Genómica De La Adaptación En Artrópodos: Estudio Del Sistema Quimiosensorial Y De La Radiación Del Género Dysdera (Araneae) En Canarias

Total Page:16

File Type:pdf, Size:1020Kb

Genómica De La Adaptación En Artrópodos: Estudio Del Sistema Quimiosensorial Y De La Radiación Del Género Dysdera (Araneae) En Canarias Genómica de la adaptación en artrópodos: estudio del sistema quimiosensorial y de la radiación del género Dysdera (Araneae) en Canarias Joel Vizueta Moraga Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – CompartirIgual 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 4.0. Spain License. Genómica de la adaptación en artrópodos: estudio del sistema quimiosensorial y de la radiación del género Dysdera (Araneae) en Canarias Joel Vizueta Moraga Tesis doctoral 2019 Genómica de la adaptación en artrópodos: estudio del sistema quimiosensorial y de la radiación del género Dysdera (Araneae) en Canarias Memoria presentada por Joel Vizueta Moraga para optar al Grado de Doctor por la Universidad de Barcelona. Departamento de Genética, Microbiología y Estadística El autor de la tesis Joel Vizueta Moraga El tutor y codirector de la tesis El codirector de la tesis Dr. Julio Rozas Liras Dr. Alejandro Sánchez Gracia Catedrático de Genética Profesor asociado de Genética Departamento de Genética, Departamento de Genética, Microbiología y Estadística Microbiología y Estadística Facultad de Biología Facultad de Biología Universidad de Barcelona Universidad de Barcelona Barcelona, Septiembre de 2019 “Tener una idea es lo más fácil del mundo. Todo el mundo tiene ideas. Pero tienes que tomar esa idea y convertirla en algo a lo que la gente responderá, eso es difícil” Stanley Martin Lieber Gracias a todos los que habéis hecho posible esta tesis, compañeros, amigos, familia... Y en especial a Paula, Skye, a mis padres y mi hermano Álvaro Abstract During their evolutionary history, arthropods have diversified adapting to different habitats, including several independent colonizations of land, and sometimes implicating rapid radiations coupled with dietary specializations. Although the chemosensory system likely played a critical role in many of these adaptations, the origin and evolution of the gene families that mediate chemoperception in arthropods is still discussed in some important aspects. The main objective of this thesis is to gain insights into the molecular evolution of chelicerate diversification and, specifically, to determine the role of natural selection in this process. On one hand, we studied the evolution of the chemosensory gene families in chelicerates using comparative transcriptome and genome analyses. We first developed a bioinformatic pipeline (BITACORA) for the identification and annotation of gene families in genome assemblies. Using this tool, we identified members of two of the major arthropod chemoreceptor gene families (GRs and IRs) in chelicerates, being some of them expressed in the chemosensory appendages of the spider Dysdera silvatica, which supports its role in chemoperception. These families evolved under a dynamic gene birth and death model influenced by episodic bursts of gene duplication yielding lineage-specific expansions. Noticeably, we characterized in chelicerates a gene family distantly related to insect OBPs, suggesting a more ancient origin of these soluble carriers than previously thought, and a new gene family encoding small globular secreted proteins, which is a good chemosensory gene family candidate. In addition, we discuss the absence of the CSP family in chelicerates, and the putative role of NPC2 members in chemoperception. On the other hand, we studied the radiation of the spider genus Dysdera in the Canary Islands, where species diversification occurs concomitant with repeated events of trophic specialization. We identified a number of genetic changes likely associated with this convergent adaptation, including some related to heavy metal detoxification and homeostasis, metabolism of important nutrients and venom toxins. We uncovered the specific molecular substrates of these changes at different hierarchical levels, including same genes, gene functions or amino acid positions, some of them promoted by positive selection. Globally, our results increase the knowledge about the molecular basis of adaptation and provide new insights into the predictability of evolution. Índice Introducción 1 1 Genómica evolutiva 3 1.1 Evolución molecular 3 1.2 Selección natural a nivel molecular 4 1.3 Radiaciones adaptativas 6 1.4 Convergencia y predictibilidad en la evolución 7 2 El sistema quimiosensorial 9 2.1 El sistema quimiosensorial y su papel en la adaptación 9 2.2 El sistema quimiosensorial periférico en artrópodos 11 2.3 El sistema quimiosensorial en artrópodos: familias multigénicas 13 2.3.1 Quimiorreceptores 13 2.3.2 Proteínas de unión a ligando 17 2.4 Origen y evolución de las familias multigénicas 19 3 Organismos de estudio: Quelicerados 21 3.1 El género Dysdera 22 