of the chlorpyrifos products are used hlorpyrifos (see Figure 1) is the any single agricultural crop. (See Figure 4.) in the kitchen, bathroom, and other living C 5 most widely used insecticide in the United In American homes, lawns, and gardens, spaces. (See Figure 5.) States, both in crop production and in over two hundred million chlorpyrifos ap- Chlorpyrifos has been registered in the 6 nonagricultural applications.1 Its non- U.S. since 1965, and is manufactured by agricultural use in the United States is esti- DowElanco, formerly the Dow Chemical Company. Common brand names are mated at between 9 and 12 million pounds Figure 1 per year.1 Agricultural use estimates vary: Chlorpyrifos and Chlorpyrifos-oxon Dursban (for household products) and 3 the U.S. Environmental Protection Agency Lorsban (for agricultural products). Cl (EPA) estimates that between 10 and 15 S Mode of Action 1 CH CH O million pounds are used annually, while the P-O- -Cl U.S. Department of Agriculture (USDA) CH CH O Chlorpyrifos is an organophosphate in- N secticide. Investigations of this family of estimates agricultural uses at 21 million Cl pounds per year.2 (See Figure 2 for details.) chlorpyrifos chemicals began during World War II when 7 Chlorpyrifos is a broad spectrum insec- chemists studied their use as nerve gases. 3 Chlorpyrifos is directly toxic to the ner- ticide and has many uses. Nationwide, Cl USDA estimates show that the primary ag- CH CH O O vous system. In addition, it is transformed 8,9 ricultural uses are on corn, alfalfa, and cot- P-O- -Cl inside animals to chlorpyrifos-oxon (see 2 CH CH O Figure 1) which is about 3000 times as ton. (See Figure 3 for details.) In Califor- N nia, where pesticide use reporting is more Cl potent against the nervous system as 10 comprehensive than in other states, the pri- chlorpyrifos-oxon chlorpyrifos itself. Like all organophos- phates, chlorpyrifos and chlorpyrifos-oxon Chlorpyrifos is transformed in animals to chlorpyrifos-oxon, a much more potent neuro- kill insects and other animals, including Caroline Co x is JPR’s editor. toxin. humans, because of this toxicity to the ner- NORTHWEST COALITION FOR ALTERNATIVES TO PESTICIDES/NCAP P. O. BOX 1393, EUGENE, OREGON 97440 / (503)344-5044 15 JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 Figure 2 Figure 3 Agricultural Chlorpyrifos Use in the United States Crops on which Chlorpyrifos Is Used in the U.S. wheat citrus 1.0 million 0.9 million pounds pounds soybeans other 1.1 million 4.1 million pounds pounds peanuts 1.1 million pounds cotton 1.4 million pounds alfalfa 1.8 million pounds field corn 9.6 million pounds Source: U.S. Dept. of Agriculture. National Agricultural Pesticide Impact Assessment Program. 1994. The biologic and economic assessment of Pounds per year Sources: the field crop usage of chlorpyrifos: Briefing paper. U.S. Dept. of Agriculture. National Agricultural Statistics Service. Economic Washington, D.C. (April.) Not reported Research Service. 1991. Agricultural chemical use: 1991 Fruits and nuts summary. Washington, D.C. (June.) Less than 250,000 U.S. Dept. of Agriculture. National Agricultural Statistics Service. Economic Research Service. 1993. Agricultural chemical usage - vegetables: 1992 Almost half of the chlorpyrifos used in U.S. ag- 250,000-500,000 summary. Washington, D.C. (June.) riculture is used on corn. U.S. Dept. of Agriculture. National Agricultural Statistics Service. Economic 500,000-750,000 Research Service. 1994. Agricultural chemical use: 1993 Field crops summary. Washington, D.C. (March.) 750,000-1,000,000 California Environmental Protection Agency. Dept. of Pesticide Regulation. could be sufficient to kill an average-sized Information Services Branch. 