4-Cyano-3-Benzoylamino-N

Total Page:16

File Type:pdf, Size:1020Kb

4-Cyano-3-Benzoylamino-N (19) TZZ _T (11) EP 2 427 427 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 255/60 (2006.01) 25.12.2013 Bulletin 2013/52 (86) International application number: (21) Application number: 10713937.0 PCT/EP2010/054862 (22) Date of filing: 14.04.2010 (87) International publication number: WO 2010/127926 (11.11.2010 Gazette 2010/45) (54) 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDES FOR USE IN PEST CONTROL 4-CYANO-3-BENZOYLAMINO-N-PHENYL-BENZAMIDE ZUR VERWENDUNG IN DER SCHÄDLINGSBEKÄMPFUNG 4-CYANO-3-BENZOYLAMINO-N-PHÉNYL-BENZAMIDES DESTINÉS À ÊTRE UTILISÉS DANS LA LUTTE ANTIPARASITAIRE (84) Designated Contracting States: • HUETER, Ottmar Franz AT BE BG CH CY CZ DE DK EE ES FI FR GB GR CH-4332 Stein (CH) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • MAIENFISCH, Peter PT RO SE SI SK SM TR CH-4332 Stein (CH) (30) Priority: 06.05.2009 GB 0907822 (74) Representative: Herrmann, Jörg et al 18.12.2009 GB 0922234 Syngenta Crop Protection Münchwilen AG (43) Date of publication of application: Intellectual Property Department 14.03.2012 Bulletin 2012/11 Schaffhauserstrasse CH-4332 Stein (CH) (73) Proprietor: Syngenta Participations AG 4058 Basel (CH) (56) References cited: EP-A1- 1 714 958 WO-A1-2008/000438 (72) Inventors: WO-A1-2008/074427 • JUNG, Pierre Joseph Marcel CH-4332 Stein (CH) Remarks: • GODFREY, Christopher Richard Ayles Thefile contains technical information submitted after CH-4332 Stein (CH) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 427 427 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 427 427 B1 Description [0001] The present invention relates to novel bis-amide derivatives having insecticidal activity, to methods of using them to control insect, acarine, nematode and mollusc pests and to insecticidal, acaricidal, nematicidal and molluscicidal 5 compositions comprising them. It also describes processes and intermediates for preparing them. [0002] Compounds having insecticidal properties are disclosed in EP 1,714,958, JP 2006/306771, WO 2006/137376, EP 1,916,236, WO 2007/017075, WO 2008/000438, WO 2008/074427 and WO 2009/049845. There exists a need for alternative methods of control of pests. Preferably, new compounds may possess improved insecticidal properties, such as improved efficacy, improved selectivity, lower tendency to generate resistance or activity against a broader range of 10 pests. Compounds may be more advantageously formulated or provide more efficient delivery and retention at sites of action, or may be more readily biodegradable. [0003] It has now surprisingly been found that bis-amide derivatives having a particular substitution pattern on a terminal phenyl group have excellent insecticidal properties that are unexpectedly superior to previously disclosed compounds. 15 [0004] Accordingly, the present invention provides a compound of formula (I) 20 25 wherein 30 1 R is hydrogen, C1-C8alkyl, C1-C8alkylcarbonyl, or C1-C8alkoxycarbonyl; 2 R is hydrogen, C1-C8alkyl, C1-C8alkylcarbonyl, or C1-C8alkoxycarbonyl; each R3 is independently halogen; n is 0, 1, 2 for 3; Q2 is a group of formula (II) 35 40 45 1 5 Y and Y are each independently selected from halogen, cyano,1-C C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, 1-CC4alkoxy-C1-C4alkyl, 1-CC3alkythio, 1-CC3haloalkylthio, 1-CC3alkylsulfinyl, C1-C3haloalkylsulfinyl, C1-C3alkylsulfonyl and C1-C3haloalkylsulfonyl; 3 Y is selected from2-C6 perfluoroalkyl,C 2-CC 6perfluorocycloalkyl, hydroxy-C2-C6perfluoroalkyl, C1-C4alkylcarbonyloxy-C2-C6perfluoroalkyl, C1-C4haloalkylcarbonyloxy-C2-C6perfluoroalkyl, 50 C1-C6perfluoroalkylthio, 