Catalpa Bignonioides (Common Catalpa) Catalpa Bignonioides Is a Deciduous Medium Size Tree with White, Marked with Orange and Purple Flowers, in Conical Panicles

Total Page:16

File Type:pdf, Size:1020Kb

Catalpa Bignonioides (Common Catalpa) Catalpa Bignonioides Is a Deciduous Medium Size Tree with White, Marked with Orange and Purple Flowers, in Conical Panicles Catalpa bignonioides (Common Catalpa) Catalpa bignonioides is a deciduous medium size tree with white, marked with orange and purple flowers, in conical panicles. The fruit is a bean-like pod. Landscape Information Pronounciation: kuh-TAL-puh big-non-YOY- deez Plant Type: Tree Origin: Southeastern United States Heat Zones: 5, 6, 7, 8, 9 Hardiness Zones: 5, 6, 7, 8, 9 Uses: Specimen, Shade, Street Size/Shape Growth Rate: Moderate Tree Shape: oval, Spreading Canopy Symmetry: Irregular Plant Image Canopy Density: Medium Canopy Texture: Coarse Height at Maturity: 8 to 15 m Spread at Maturity: 10 to 15 meters Time to Ultimate Height: 20 to 50 Years Catalpa bignonioides (Common Catalpa) Botanical Description Foliage Leaf Arrangement: Opposite Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Simple Leaf Blade: 20 - 30 Leaf Shape: Cordate Leaf Margins: Entire Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Yellow Flower Flower Showiness: True Flower Size Range: 7 - 10 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color: White Seasons: Summer Trunk Trunk Susceptibility to Breakage: Generally resists breakage Flower Image Number of Trunks: Single Trunk Trunk Esthetic Values: Colored Fruit Fruit Type: Capsule Fruit Showiness: True Fruit Size Range: 3 - 7 Fruit Colors: Brown Seasons: Summer Catalpa bignonioides (Common Catalpa) Horticulture Management Tolerance Frost Tolerant: Yes Heat Tolerant: No Drought Tolerant: No Salt Tolerance: Poor Requirements Soil Requirements: Clay, Loam, Sand Soil Ph Requirements: Acidic, Neutral, Alkaline Water Requirements: Moderate Light Requirements: Full, Part Management Toxity: Yes Invasive Potential: No Susceptibility to Pests and Diseases: No Leaf Image Pruning Requirement: Little needed, to develop a strong structure Fruit/ Leaves/ Flowers litter: Yes Surface Rooting: No Life Span: More than 50 Edible Parts: None Pests: Caterpillars Plant Propagations: Seed, Cutting, Grafting MORE IMAGES Bark Image Fruit Image Other Image.
Recommended publications
  • Catalpa Bignonioides
    Pub. No. 15 April 2016 Southern Catalpa Catalpa bignonioides by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia The Southern catalpa (Catalpa bignonioides) tree is a common fixture along roadsides and in old landscapes. The big green leaves and distinctive long dangling fruits are noticeable from hundreds of yards away. Although used in the past for a few wood-based products and pioneer medicines, today catalpa is used for shade trees and for growing a special caterpillar. This catalpa “worm” is prized by fishing enthusiast across the South. Family Ties The catalpa tree is a member of the Catalpa or Trumpet-Creeper family (Bignoniaceae). This family contains more than 700 species scattered around the globe, primarily in tropical and sub-tropical regions. This plant family is represented by trees, shrubs and vines in North America. The trumpet creeper (Campsis radicans), cross vine (Bignonia capreolata), and two catalpa trees (Catalpa ssp.) are the most recognized natives of this family in the Southeastern United States. The exotic Asiatic Pau- lownia tree is a member of this family and has been widely planted, now reproducing on its own. The catalpa genus (Catalpa) has 12 species spread across North America, the Caribbean basin, Eastern Asia and Japan. There are two common native catalpa trees in the United States, and one exotic (Catalpa ovata - Chinese catalpa). Catalpa speciosa is the larger and more northern growing of the two native trees. Common names for this catalpa are Northern catalpa, Western catalpa, and catawba-tree. Catalpa bignonioides is the native Southern catalpa.