1994. Pesticide use report: Annual 1992. (60 kg) adult human. Over 1,000,000 Indexed by chemical. Sacramento, CA. (February.) Based on the LD50, inhalation of for- Agricultural production in California, Iowa, and Indiana uses over a million pounds of chlorpyrifos mulated chlorpyrifos is more toxic to mice 15 annually. and rats than is oral ingestion. Dermal (skin) exposure in laboratory animals is less vous system. They inhibit an enzyme, ace- ing in humans include headache, nausea, toxic than ingestion.14 However, dermal tylcholinesterase (AChE), that breaks down dizziness, muscle twitching, weakness, in- exposure causes skin irritation, and also al- acetylcholine, a chemical involves in trans- creased sweating and salivation, and fluid- lows the body to absorb chlorpyrifos. This mitting nerve impulses across the junctions filled lungs. These symptoms are common is especially true if the skin is cut or between nerves. Without functioning to all organophosphate insecticides. Un- scratched. Therefore, the Cooperative Ex- AChE, acetylcholine accumulates, produc- consciousness, convulsions, and death can tension Service warns that “dermal contact ing rapid twitching of involuntary muscles, result with sufficient exposure.13 should be avoided.”14 convulsions, paralysis, and ultimately death.7 A variety of different kinds of exposure Inhibition of AChE activity has been Chlorpyrifos exposure has also been to chlorpyrifos can cause acute toxicity. Di- measured at doses that are much smaller shown to inhibit enzymes other than AChE. rect skin contact with the insecticide, either than the LD50. For example, AChE inhi- It impedes respiration (production of en- as a solid or in water can be toxic. Inges- bition in female rats was measured at doses ergy within a cell) in the livers of laboratory tion, breathing of vapors, or contact with of 0.1 mg/kg/day (less than 1 percent of animals. This results from the effect of chlorpyrifos-treated soil is also toxic.3 the LD50) and in beagle dogs at 3.3 mg/ chlorpyrifos on the activity of ATPase, an The acute oral median lethal dose kg/day (less than 5 percent of the LD50).14 enzyme important in cellular respiration.11 (LD50; the dose required to kill half of a The inhibition of AChE activity caused Chlorpyrifos-oxon inhibits the enzyme population of laboratory test animals) for by chlorpyrifos is more persistent than that cholesterol ester hydrolase; inhibition of this chlorpyrifos is between 82 and 270 milli- caused by other organophosphates, with enzyme in rats eliminates one of their nor- grams per kilogram (mg/kg) of body weight measurable inhibition two weeks after ex- mal reactions to stress.12 in rats.14 If it is assumed that humans are posure in one study,8 one month after ex- equally as sensitive as rats (usually a more posure in another study,16 and six weeks in Acute Toxicity conservative assumption should be made), other studies.17-18 Researchers believe that Symptoms of acute chlorpyrifos poison- then a dose of less than one-fifth of a ounce this is because chlorpyrifos is lipophilic (at- NORTHWEST COALITION FOR ALTERNATIVES TO PESTICIDES/NCAP 16 P. O. BOX 1393, EUGENE, OREGON 97440 / (503)344-5044 JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 Figure 4 Figure 5 Chlorpyrifos Uses in California (1992) Use of Chlorpyrifos by U.S. Households other pets structural pest control (1.5 million uses other outdoor uses annually) (5.0 million uses) oranges kitchens (5.5 million almonds uses annually) walnuts alfalfa lawns sugarbeets (2.5 million cotton uses) broccoli bathrooms lemons other indoor (3.5 million uses uses (3.8 million landscape maintenance annually) uses) bedrooms, living rooms cauliflower (3.8 millions uses annually) apples Source: Whitmore, R.W., J.E. Kelly, and P.L. Reading. 1992. National home and garden plums pesticide use survey. Final report, Vol. 1: Executive summary, results, and peaches recommendations. Research Triangle Park, NC: Research Triangle Institute. corn brussels sprouts Household use of chlorpyrifos is divided ap- proximately equally between indoor and out- nectarines door applications. cabbages 0 200,000 400,000 600,000 800,000 1,000,000 tivity, some organophosphates cause a “less (pounds per year) common but potentially more devastating Note: Total use of chlorpyrifos in California in 1992 was 2.6 million pounds. syndrome” called delayed neuropathy.