1-C6Cperfluoroalkylsulfinyl, 1-C6Cperfluoroalkylsulfonyl, arylcarbonyloxy- C2-C6perfluoroalkyl and arylcarbonyloxy-C2-C6perfluoroalkyl in which the aryl group may be substituted by one to five R4 groups, which may be the same or different; 2 4 Y and Y are each independently selected from hydrogen, halogen and C 1-C4alkyl; and 4 R is halogen, cyano, nitro, C 1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy or C1-C4haloalkoxy; 55 or an agrochemically acceptable salt or N-oxides thereof. [0005] The compounds of formula (I) may exist in different geometric or optical isomers (enantiomers and/or diaster- oisomers) ortautomeric forms. This invention covers allsuch isomers and tautomers and mixturesthereof in all proportions 2 EP 2 427 427 B1 as well as isotopic forms such as deuterated compounds. [0006] Unless otherwise indicated, alkyl, on its own or as part of another group, such as alkoxy, alkylcarbonyl or alkoxycarbonyl, may be straight or branched chain and may contain from 1 to 8 carbon atoms, preferably 1 to 6, more preferably 1 to 4, and most preferably 1 to 3. Examples of alkyl include methyl, ethyl,n-propyl, iso-propyl, n-butyl, 5 sec-butyl, iso-butyl and tert-butyl. [0007] Hydroxyalkyl are alkyl groups, which are substituted by one or more hydroxy groups, and includes, for example, hydroxymethyl and 1,3-dihydroxypropyl. [0008] Halogen means fluorine, chlorine, bromine or iodine. [0009] Haloalkyl groups may contain one or more identical or different halogen atoms, and include, for example, 10 difluoromethyl, trifluoromethyl, chlorodifluoromethyl, 2,2,2-trifluoroethyl and 2,2-difluoroethyl. Perfluoroalkyl groups are alkyl groups which are completely substituted with fluorine atoms and include, for example, trifluoromethyl, pentafluor- oethyl, heptafluoroprop-2-yl and nonafluorobut-2-yl.. [0010] Hydroxyperfluoroalkyl groups are hydroxyalkyl groups which are substituted in every available position by a fluorine atom, and include, for example, hexafluoro-2-hydroxyprop-2-yl and octafluoro-2-hydroxybut-2-yl. 15 [0011] Cycloalkyl groups may be monocyclic or bicyclic and may preferably contain from 3 to 8 carbon atoms, more preferably 4 to 7, and most preferably 5 to 6, and include, for example, cyclopropyl, cyclobutyl, cyclohexyl and bicyclo [2.2.1]heptan-2-yl. [0012] Perfluorocycloalkyl groups are cycloalkyl groups which are substituted in every available position by a fluorine atom, and include, for example, undecafluorocyclohexyl. 20 [0013] Aryl includes phenyl, naphthyl, anthracenyl, indenyl, phenanthrenyl and biphenyl, with phenyl being preferred. [0014] Preferred values of R1, R2, R3, n, Q2, Y1, Y2, Y3, Y4, Y5 and R4 are, in any combination, as set out below. [0015] Preferably, R1 is hydrogen. [0016] Preferably, R2 is hydrogen. [0017] Preferably, R3 is fluoro. 25 [0018] In one preferred aspect, n is 0. [0019] In another preferred aspect, n is 1. When n is 1, the R 3 group is preferably substituted in the 2- position of the phenyl ring. 1 [0020] Preferably, Y is halogen, cyano, C1-C4alkyl, C1-C4alkoxy, C1-C4alkoxy-C1-C4alkyl or C1-C3alkylthio. More preferably, Y1 is fluoro, chloro, bromo, cyano, methyl, ethyl, methoxy, methylthio, or methoxymethyl. Most preferably, 30 Y1 is chloro, bromo, methyl, ethyl, or cyano. [0021] Preferably, Y2 is hydrogen, chloro, fluoro or methyl. More preferably, Y 2 is hydrogen or fluoro. Most preferably, Y2 is hydrogen. 