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • Basidiomycetes Inhabiting the Ornamental Tree Catalpa (Bignoniaceae)
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 19(2010) Basidiomycetes inhabiting the ornamental tree Catalpa (Bignoniaceae) JURAJ PACLT Nam Benku, Martina 24/4083 81107 Bratislava 1, Slovakia Accepted 11. 1.2010 Key words: Basidiomycetes. - Fungus-host associations, Catalpa. Abstract: Attention is paid to all basidiomycetous species hitherto known to occur on Catalpa as host plant. During 1955-1997 more than 20 new fungus-host associations from diverse species of Catalpa grown in Europe could be found by the author. Zusammenfassung: Basidiomyzeten, die bisher von Catalpa als Wirtspflanze bekannt sind, werden aufgeführt. Dem Autor gelang es, 1955-1997 mehr als zwanzig neue Pilz-Wirt-Assoziationen von ver- schiedenen in Europa angepflanzten Catalpa-Artcn zu finden. Catalpa SCOP. (Bignoniaceae), called cigar-tree in the USA, a genus native to the United States of America [Southern Catalpa = C. hignonioides WALTER, Hardy Ca- talpa = C. speciosa (WARDER ex BARNEY) ENGELM.], West Indies and/or China. Common species of the genus are favoured as ornamental trees due to their showy panicles of flowers and long cigar-like pendent capsular fruits as well. In Europe, spe- cies of Catalpa are often cultivated as park- and street-trees. OUDEMANS (1923) mentioned only four species of Basidiomycetes for Catalpa, i.e., Polyponts distortus (= Abortipoms biennis). Pistil/aha mucedina. Pistil/aria mucoroides, and Polyponis distinctus (nomen dubium). Six further basidiomycetous species collected on Catalpa were listed in the next host index by SEYMOUR (1929): Exidia saccharina, Polyponis adustus (= Bjerkandera adusta), Schizophyllum commune, Stereum albobadium (= Dendrophora alhobadia), Stereum versicolor, and Trametes sepium (= Antrodia al- bida).
    [Show full text]
  • Oct16 Trees to Pollard October 2016 the Garden
    Pollarding trees Catalpa bignonioides ‘Aurea’ showing fresh growth in May after pollarding in STUMPS TO early spring. Cutting o the main stem SANDALL TIM / RHS of a tree may seem like horticultural vandalism, but pollarding the right plant produces dramatic e ects stars Catalpa Author: Ian Tocher, RHS Trials Indian bean trees become more shrubby when Team Horticulturist Sambucus pollarded, with large, strongly coloured foliage. Elders respond well to pollarding, becoming smaller, ✤ Selections to choose: catalpas are trees, ollarding is an ancient pruning technique, more-upright plants, with larger, lush, better-coloured lowering in late summer, with long, decorative used from prehistoric times to produce wood foliage, often elegantly dissected, depending on cultivar. bean-like pods. When pollarded, these features and fodder. Certain trees, such as willow and ✤ Selections to choose: although often regarded as are lost, but the larger leaves gained thereby are impressive. Golden Catalpa bignonioides ‘Aurea’ ash, were decapitated at about 2m (6½ft) tall; shrubby weeds, there are some highly ornamental will provide strong contrast with surrounding the new shoots that sprouted, above the reach Sambucus (elder) with purple or gold foliage. One good example is Sambucus nigra f. porphyrophylla ‘Eva’, herbaceous plants. Its foliage is e ective with Pof browsing animals, were harvested every few years. Echinops bannaticus ‘Taplow Blue’, iery red with its dark, lacily dissected foliage. Elegant ‘Guincho Pollarding is diff erent from coppicing, which requires Purple’, named after Guincho Gardens in Co. Down, crocosmia and Geranium palmatum. Purple the plants to be cut down to ground level. Nowadays Northern Ireland, has bolder, bronze-purple dissected Catalpa x erubescens ‘Purpurea’ (inset), with RHS many ornamental trees and shrubs are pollarded to / new leaves that are almost black, is foliage followed in summer by unusual tufts of bright GR AH A create spectacular decorative eff ects, including larger M dramatic alongside iery-lowered green leaves.