Objetivos 27 Informe de los directores 31 Capítulos 35 1 BITACORA: A comprehensive tool for the identification and annotation of gene 37 families in genome assemblies 2 Evolution of chemosensory gene families in arthropods: Insight from the first 73 inclusive comparative transcriptome analysis across spider appendages 3 Comparative genomics reveals thousands of novel chemosensory genes and 111 massive changes in chemoreceptor repertories across chelicerates 4 Chance and predictability in evolution: the genomic basis of convergent dietary 143 specializations in an adaptive radiation Discusión 185 1 Desarrollo e implementación de nuevos métodos para el estudio de familias 188 multigénicas en ensamblajes genómicos 2 Origen y evolución de las familias multigénicas del sistema quimiosensorial en 190 artrópodos 2.1 Quimiorreceptores en artrópodos 190 2.2 Proteínas solubles secretadas 194 3 Determinantes genómicos de la especialización trófica convergente en Dysdera 196 Conclusiones 201 Bibliografía 209 Anexo 223 A Comparative analysis of tissue-specific transcriptomes in the funnel-web spider 225 Macrothele calpeiana (Araneae, Hexathelidae) B Financiación 251 Introducción Introducción 1 Genómica evolutiva 1.1 Evolución molecular El concepto actual de evolución biológica establece que todas las especies existentes han derivado a partir de un ancestro común por la acumulación de cambios graduales de forma independiente en los distintos linajes ocasionando su diferenciación. En “El origen de las especies”, Charles Darwin1 introdujo el concepto de evolución por selección natural donde formula que la evolución se produce por la aparición al azar de variantes que pueden conferir ventajas adaptativas a los individuos de la población, incrementando su probabilidad de supervivencia y reproducción, en respuesta a circunstancias ambientales cambiantes. Actualmente, la base de la genética evolutiva postula que los principales mecanismos que explican los patrones de variación genética entre poblaciones y especies son: la mutación, la deriva genética, la migración, la recombinación y la selección natural. Estas fuerzas pueden actuar de forma paralela, viéndose influenciadas por factores demográficos, y son las que explican los patrones evolutivos observados en las poblaciones y especies2. El modelo más aceptado actualmente que explica de forma global los patrones de variación molecular, y único en alcanzar el nivel de teoría, es la teoría neutralista de evolución molecular. Esta teoría fue propuesta independientemente por Motoo Kimura3 y Jack King y Thomas Jukes4, y sostiene que, a nivel molecular, la gran mayoría de la variación genética no está moldeada por la selección natural positiva (o selección darwiniana), sino por la segregación y/o fijación al azar de sustituciones neutras o casi-neutras (Figura 1)5,6. No obstante, habrá una pequeña fracción de las variantes que estarán afectadas por la selección natural debido a su impacto en la eficacia biológica o aptitud de los organismos (conocido como fitness). Las mutaciones deletéreas, es decir, aquellas que afecten negativamente a la eficacia biológica de un organismo, estarán influenciadas por la selección negativa o purificadora, provocando que los individuos portadores tengan una menor probabilidad de reproducirse y, por tanto, de pasar dicha variante a su descendencia, reduciendo así la frecuencia de estas mutaciones en la población pudiendo llegar a 3 Genómica evolutiva 1.0 0.5 Frecuencia de la nueva mutación Frecuencia de la 0.0 Número de generaciones Figura 1. Aparición, pérdida y eventual fijación de nuevas mutaciones en una población de pequeño tamaño poblacional. La teoría neutralista establece que la mayoría de mutaciones son neutras y evolucionan por deriva genética y, por tanto, su destino depende del azar. La figura muestra el origen de 10 mutaciones, 9 de las cuales se perdieron tras aumentar ligeramente de frecuencia (en color rojo), y una llegó a fijarse en la población (de color marrón). Adaptado de Crow y Kimura7. ser eliminadas. Sin embargo, las mutaciones beneficiosas, las cuales incrementan la eficacia biológica del individuo, evolucionarán por selección positiva darwiniana, resultando en una mayor probabilidad de supervivencia y reproducción del organismo, y el consecuente aumento de su frecuencia en la población, pudiendo llegar a fijarse8. En consecuencia, esta pequeña fracción de variantes que estarán afectadas por la selección natural tendrá una alta probabilidad de perderse o fijarse y, por tanto, tendríamos poca probabilidad de verlas segregando en las poblaciones. De esta forma, la selección natural es la fuerza predominante que explica
Recommended publications
  • Visual Perception in Jumping Spiders (Araneae,Salticidae)
    Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods .....................................................................................................................................................................