3 [0022] Preferably, Y is C2-C6perfluoroalkyl, C2-C6perfluorocycloalkyl, hydroxy-C2-C6perfluoroalkyl, arylcarbonyloxy- C2-C6perfluoroalkyl, or arylcarbonyloxy-C2-C6perfluoroalkyl in which the aryl group may be substituted by one to five 35 R4 groups, which may be the same or different. More preferably, Y 3 is heptafluoropropyl, nonafluorobutyl, undecafluor- ocyclohexyl, heptafluoropropylthio, heptafluoropropylsulfinyl, or heptafluoropropylsulfonyl. Yet more preferably, 3Y is heptafluoroprop-1-yl, heptafluoroprop-2-yl, nonafluorobut-2-yl or undecafluorocyclohexyl. Most preferably, Y3 is hep- tafluoroprop-2-yl, nonafluorobut-2-yl or undecafluorocyclohexyl. [0023] Preferably, Y4 is hydrogen, chloro, fluoro or methyl. More preferably, Y 4 is hydrogen or fluoro. Most preferably, 40 Y4 is hydrogen. 5 [0024] Preferably, Y is halogen, cyano, C1-C4alkyl, C1-C4alkoxy, C1-C4alkoxy-C1-C4alkyl or C1-C3alkylthio. More preferably, Y5 is fluoro, chloro, bromo, cyano, methyl, ethyl, methoxy, methylthio, or methoxymethyl. Most preferably, Y5 is chloro, bromo, methyl, ethyl, or cyano. [0025] Preferably, R4 is chloro, fluoro, cyano, nitro, methyl, ethyl, trifluoromethyl, methoxy, or trifluoromethoxy. 45 [0026] Most preferably, Q2 is selected from 2-bromo-6-chloro-4-(hexafluoro-2-benzoyloxyprop-2-yl)phenyl, 2-bromo-6-chloro-4-(hexafluoro-2-hydroxyprop-2-yl)phenyl, 2-bromo-6-chloro-4-(nonafluorobut-2-yl)phenyl, 50 2-bromo-6-ethyl-4-(nonafluorobut-2-yl)phenyl, 2-chloro-6-cyano-4-(nonafluorobut-2-yl)phenyl, 2-chloro-6-methylthio-4-(nonafluorobut-2-yl)phenyl, 2,6-dibromo-4-(heptafluoroprop-2-yl)phenyl, 2,6-dibromo-4-(nonafluorobut-2-yl)phenyl, 55 2,6-dichloro-3-fluoro-4-(heptafluoroprop-2-yl)phenyl, 2,6-dichloro-4-(nonafluorobut-2-yl)phenyl, 2,6-dimethyl-4-(nonafluorobut-2-yl)phenyl, 2,6-dimethyl-4-(undecafluorocyclohexyl)phenyl, 3 EP 2 427 427 B1 2-ethyl-6-methyl-4-(nonafluorobut-2-yl)phenyl, 2-ethyl-6-methyl-4-(octafluoro-2-hydroxybut-2-yl)phenyl, 2-methoxymethyl-6-methyl-4-(nonafluorobut-2-yl)phenyl, and 2-methoxy-6-methyl-4-(nonafluorobut-2-yl)phenyl. 5 [0027] In a preferred embodiment of the invention, R1 and R2 are
Recommended publications
  • Chemicals Implicated in Colony Collapse Disorder
    Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Features & Benefits
    Click Here To Purchase Features & Benefits: • TAURUS SC is a water-based suspension concentrate of 9.1% Fipronil for Pre and Post-construction termite applications, and to control perimeter pests • Apply at a rate of 4 gallons of dilution per 10 linear feet per foot of depth for termites • TAURUS SC is labeled for barrier applications targeting listed occasional invaders around structures • Now with EP/LI applications PRECAUTIONARY STATEMENTS ® Hazards to Humans and Domestic Animals Caution TAURUS SC Harmful if swallowed, absorbed through skin or inhaled. Do not get in eyes, on skin Termiticide / Insecticide or on clothing. Do not breathe spray mist. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, or using tobacco. Remove and It is a violation of federal law to use this product in a manner inconsistent wash contaminated clothing before reuse. with its labeling. Personal Protective Equipment (PPE): • For sale to, use and storage only by individuals/firms licensed or registered All pesticide handlers (mixers, loaders, and applicators) must wear long-sleeved by the state to apply termiticide and/or general pest control products. shirt and long pants, socks, shoes, and chemical-resistant gloves. All pesticide • DO NOT use this product for termite or other pest control indoors, except for handlers must wear a dust/mist filtering respirator (MSHA/NIOSH approval number label-specified applications for termite control and foam applications to wall prefix TC-21C), or a NIOSH approved respirator with any N, R, P or HE filter, when voids for control of other listed pests. working in a non-ventilated space, including but not limited to crawl-spaces and • DO NOT use on golf course turf.