Recommended publications
  • Propoxur United States Environmental Protection Agency
    United States Prevention, Pesticides EPA738-R-97-009 Environmental Protection And Toxic Substances August 1997 Agency (7508W) Reregistration Eligibility Decision (RED) PROPOXUR UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: I am pleased to announce that the Environmental Protection Agency has completed its reregistration eligibility review and decisions on the pesticide chemical case propoxur. The enclosed Reregistration Eligibility Decision (RED) contains the Agency's evaluation of the data base of this chemical, its conclusions of the potential human health and environmental risks of the current product uses, and its decisions and conditions under which these uses and products will be eligible for reregistration. The RED includes the data and labeling requirements for products for reregistration. It may also include requirements for additional data (generic) on the active ingredient to confirm the risk assessments. To assist you with a proper response, read the enclosed document entitled "Summary of Instructions for Responding to the RED." This summary also refers to other enclosed documents which include further instructions. You must follow all instructions and submit complete and timely responses. The first set of required responses is due 90 days from the receipt of this letter. The second set of required responses is due 8 months from the date of receipt of this letter. Complete and timely responses will avoid the Agency taking the enforcement action of suspension against your products. If you have questions on the product specific data requirements or wish to meet with the Agency, please contact the Special Review and Reregistration Division representative Bonnie Adler (703) 308-8523.
    [Show full text]
  • What Is the Difference Between Pesticides, Insecticides and Herbicides? Pesticide Effects on Food Production
    What is the Difference Between Pesticides, Insecticides and Herbicides? Pesticides are chemicals that may be used to kill fungus, bacteria, insects, plant diseases, snails, slugs, or weeds among others. These chemicals can work by ingestion or by touch and death may occur immediately or over a long period of time. Insecticides are a type of pesticide that is used to specifically target and kill insects. Some insecticides include snail bait, ant killer, and wasp killer. Herbicides are used to kill undesirable plants or “weeds”. Some herbicides will kill all the plants they touch, while others are designed to target one species. Pesticide Effects on Food Production As the human population continues to grow, more and more crops are needed to meet this growing demand. This has increased the use of pesticides to increase crop yield per acre. For example, many farmers will plant a field with Soybeans and apply two doses of Roundup throughout the growing year to remove all other plants and prepare the field for next year’s crop. The Roundup is applied twice through the growing season to kill everything except the soybeans, which are modified to be pesticide resistant. After the soybeans are harvested, there is little vegetative cover on the field creating potential erosion issues for the reason that another crop can easily be planted. With this method, hundreds of gallons of chemicals are introduced into the environment every year. All these chemicals affect wildlife, insects, water quality and air quality. One greatly affected “good” insect are bees. Bees play a significant role in the pollination of the foods that we eat.