    [Show full text]
  • Breda Tristis Septiembre 2020 Mello-Leitão, 1944
    NOTICIAS de la Sociedad Zoológica del Uruguay Damián Hagopián Año 13 - Nr. 49 Breda tristis Septiembre 2020 Mello-Leitão, 1944 https://www.szu.org.uy/ N O T I C I A S I A T I C N O noticias.html Araneae, Salticidae ISSN: 1688-4922 NOTICIAS SZU N O T I C S C I A T I O N EN ESTE NÚMERO EDITORIAL BOLETÍN DE LA SOCIEDAD ZOOLÓGICA DEL URUGUAY -Guía para los autores -Contenido del Volumen 28 (2) Año 2019 NOVEDADES -Conversando de Nuestra Fauna - Ciclo de charlas Museo “Dr. Carlos Torres De la Llosa”. -La Sociedad Zoológica del Uruguay se actualiza: ¡ahora contamos con Instagram y Twitter! -Congresos y Eventos científicos 2020-2021: ¡VI Congreso Uruguayo de Zoología! III Congreso Iberoamericano de Limnología II African Bioacoustics Community Conference II Congreso Nacional y I Congreso Internacional en Ciencias Ambientales VI Congreso Latinoamericano de Aracnología XXVI International Congress of Entomology XXVIII Congreso Brasilero de Entomología V Congreso Latinoamericano de Macroinvertebrados Acuáticos III Congreso Latinoamericano y del Caribe de Murciélagos XII Congreso Latinoamericano de Herpetología RESÚMENES -Artículos científicos: M. Soto, P. Toriño & D. Perea. 2020. A large sized Megalosaurid (Theropoda, Tetanurae) from the late Jurassic of Uruguay and Tanzania. Journal of South American Earth Sciences, 98:102458. L. F. García, E. Núñez, M. Lacava, H. Silva, S. Martínez & J. Pétillon. 2 2020. Experimental assessment of trophic ecology in a generalist spider predator: Implications for biocontrol in Uruguayan crops. Journal of Applied Entomology, doi.org/10.1111jen.12811. R. Vögler, C. González & A. Segura. 2020. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected área of the Southwest Atlantic (Uruguay).
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • A LIST of the JUMPING SPIDERS of MEXICO. David B. Richman and Bruce Cutler
    PECKHAMIA 62.1, 11 October 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(5): 63-88, December 1988. Pagination of the original document has been retained. 63 A LIST OF THE JUMPING SPIDERS OF MEXICO. David B. Richman and Bruce Cutler The salticids of Mexico are poorly known. Only a few works, such as F. O. Pickard-Cambridge (1901), have dealt with the fauna in any depth and these are considerably out of date. Hoffman (1976) included jumping spiders in her list of the spiders of Mexico, but the list does not contain many species known to occur in Mexico and has some synonyms listed. It is our hope to present a more complete list of Mexican salticids. Without a doubt such a work is preliminary and as more species are examined using modern methods a more complete picture of this varied fauna will emerge. The total of 200 species indicates more a lack of study than a sparse fauna. We would be surprised if the salticid fauna of Chiapas, for example, was not larger than for all of the United States. Unfortunately, much of the tropical forest may disappear before this fauna is fully known. The following list follows the general format of our earlier (1978) work on the salticid fauna of the United States and Canada. We have not prepared a key to genera, at least in part because of the obvious incompleteness of the list. We hope, however, that this list will stimulate further work on the Mexican salticid fauna. Acragas Simon 1900: 37.