    [Show full text]
  • Susceptibility of Catalpa, Chilopsis, and Hybrids to Powdery Mildew
    JOBNAME: horts 41#7 2006 PAGE: 1 OUTPUT: October 25 00:32:17 2006 tsp/horts/127877/01585 PLANT PATHOLOGY HORTSCIENCE 41(7):1629–1634. 2006. Desertwillow or desertcatalpa, Chilopsis D. Don., is a monotypic genus related to Catalpa Chilopsis Catalpa. Chilopsis linearis (Cav.) Sweet is a Susceptibility of , , and small to medium-sized tree with willow-like leaves and attractive flowers in summer found Hybrids to Powdery Mildew and in washes and arroyos in desert regions of the southwestern United States, from southern Catalpa Sphinx Larvae California to Texas, and south-central Mexico (Henrickson, 1985). The species and its culti- Richard T. Olsen1,4 and Thomas G. Ranney2 vars are grown throughout its native range and Department of Horticultural Science, Mountain Horticultural Crops adjacent regions and are valued for drought Research and Extension Center, North Carolina State University, Fletcher, tolerance and attractive flowers (Dirr, 1998; Henrickson, 1985; Tipton, 1987). NC 28732-9244 Catalpa and Chilopsis are very similar but Charles S. Hodges3 are differentiated by number of stamens, two in Catalpa vs. four in Chilopsis, and leaf Department of Plant Pathology, North Carolina State University, Raleigh, morphology, large ovate to cordate leaves in NC 27695-7616 Catalpa vs. linear to lanceolate leaves in Additional index words. ·Chitalpa tashkentensis, Macrocatalpa, Tecomeae, Bignoniaceae, Chilopsis. Traditional classifications have placed them in the large, pan-tropical tribe Erysiphe elevata, Ceratomia catalpae, disease resistance Tecomeae Endl. (Henrickson, 1985). How- Abstract. A diverse collection of germplasm representing 24 taxa from Catalpa sect. ever, this tribe was shown recently to be Catalpa Paclt and sect. Macrocatalpa Grisebach, Chilopsis D.
    [Show full text]
  • Southern Catalpa: “The Fish Bait Tree”
    Southern Catalpa: “The Fish Bait Tree” by Dr. Kim D. Coder, School of Forest Resources, University of Georgia 12/99 The Southern catalpa (Catalpa bignonioides) tree is a common fixture along roadsides and in old yards. The big green leaves and distinctive long dangling fruits are noticeable from hundreds of yards. Although used in the past for a variety of wood-based products, today catalpa is used for shade trees and for growing a special caterpillar. This catalpa “worm” is prized by fishing enthusiast across the South. Family Ties The catalpa tree is a member of the Bignonia family (Bignoniaceae). This family contains more than 700 species scattered around the globe, primarily in tropical and sub-tropical regions. The family is represented by trees, shrubs and vines in North America. The trumpet creeper (Campsis radicans), cross vine (Bignonia capreolata), and two catalpa trees (Catalpa sp.) are the most recognized natives of this family in the Southeastern United States. The exotic Asiatic Paulownia tree is a member of this family and has been widely planted, now reproducing on its own. The catalpa genus (Catalpa) has 12 species spread across North America, the Caribbean basin, Eastern Asia and Japan. There are two common native catalpa trees in the United States. Catalpa speciosa is the larger and more northern growing of the two. Common names for this catalpa are Northern catalpa, Western catalpa, and catawba-tree. Catalpa bignonioides is the Southern catalpa. Other common names for this species is common catalpa, Eastern catalpa, Indian cigar, Indian bean, catawba, smoking bean, caterpil- lar tree, cigar tree, and fish bait tree.