    [Show full text]
  • Determination of the Residual Efficacy of Carbamate and Organophosphate
    Yewhalaw et al. Malar J (2017) 16:471 DOI 10.1186/s12936-017-2122-3 Malaria Journal RESEARCH Open Access Determination of the residual efcacy of carbamate and organophosphate insecticides used for indoor residual spraying for malaria control in Ethiopia Delenasaw Yewhalaw1,2†, Meshesha Balkew3†, Josephat Shililu4, Sultan Suleman5, Alemayehu Getachew4, Gedeon Ashenbo4, Sheleme Chibsa6, Gunawardena Dissanayake6, Kristen George7, Dereje Dengela8, Yemane Ye‑Ebiyo4 and Seth R. Irish9* Abstract Background: Indoor residual spraying is one of the key vector control interventions for malaria control in Ethiopia. As malaria transmission is seasonal in most parts of Ethiopia, a single round of spraying can usually provide efective protection against malaria, provided the insecticide remains efective over the entire malaria transmission season. This experiment was designed to evaluate the residual efcacy of bendiocarb, pirimiphos-methyl, and two doses of pro‑ poxur on four diferent wall surfaces (rough mud, smooth mud, dung, and paint). Filter papers afxed to wall surfaces prior to spraying were analyzed to determine the actual concentration applied. Cone bioassays using a susceptible Anopheles arabiensis strain were done monthly to determine the time for which insecticides were efective in killing mosquitoes. Results: The mean insecticide dosage of bendiocarb applied to walls was 486 mg/m2 (target 400/mg). This treat‑ ment lasted 1 month or less on rough mud, smooth mud, and dung, but 4 months on painted surfaces. Pirimiphos- methyl was applied at 1854 mg/m2 (target 1000 mg/m2), and lasted between 4 and 6 months on all wall surfaces. Propoxur with a target dose of 1000 mg/m2 was applied at 320 mg/m2, and lasted 2 months or less on all surfaces, except painted surfaces (4 months).
    [Show full text]
  • CHLORPYRIFOS 2.5% GRANULAR INSECTICIDE for Professional Use Only
    CHLORPYRIFOS 2.5% GRANULAR INSECTICIDE For professional use only. Not for sale to homeowners. For Control of Various Insects (and Other Arthropods) Infesting Sod Farms, Golf Course Turf, Outdoor Areas around Industrial Plant Sites, and Ornamental Nurseries for Commercial Production Only. Active Ingredient: Chlorpyrifos: O,O-diethyl-0-(3,5,6-trichloro- 2-pyridinyl) phosphorothioate .... 2.5% Other Ingredients ....................... 97.5% Total ............................................ 100.0% FIRST AID ORGANOPHOSPHATE IF SWALLOWED: Call a physician or Poison Control Center. Drink 1 or 2 glasses of water and induce vomiting by touching back of throat with finger, or if available by administering syrup of ipecac. If person is unconscious, do not give anything by mouth and do not induce vomiting. IF ON SKIN: Wash with plenty of soap and water. Get medical attention if irritation persists. IF INHALED: Remove victim to fresh air. If not breathing, give artificial respiration, preferably mouth-to-mouth. Get medical attention. IF IN EYES: Flush eyes with plenty of water. Call a physician if irritation persists. FOR CHEMICAL EMERGENCY: Spill, leak, fire, exposure, or accident call CHEMTREC 1-800-424-9300. Have the product container or label with you when calling a poison control center or doctor, or going for treatment. For more information on this product (including health concerns, medical emergencies, or pesticide incidents), call the National Pesticide Information Center at: 1-800-858-7378. NOT TO PHYSICIAN: Chlorpyrifos is a cholinesterase inhibitor. Treat symptomatically. Atropine, only by injection, is the preferable antidote. PRECAUTIONARY STATEMENTS HAZARDS TO HUMANS AND DOMESTIC ANIMALS CAUTION: Harmful if swallowed or absorbed through skin or inhaled.