    [Show full text]
  • Catalogue of the Jumping Spiders of Northern Asia (Arachnida, Araneae, Salticidae)
    INSTITUTE FOR SYSTEMATICS AND ECOLOGY OF ANIMALS, SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES Catalogue of the jumping spiders of northern Asia (Arachnida, Araneae, Salticidae) by D.V. Logunov & Yu.M. Marusik KMK Scientific Press Ltd. 2000 D. V. Logunov & Y. M. Marusik. Catalogue of the jumping spiders of northern Asia (Arachnida, Araneae, Salticidae). Moscow: KMK Scientific Press Ltd. 2000. 299 pp. In English. Ä. Â. Ëîãóíîâ & Þ. Ì. Ìàðóñèê. Êàòàëîã ïàóêîâ-ñêàêóí÷èêîâ Ñåâåðíîé Àçèè (Arachnida, Araneae, Salticidae). Ìîñêâà: èçäàòåëüñòâî ÊÌÊ. 2000. 299 ñòð. Íà àíãëèéñêîì ÿçûêå. This is the first complete catalogue of the jumping spiders of northern Asia. It is based on both original data and published data dating from 1861 to October 2000. Northern Asia is defined as the territories of Siberia, the Russian Far East, Mongolia, northern provinces of China, and both Korea and Japan (Hokkaido only). The catalogue lists 216 valid species belonging to 41 genera. The following data are supplied for each species: a range character- istic, all available records from northern Asia with approximate coordinates (mapped), all misidentifications and doubtful records (not mapped), habitat preferences, references to available biological data, taxonomic notes on species where necessary, references to lists of regional fauna and to catalogues of general importance. 24 species are excluded from the list of the Northern Asian salticids. 5 species names are newly synonymized: Evarcha pseudolaetabunda Peng & Xie, 1994 with E. mongolica Danilov & Logunov, 1994; He- liophanus mongolicus Schenkel, 1953 with H. baicalensis Kulczyñski, 1895; Neon rostra- tus Seo, 1995 with N. minutus ¯abka, 1985; Salticus potanini Schenkel, 1963 with S.
    [Show full text]
  • Hunting Prey with Different Escape Potentials— Alternative Predatory Tactics in a Dune Dwelling Salticid
    2007 (2008). The Journal of Arachnology 35:499–508 HUNTING PREY WITH DIFFERENT ESCAPE POTENTIALS— ALTERNATIVE PREDATORY TACTICS IN A DUNE DWELLING SALTICID Maciej Bartos: University of Lodz, Department of Teacher Training and Studies of Biological Diversity, Banacha 1/3, 90-237 Lodz, Poland. E-mail: [email protected] ABSTRACT. Generalist predators hunt a wide range of prey that possess various characteristics affecting the predators’ hunting success (e.g., size, ability to detect the threat and defend against it, potential for escape). Therefore, it can be expected that the predator should flexibly react to different prey characteristics, hunting them in prey-specific ways. For a stalking predator a crucial prey feature is its ability to escape. In this study, the alternative prey-catching tactics of a dune-dwelling salticid Yllenus arenarius Menge 1868 were analyzed. Four naturally eaten prey taxa, two with a high ability to escape (Homoptera, Orthoptera) and two with a low ability to escape (Thysanoptera, larvae of Lepidoptera), were used. Numerous differences found between the tactics indicate that Y. arenarius can not only distinguish between different types of prey, but can also employ specific tactics to catch them. The tactics belong to a conditional strategy and are manifested in alternative: a) direction of approach, b) speed of approach, and c) other prey specific behaviors. Keywords: Predatory behavior, conditional strategy, spider, Araneae, Salticidae, Yllenus There are numerous examples of alternative 1992; Edwards & Jackson 1993, 1994; Bear & phenotypes expressed through animal morphol- Hasson 1997). ogy, life history, and behavior. They are most Conditional strategies are present in both commonly reported in the field of reproductive alternative mating tactics and predatory behav- biology (reviewed in Gross 1996) and studies of ior of jumping spiders (Jackson 1992; Edwards resource-based polymorphisms (reviewed in & Jackson 1993, 1994; Bear & Hasson 1997).