    [Show full text]
  • The Impact of the Nation's Most Widely Used Insecticides on Birds
    The Impact of the Nation’s Most Widely Used Insecticides on Birds Neonicotinoid Insecticides and Birds The Impact of the Nation’s Most Widely Used Insecticides on Birds American Bird Conservancy, March 2013 Grasshopper Sparrow by Luke Seitz Cover photos: Horned Lark and chicks by Middleton Evans; Corn field, stock.xchng, sxc.hu; Calico Pennant dragonfly by David Cappaert, Michigan State University, Bugwood.org 1 Neonicotinoid Insecticides and Birds American Bird Conservancy would like to thank the Turner Foundation, Wallace Genetic Foundation, Jeff and Connie Woodman, Cornell Douglas Foundation and A.W. Berry Foundation for their ongoing support for American Bird Conservancy’s Pesticides Program. Written by Dr. Pierre Mineau and Cynthia Palmer Designed by Stephanie von Blackwood About the Authors Dr. Pierre Mineau began his long and distinguished scientific career studying the effects of persistent organochlorine compounds, like DDT and PCBs, on fish-eating birds. He then became responsible for the Canadian assessment of new and existing pesticides to determine their adverse impacts on wildlife. In 1994 he transitioned from regulatory reviews to full-time research on the environmental impacts of pesticides, achieving the rank of Senior Research Scientist at Environment Canada. Working with international collaborators and graduate students, he works on assessing globally the environmental footprint of pesticides. He also studies how birds are exposed to pesticides and how bird populations respond to pesticide use and agricultural practices. His work includes defining the ecological values of birds in cropland as well as estimating the incidental take of birds from various other human activities. He has written more than 100 peer-reviewed publications and has authored some 200 presentations.
    [Show full text]
  • Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects
    EN58CH06-Casida ARI 5 December 2012 8:11 Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects John E. Casida1,∗ and Kathleen A. Durkin2 1Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, 2Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, California 94720; email: [email protected], [email protected] Annu. Rev. Entomol. 2013. 58:99–117 Keywords The Annual Review of Entomology is online at acetylcholinesterase, calcium channels, GABAA receptor, nicotinic ento.annualreviews.org receptor, secondary targets, sodium channel This article’s doi: 10.1146/annurev-ento-120811-153645 Abstract Copyright c 2013 by Annual Reviews. Neuroactive insecticides are the principal means of protecting crops, people, All rights reserved livestock, and pets from pest insect attack and disease transmission. Cur- ∗ Corresponding author rently, the four major nerve targets are acetylcholinesterase for organophos- phates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for by Public Health Information Access Project on 04/29/14. For personal use only. Annu. Rev. Entomol. 2013.58:99-117. Downloaded from www.annualreviews.org polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibi- tion include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system.
    [Show full text]
  • Historical Use of Lead Arsenate and Survey of Soil Residues in Former Apple Orchards in Virginia
    HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA by Therese Nowak Schooley Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN LIFE SCIENCES in Entomology Michael J. Weaver, Chair Donald E. Mullins, Co-Chair Matthew J. Eick May 4, 2006 Blacksburg, Virginia Keywords: arsenic, lead, lead arsenate, orchards, soil residues, historical pesticides HISTORICAL USE OF LEAD ARSENATE AND SURVEY OF SOIL RESIDUES IN FORMER APPLE ORCHARDS IN VIRGINIA Therese Nowak Schooley Abstract Inorganic pesticides including natural chemicals such as arsenic, copper, lead, and sulfur have been used extensively to control pests in agriculture. Lead arsenate (PbHAsO4) was first used in apple orchards in the late 1890’s to combat the codling moth, Cydia pomonella (Linnaeus). The affordable and persistent pesticide was applied in ever increasing amounts for the next half century. The persistence in the environment