    [Show full text]
  • Features & Benefits
    Click Here To Purchase Features & Benefits: • TAURUS SC is a water-based suspension concentrate of 9.1% Fipronil for Pre and Post-construction termite applications, and to control perimeter pests • Apply at a rate of 4 gallons of dilution per 10 linear feet per foot of depth for termites • TAURUS SC is labeled for barrier applications targeting listed occasional invaders around structures • Now with EP/LI applications PRECAUTIONARY STATEMENTS ® Hazards to Humans and Domestic Animals Caution TAURUS SC Harmful if swallowed, absorbed through skin or inhaled. Do not get in eyes, on skin Termiticide / Insecticide or on clothing. Do not breathe spray mist. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using tobacco. Remove and It is a violation of federal law to use this product in a manner inconsistent wash contaminated clothing before reuse. with its labeling. Personal Protective Equipment (PPE): • For sale to, use and storage only by individuals/firms licensed or registered All pesticide handlers (mixers, loaders, and applicators) must wear long-sleeved by the state to apply termiticide and/or general pest control products. shirt and long pants, socks, shoes, and chemical-resistant gloves. All pesticide • DO NOT use this product for termite or other pest control indoors, except for handlers must wear a dust/mist filtering respirator (MSHA/NIOSH approval number label-specified applications for termite control and foam applications to wall prefix TC-21C), or a NIOSH approved respirator with any N, R, P or HE filter, when voids for control of other listed pests. working in a non-ventilated space, including but not limited to crawl-spaces and • DO NOT use on golf course turf.
    [Show full text]
  • Florida State Emergency Response Commission
    Florida State Emergency Response Commission Sub-Committee on Training (SOT) HAZARDOUS MATERIALS MEDICAL TREATMENT PROTOCOLS Version 3.3 TOXIDROMES Toxidromes are clinical syndromes that the patient presents with. These patterns of signs and symptoms are essential for the successful recognition of chemical exposure. The toxidromes identified in this protocol are chemical exposure based while others such as the opioids are found within general medical protocol. These chemical toxidromes are identified clinically into five syndromes: Irritant Gas Toxidrome Asphyxiant Toxidrome Corrosive Toxidrome Hydrocarbon and Halogenated Hydrocarbons Toxidrome Cholinergic Toxidrome Each can present as a clinical manifestation of the chemical/poisoning involved with some cross-over between toxidromes. This list combines the toxic syndromes found within NFPA 473 (A.5.4.1(2) and traditional syndromes. Toxidrome Correlation to NFPA Standard 473 and Traditional Syndromes Toxidrome NFPA 473 A.5.4.1(2) Hazardous Materials Protocol Correlation Irritant Gas (j) Irritants Bronchospasm OC Pepper spray & lacrimants Asphyxiant (c) Chemical asphyxiants Carbon Monoxide (d) Simple asphyxiants Aniline dyes, Nitriles, Nitrares (h) Blood Agents Cyanide & Hydrogen Sulfide (n) Nitrogen Compounds Closed Space Fires Simple Asphyxants Corrosive (a) Corrosives Hydrofluroic Acid (g) Vesicants Chemical burns to the eye Choramine and Chlorine Hydrocarbon (e) Organic solvents Phenol and (q) Phenolic Compounds Halogenated Hydrocarbons Halogenated Hydrocarbons Cholinergic (b) Pesticides
    [Show full text]
  • Historical Use of Lead Arsenate and Survey of Soil Residues in Former Apple Orchards in Virginia
    HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA by Therese Nowak Schooley Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LIFE SCIENCES in Entomology Michael J. Weaver, Chair Donald E. Mullins, Co-Chair Matthew J. Eick May 4, 2006 Blacksburg, Virginia Keywords: arsenic, lead, lead arsenate, orchards, soil residues, historical pesticides HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA Therese Nowak Schooley Abstract Inorganic pesticides including natural chemicals such as arsenic, copper, lead, and sulfur have been used extensively to control pests in agriculture. Lead arsenate (PbHAsO4) was first used in apple orchards in the late 1890’s to combat the codling moth, Cydia pomonella (Linnaeus). The affordable and persistent pesticide was applied in ever increasing amounts for the next half century. The persistence in the environment in addition to the heavy applications during the early 1900’s may have led to many of the current and former orchards in this country being contaminated. In this study, soil samples were taken from several apple orchards across the state, ranging from Southwest to Northern Virginia and were analyzed for arsenic and lead. Based on naturally occurring background levels and standards set by other states, two orchards sampled in this study were found to have very high levels of arsenic and lead in the soil, Snead Farm and Mint Spring Recreational Park. Average arsenic levels at Mint Spring Recreational Park and Snead Farm were found to be 65.2 ppm and 107.6 ppm, respectively.