    [Show full text]
  • Optimal Climbing Speed Explains the Evolution of Extreme Sexual Size Dimorphism in Spiders
    doi: 10.1111/j.1420-9101.2009.01707.x Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders J. MOYA-LARAN˜ O,*D.VINKOVIC´ , C. M. ALLARDà &M.W.FOELLMER§ *Departamento de Ecologı´a Funcional y Evolutiva, Estacio´n Experimental de Zonas A´ ridas, Consejo Superior de Investigaciones Cientı´ficas, General Segura, Almerı´a, Spain Physics Department, University of Split, Split, Croatia àDepartment of Biological Sciences, Clemson University, Clemson, SC, USA §Department of Biology, Adelphi University, Garden City, NY, USA Keywords: Abstract Araneomorphae; Several hypotheses have been put forward to explain the evolution of extreme biomechanics; sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) dwarf males; explains that extreme SSD has evolved in spiders because smaller males have a gravity hypothesis; mating or survival advantage by climbing faster. However, few studies have mate search; supported this hypothesis thus far. Using a wide span of spider body sizes, we muscle physiology; show that there is an optimal body size (7.4 mm) for climbing and that scramble competition; extreme SSD evolves only in spiders that: (1) live in high-habitat patches and sexual size dimorphism; (2) in which females are larger than the optimal size. We report that the spiders; evidence for the GH across studies depends on whether the body size of stabilizing selection. individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing. range of SSD in spiders (Araneae) (Head, 1995; Vollrath, Introduction 1998; Hormiga et al., 2000; Foellmer & Moya-Laran˜ o, Understanding the evolution of different phenotypes in 2007).
    [Show full text]
  • Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
    AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7376 ISSN0811-3696 January200607 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology No. 76 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL The newsletter depends on your SOCIETY contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals and is managed Department of Terrestrial Invertebrates by our administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute [email protected] Yanco, New South Wales 2703. Australia Format: i) typed or legibly printed on A4 [email protected] paper or ii) as text or MS Word file on CD, Membership fees in Australian dollars 3½ floppy disk, or via email. (per 4 issues): LIBRARY *discount personal institutional Australia $8 $10 $12 The AAS has a large number of NZ / Asia $10 $12 $14 reference books, scientific journals and elsewhere $12 $14 $16 papers available for loan or as photocopies, for those members who do There is no agency discount. not have access to a scientific library. All postage is by airmail. Professional members are encouraged to *Discount rates apply to unemployed, pensioners and students (please provide proof of status). send in their arachnological reprints. Cheques are payable in Australian Contact our librarian: dollars to “Australasian Arachnological Society”. Any number of issues can be paid Jean-Claude Herremans PO Box 291 for in advance.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Assessing Spider Species Richness and Composition in Mediterranean Cork Oak Forests
    acta oecologica 33 (2008) 114–127 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/actoec Original article Assessing spider species richness and composition in Mediterranean cork oak forests Pedro Cardosoa,b,c,*, Clara Gasparc,d, Luis C. Pereirae, Israel Silvab, Se´rgio S. Henriquese, Ricardo R. da Silvae, Pedro Sousaf aNatural History Museum of Denmark, Zoological Museum and Centre for Macroecology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark bCentre of Environmental Biology, Faculty of Sciences, University of Lisbon, Rua Ernesto de Vasconcelos Ed. C2, Campo Grande, 1749-016 Lisboa, Portugal cAgricultural Sciences Department – CITA-A, University of Azores, Terra-Cha˜, 9701-851 Angra do Heroı´smo, Portugal dBiodiversity and Macroecology Group, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK eDepartment of Biology, University of E´vora, Nu´cleo da Mitra, 7002-554 E´vora, Portugal fCIBIO, Research Centre on Biodiversity and Genetic Resources, University of Oporto, Campus Agra´rio de Vaira˜o, 4485-661 Vaira˜o, Portugal article info abstract Article history: Semi-quantitative sampling protocols have been proposed as the most cost-effective and Received 8 January 2007 comprehensive way of sampling spiders in many regions of the world. In the present study, Accepted 3 October 2007 a balanced sampling design with the same number of samples per day, time of day, collec- Published online 19 November 2007 tor and method, was used to assess the species richness and composition of a Quercus suber woodland in Central Portugal. A total of 475 samples, each corresponding to one hour of Keywords: effective fieldwork, were taken.