in addition to the heavy applications during the early 1900’s may have led to many of the current and former orchards in this country being contaminated. In this study, soil samples were taken from several apple orchards across the state, ranging from Southwest to Northern Virginia and were analyzed for arsenic and lead. Based on naturally occurring background levels and standards set by other states, two orchards sampled in this study were found to have very high levels of arsenic and lead in the soil, Snead Farm and Mint Spring Recreational Park. Average arsenic levels at Mint Spring Recreational Park and Snead Farm were found to be 65.2 ppm and 107.6 ppm, respectively.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Safe Pest Control
    SAFE PEST CONTROL U.S. Department of Housing and Urban Development • Office of Healthy Homes and Lead Hazard Control “For years, cockroaches have defeated our best efforts to get rid of them. We sprayed and sprayed, but they always came back. Now we under- stand there are better methods and products that really work” Environmental Health Watch Did you know...? ■ Many pesticides for home use are toxic? ■ There are alternative pest management methods that limit the use of toxic substances? ■ Mice, cockroaches, and cockroach "dust” can trigger asthma attack? What is it? Integrated pest management (IPM) is a way to remove pests, like cock- roaches, mice, and rats from a home. IPM is a common sense approach that: ■ Denies pests food, water, shelter and a way to enter the home. ■ Uses baits and powders, such as gel baits, traps and borate powder. Why use IPM? ■ IPM is safer. IPM does not use as many harmful pesticides as traditional pest control. - Avoiding pesticides is especially important in homes. Pesticides can contain long lasting, toxic chemicals or lung irritants that cause asthma attacks. Children are among those most vulnerable to exposure. IPM strategies apply pesticides only as needed and use the least hazardous pesticides to control pests. continued on back www.hud.gov/offices/lead U.S. Department of Housing and Urban Development SAFE PEST CONTROL Office of Healthy Homes and Lead Hazard Control Non-toxic traps can be part of an IPM strategy. If needed, call a pest control professional who uses IPM practices. If you have taken all the steps described above and still have a pest problem, you may need a professional to help.
    [Show full text]
  • Who Needs Chlorpyrifos and Why (By Crop)?
    1 WHO NEEDS CHLORPYRIFOS AND WHY (BY CROP)? EXCERPTS OF COMMENTS SUBMITTED TO EPA AT EPA-HQ-OPP-2015-0653 GENERAL “Consumers I have visited with that do not have any ag background are easily swayed into the belief that farmers are polluting the environment and recklessly applying chemicals. Truth is our farmers are professionals and with today’s pricing cannot afford to be over- or misapplying inputs that affect their bottom lines…. I strongly suggest that you…allow producers of the world’s food source to continue using the product chlorpyrifos.” – North Dakota farmer. “Many food crop industries in the Pacific Northwest are concerned about the impacts to pest management based on EPA’s proposed tolerance revocation of chlorpyrifos, including several minor crop groups with limited pesticide options. These industries include processed vegetables, strawberry, grass seed, mint, and cranberry. For many of these industries, chlorpyrifos has unique properties that make it an essential part of their Integrated Pest Management program. It is also an important tool for resistance management. Several of these industries have conducted research to identify effective alternatives to chlorpyrifos, but currently there aren’t viable alternatives that match the efficacy and low risk of this product for managing a number of critical pests…. A revocation of all chlorpyrifos tolerances would eliminate a number of low-risk, critical uses in cases where few alternatives exist at present, and in many cases those alternatives (neonicotinoids, pyrethroids) would be less efficacious, more expensive and have greater impacts on nontarget species including pollinators and beneficial insects. Further, the economic impacts based on resulting crop damage would be substantial.” – Oregon State University Agronomist.