    [Show full text]
  • Imidacloprid Movement Into Fungal Conidia Is Lethal to Mycophagous Beetles
    insects Communication Imidacloprid Movement into Fungal Conidia Is Lethal to Mycophagous Beetles 1, 2, , 3 4 Robin A. Choudhury y , Andrew M. Sutherland * y, Matt J. Hengel , Michael P. Parrella and W. Douglas Gubler 5 1 School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; [email protected] 2 University of California Cooperative Extension, Alameda County, Hayward, CA 94544, USA 3 Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA; [email protected] 4 Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; [email protected] 5 Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected] These authors contributed equally to the writing, design and completion of this work. y Received: 1 July 2020; Accepted: 30 July 2020; Published: 3 August 2020 Simple Summary: Some insects are beneficial to plants because they eat pest insects and disease-causing fungi; integrating the use of these insects into pest management can help to reduce the need for costly pesticide applications. Twenty-spotted ladybeetles eat plant pathogenic fungi, which helps to reduce disease severity for many economically important crops. In this study, we applied a systemic insecticide to the roots of pumpkin plants and monitored to see if it would be detectable in the spores of a plant pathogenic fungus and whether the insecticide-tainted fungal spores would hurt the ladybeetle larvae. We were able to chemically detect the systemic insecticide in the fungal spores up to 21 days after the plants had been treated with the fungus.
    [Show full text]
  • Safe Pest Control
    SAFE PEST CONTROL U.S. Department of Housing and Urban Development • Office of Healthy Homes and Lead Hazard Control “For years, cockroaches have defeated our best efforts to get rid of them. We sprayed and sprayed, but they always came back. Now we under- stand there are better methods and products that really work” Environmental Health Watch Did you know...? ■ Many pesticides for home use are toxic? ■ There are alternative pest management methods that limit the use of toxic substances? ■ Mice, cockroaches, and cockroach "dust” can trigger asthma attack? What is it? Integrated pest management (IPM) is a way to remove pests, like cock- roaches, mice, and rats from a home. IPM is a common sense approach that: ■ Denies pests food, water, shelter and a way to enter the home. ■ Uses baits and powders, such as gel baits, traps and borate powder. Why use IPM? ■ IPM is safer. IPM does not use as many harmful pesticides as traditional pest control. - Avoiding pesticides is especially important in homes. Pesticides can contain long lasting, toxic chemicals or lung irritants that cause asthma attacks. Children are among those most vulnerable to exposure. IPM strategies apply pesticides only as needed and use the least hazardous pesticides to control pests. continued on back www.hud.gov/offices/lead U.S. Department of Housing and Urban Development SAFE PEST CONTROL Office of Healthy Homes and Lead Hazard Control Non-toxic traps can be part of an IPM strategy. If needed, call a pest control professional who uses IPM practices. If you have taken all the steps described above and still have a pest problem, you may need a professional to help.