    [Show full text]
  • 4.7 Christmas Island Pipistrelle
    FINAL REPORT OF THE CHRISTMAS ISLAND EXPERT WORKING GROUP TO THE MINISTER FOR ENVIRONMENT PROTECTION, HERITAGE AND THE ARTS Red crabs, Christmas Island – Photo by Max Orchard Expert Working Group members Associate Professor Bob Beeton (Chair) Dr Andrew Burbidge Professor Gordon Grigg Professor Peter Harrison Dr Ric How Dr Bill Humphreys Mr Norm McKenzie Dr John Woinarski Secretariat Ms Anne-Marie Delahunt from February 2009 to October 2009 Ms Kerry Cameron from February 2009 to June 2009 Mr Harry Abrahams from October 2009 to March 2010 Ms Meryl Triggs from February 2009 to March 2010 1 April 2010 1 TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... 6 LIST OF TABLES........................................................................................................... 7 EXECUTIVE SUMMARY ................................................................................................ 8 Recommendations...................................................................................................... 12 1.0 INTRODUCTION..................................................................................................... 18 1.1 Initial Terms of Reference of the working group ............................................... 18 1.2 Amended Membership and Amended Terms of Reference .............................. 19 2.0 APPROACH TO ADDRESSING THE TERMS OF REFERENCE.......................... 19 2.1 Phase 1 .................................................................................................................
    [Show full text]
  • A Current Research Status on the Mesothelae and Mygalomorphae (Arachnida: Araneae) in Thailand
    A Current Research Status on the Mesothelae and Mygalomorphae (Arachnida: Araneae) in Thailand NATAPOT WARRIT Department of Biology Chulalongkorn University S piders • Globally included approximately 40,000+ described species (Platnick, 2008) • Estimated number 60,000-170,000 species (Coddington and Levi, 1991) S piders Spiders are the most diverse and abundant invertebrate predators in terrestrial ecosystems (Wise, 1993) SPIDER CLASSIFICATION Mygalomorphae • Mygalomorph spiders and Tarantulas Mesothelae • 16 families • 335 genera, 2,600 species • Segmented spider 6.5% • 1 family • 8 genera, 96 species 0.3% Araneomorphae • True spider • 95 families • 37,000 species 93.2% Mesothelae Liphistiidae First appeared during 300 MYA (96 spp., 8 genera) (Carboniferous period) Selden (1996) Liphistiinae (Liphistius) Heptathelinae (Ganthela, Heptathela, Qiongthela, Ryuthela, Sinothela, Songthela, Vinathela) Xu et al. (2015) 32 species have been recorded L. bristowei species-group L. birmanicus species-group L. trang species-group L. bristowei species-group L. birmanicus species-group L. trang species-group Schwendinger (1990) 5-7 August 2015 Liphistius maewongensis species novum Sivayyapram et al., Journal of Arachnology (in press) bristowei species group L. maewongensis L. bristowei L. yamasakii L. lannaianius L. marginatus Burrow Types Simple burrow T-shape burrow Relationships between nest parameters and spider morphology Trapdoor length (BL) Total length (TL) Total length = 0.424* Burrow length + 2.794 Fisher’s Exact-test S and M L Distribution
    [Show full text]