    [Show full text]
  • Chlorpyrifos, Part 1: Toxicology
    JOURNAL OF PESTICIDE REFORM/ WINTER 1994 • VOL.14, NO. 4 ■ INSECTICIDE FACTSHEET CHLORPYRIFOS, PART 1: TOXICOLOGY The broad spectrum organophosphate insecticide chlorpyrifos is the most widely used insecticide in the U.S. Total use is estimated at almost 30 million pounds per year. Like all organophosphate insecticides, chlorpyrifos affects the nervous system by inhibiting an enzyme that is important in the transmission of nerve impulses. Symptoms of acute poisoning include headache, nausea, muscle twitching, and convulsions. Chlorpyrifos poisonings are reported to state and federal agencies more often than poisonings of almost every other insecticide. In both laboratory animals and humans, chlorpyrifos can also cause delayed effects on the nervous system. Some effects have been measured years after exposure. Human birth defects have been associated with exposure to chlorpyrifos products. In pregnant laboratory animals, chlorpyrifos exposure caused fetal death. Pups that did survive were smaller pups and did not survive as well as pups from unexposed mothers. Chlorpyrifos also affects the male reproductive system; exposure to a chlorpyrifos product has caused death of cells in male rat testes and a decrease in sperm production in cattle. Chlorpyrifos has caused genetic damage in human blood and lymph cells, mice spleen cells, and hamster bone marrow cells. Immune system abnormalities have been reported from patients exposed to chlorpyrifos. Many individuals report developing sensitivities to a broad array of substances following chlorpyrifos exposure. The second part of this factsheet will discuss human exposure to chlorpyrifos and the ecological effects of chlorpyrifos. BY CAROLINE COX mary agricultural uses are for oranges, al- plications are made annually.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,900,554 B2 Tamarkin Et Al
    US0089.00554B2 (12) United States Patent (10) Patent No.: US 8,900,554 B2 Tamarkin et al. (45) Date of Patent: *Dec. 2, 2014 (54) FOAMABLE COMPOSITION AND USES 3,062,715. A 1 1/1962 Reese et al. THEREOF 3,067,784 A 12/1962 Gorman 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn (75) Inventors: Dov Tamarkin, Maccbim (IL); Doron 3,141,821 A 7, 1964 Compeau Friedman, Karmei Yosef (IL); Meir 3,142,420 A 7/1964 Gawthrop Eini, Ness Ziona (IL) 3: A S3; sistenbackaa. (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot 3:33 A 1943: Sir (IL) 3.236,457 A 2/1966 Kennedy et al. 3,244,589 A 4, 1966 Sunnen (*) Notice: Subject to any disclaimer, the term of this 3,252,859 A 5, 1966 Silver patent is extended or adjusted under 35 3.333 A 3. Siskiewicz U.S.C. 154(b) by 0 days. 3,263,8694- W - A 8, 1966 Corsetteea spent is Subject to a terminal disis- 3,301,4443,298.919 A 1/19671, 1967 WittkeBishop et al. 3,303,970 A 2f1967 Breslau et al. 3,330,730 A 7, 1967 Hernandez (21) Appl. No.: 13/400,330 3,333,333 A 8, 1967 Noack 3,334,147 A 8, 1967 Brunelle et al. (22) Filed: Feb. 20, 2012 3,346,451 A 10, 1967 Collins et al. (Continued) (65) Prior Publication Data US 2012/0148503 A1 Jun. 14, 2012 FOREIGN PATENT DOCUMENTS AU 19878O257 9, 1986 AU 7825.15 12/2005 Related U.S.
    [Show full text]
  • Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis Mellifera L.) Workers Under Laboratory Conditions
    Open Access Austin Environmental Sciences Special Article - Pesticides Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis mellifera L.) Workers Under Laboratory Conditions Abbassy MA1*, Nasr HM1, Abo-yousef HM2 and Dawood RR1 Abstract 1 Department of Plant Protection, Damanhur University, Objectives: The honey bee, Apis mellifera L., is widely used for the Egypt production of honey, wax, pollen, propolis, royal jelly and venom and crop 2Central Laboratory of Pesticides, Ministry of Agriculture pollination. Since honey bees can be exposed to insecticides in sprayed flowering and Land Reclamation, Egypt crops, therefore, this study aimed to assess the acute toxicity and safety index *Corresponding author: Moustafa A Abbassy, of five commonly used insecticides to honey bee workers in laboratory. Department of Plant Protection, Damanhur University, Methods: Bees were exposed to the insecticides: Imidacloprid, Pesticide Chemistry and Toxicology, Egypt Thiamethoxam, Esfenvalerate, Indoxacarb and Chlorantraniliprole by two Received: May 03, 2020; Accepted: May 25, 2020; methods of exposure: topical application and feeding techniques. LD50 and LC50 Published: June 01, 2020 values for each insecticide to honey bees were determined after 24 and 48 h from treatment. Results: The LD50 values in µg per bee were 0.0018 (indoxacarb), 0.019 (esfenvalerate), 0.024 (thiamethoxam), 0.029 (imidacloprid) and 107.12 -1 (chlorantraniliprole). The LC50 values (mg L ), for each insecticide, were as follows: indoxacarb, 0.091; esfenvalerate, 0.014; thiamethoxam, 0.009; imidacloprid, 0.003 and chlorantraniliprole, 0.026, after 24 h from exposure. In general, the neonicotinoid insecticides were the most toxic to bees by feeding technique, and indoxacarb, esfenvalerate were the most toxic by contact method while chlorantraniliprole had slightly or non- toxic effect by the two methods.
    [Show full text]