    [Show full text]
  • 4-Cyano-3-Benzoylamino-N
    (19) TZZ _T (11) EP 2 427 427 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 255/60 (2006.01) 25.12.2013 Bulletin 2013/52 (86) International application number: (21) Application number: 10713937.0 PCT/EP2010/054862 (22) Date of filing: 14.04.2010 (87) International publication number: WO 2010/127926 (11.11.2010 Gazette 2010/45) (54) 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDES FOR USE IN PEST CONTROL 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDE ZUR VERWENDUNG IN DER SCHÄDLINGSBEKÄMPFUNG 4-CYANO-3-BENZOYLAMINO-N-PHÉNYL-BENZAMIDES DESTINÉS À ÊTRE UTILISÉS DANS LA LUTTE ANTIPARASITAIRE (84) Designated Contracting States: • HUETER, Ottmar Franz AT BE BG CH CY CZ DE DK EE ES FI FR GB GR CH-4332 Stein (CH) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • MAIENFISCH, Peter PT RO SE SI SK SM TR CH-4332 Stein (CH) (30) Priority: 06.05.2009 GB 0907822 (74) Representative: Herrmann, Jörg et al 18.12.2009 GB 0922234 Syngenta Crop Protection Münchwilen AG (43) Date of publication of application: Intellectual Property Department 14.03.2012 Bulletin 2012/11 Schaffhauserstrasse CH-4332 Stein (CH) (73) Proprietor: Syngenta Participations AG 4058 Basel (CH) (56) References cited: EP-A1- 1 714 958 WO-A1-2008/000438 (72) Inventors: WO-A1-2008/074427 • JUNG, Pierre Joseph Marcel CH-4332 Stein (CH) Remarks: • GODFREY, Christopher Richard Ayles Thefile contains technical information submitted after CH-4332 Stein (CH) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • 11–20–03 Vol. 68 No. 224 Thursday Nov. 20, 2003 Pages 65383–65626
    11–20–03 Thursday Vol. 68 No. 224 Nov. 20, 2003 Pages 65383–65626 VerDate jul 14 2003 18:31 Nov 19, 2003 Jkt 203001 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\20NOWS.LOC 20NOWS 1 II Federal Register / Vol. 68, No. 224 / Thursday, November 20, 2003 The FEDERAL REGISTER (ISSN 0097–6326) is published daily, SUBSCRIPTIONS AND COPIES Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records PUBLIC Administration, Washington, DC 20408, under the Federal Register Subscriptions: Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Paper or fiche 202–512–1800 Committee of the Federal Register (1 CFR Ch. I). The Assistance with public subscriptions 202–512–1806 Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official General online information 202–512–1530; 1–888–293–6498 edition. Periodicals postage is paid at Washington, DC. Single copies/back copies: The FEDERAL REGISTER provides a uniform system for making Paper or fiche 202–512–1800 available to the public regulations and legal notices issued by Assistance with public single copies 1–866–512–1800 Federal agencies. These include Presidential proclamations and (Toll-Free) Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public Subscriptions: interest. Paper or fiche 202–741–6005 Documents are on file for public inspection in the Office of the Assistance with Federal agency subscriptions 202–741–6005 Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Who Needs Chlorpyrifos and Why (By Crop)?
    1 WHO NEEDS CHLORPYRIFOS AND WHY (BY CROP)? EXCERPTS OF COMMENTS SUBMITTED TO EPA AT EPA-HQ-OPP-2015-0653 GENERAL “Consumers I have visited with that do not have any ag background are easily swayed into the belief that farmers are polluting the environment and recklessly applying chemicals. Truth is our farmers are professionals and with today’s pricing cannot afford to be over- or misapplying inputs that affect their bottom lines…. I strongly suggest that you…allow producers of the world’s food source to continue using the product chlorpyrifos.” – North Dakota farmer. “Many food crop industries in the Pacific Northwest are concerned about the impacts to pest management based on EPA’s proposed tolerance revocation of chlorpyrifos, including several minor crop groups with limited pesticide options. These industries include processed vegetables, strawberry, grass seed, mint, and cranberry. For many of these industries, chlorpyrifos has unique properties that make it an essential part of their Integrated Pest Management program. It is also an important tool for resistance management. Several of these industries have conducted research to identify effective alternatives to chlorpyrifos, but currently there aren’t viable alternatives that match the efficacy and low risk of this product for managing a number of critical pests…. A revocation of all chlorpyrifos tolerances would eliminate a number of low-risk, critical uses in cases where few alternatives exist at present, and in many cases those alternatives (neonicotinoids, pyrethroids) would be less efficacious, more expensive and have greater impacts on nontarget species including pollinators and beneficial insects. Further, the economic impacts based on resulting crop damage would be substantial.” – Oregon State University Agronomist.
    [Show full text]