    [Show full text]
  • ABSTRACT OLSEN, RICHARD THOMAS. Utilizing Polyploidy For
    ABSTRACT OLSEN, RICHARD THOMAS. Utilizing Polyploidy for Developing Improved Nursery Crops: Restoring Fertility in Wide Hybrids, Limiting Fertility of Invasive Species, Embryo Culture of Triploids, Pest Resistance, and Inheritance of Ornamental Traits. (Under the direction of Thomas G. Ranney.) Multiple projects were conducted to investigate the potential for developing a breeding program utilizing species of Catalpa Scop. and Chilopsis D. Don. The efficacy of oryzalin was evaluated for inducing polyploidy and restoring fertility in the sterile, intergeneric hybrid ×Chitalpa tashkentensis Elias & Wisura [Catalpa bignonioides Walt. x Chilopsis linearis (Cav.) Sweet] ‘Pink Dawn’. Submerging meristems in 150 µM oryzalin for up to 24 hours was effective at inducing tetraploids and cytochimeras. Pollen from the diploid cultivar was non-viable, but pollen from the polyploid stained and germinated as well as pollen from progenitor taxa. Polyploid ×Chitalpa were self- compatible yielding tetraploids when self pollinated and triploids when crossed with C. bignonioides, but reciprocal crosses with Chilopsis taxa failed. To increase recovery of triploids, we investigated germination of ovules and embryos at various harvest dates on Schenk and Hildebrandt (SH) basal salts supplemented with various medium components. Germination of triploid [(polyploid ×Chitalpa) x C. bignonioides] and tetraploid (selfed polyploid ×Chitalpa) embryos was greatest at 7 weeks after pollination -1 on SH with 20 g⋅L sucrose and ≥ 1 µM gibberellic acid (GA3). Triploids [Chilopsis linearis x (polyploid ×Chitalpa)] germinated < 5%. Additional studies were conducted to screen diverse taxa for resistance to powdery mildew (PM), Erysiphe elevata (Burr.) U. Braun & S. Takam, and catalpa sphinx larvae (CSL), Ceratomia catalpae (Boisduval). Twenty-four taxa from Catalpa (section Catalpa Paclt and Macrocatalpa Grisebach), Chilopsis, and ×Chitalpa were screened in 2004-05 for susceptibility to PM.
    [Show full text]
  • Vegetation Community Monitoring at Ocmulgee National Monument, 2011
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Community Monitoring at Ocmulgee National Monument, 2011 Natural Resource Data Series NPS/SECN/NRDS—2014/702 ON THE COVER Duck potato (Sagittaria latifolia) at Ocmulgee National Monument. Photograph by: Sarah C. Heath, SECN Botanist. Vegetation Community Monitoring at Ocmulgee National Monument, 2011 Natural Resource Data Series NPS/SECN/NRDS—2014/702 Sarah Corbett Heath1 Michael W. Byrne2 1USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia 31558 2USDI National Park Service Southeast Coast Inventory and Monitoring Network 135 Phoenix Road Athens, Georgia 30605 September 2014 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Morphological Phylogenetics of Bignoniaceae Juss
    beni-suef university journal of basic and applied sciences 3 (2014) 172e177 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/bjbas Full Length Article Morphological phylogenetics of Bignoniaceae Juss. * Usama K. Abdel-Hameed Ain Shams University, Faculty of Science, Botany Department, Abassia, Cairo, Egypt article info abstract Article history: The most recent classification of Bignoniaceae recognized seven tribes, Phylogenetic and Received 7 April 2014 monographic studies focusing on clades within Bignoniaceae had revised tribal and generic Received in revised form boundaries and species numbers for several groups, the portions of the family that remain 22 September 2014 most poorly known are the African and Asian groups. The goal of the present study is to Accepted 23 September 2014 identify the primary lineages of Bignoniaceae in Egypt based on macromorphological traits. Available online 4 November 2014 A total of 25 species of Bignoniaceae in Egypt was included in this study (Table 1), along with Barleria cristata as outgroup. Parsimony analyses were conducted using the program Keywords: NONA 1.6, preparation of data set matrices and phylogenetic tree editing were achieved in Cladistics WinClada Software. The obtained cladogram showed that within the studied taxa of Phylogeny Bignoniaceae there was support for eight lineages. The present study revealed that the two Morphology studied species of Tabebuia showed a strong support for monophyly as well as Tecoma and Monophyletic genera Kigelia. It was revealed that Bignonia, Markhamia and Parmentiera are not monophyletic Bignoniaceae genera. Copyright 2014, Beni-Suef University. Production and hosting by Elsevier B.V. All rights reserved.
    [Show full text]
  • Comparative Study on the Growth and Development of Annual and Biannual Plants of Species from Genus Catalpa at the Conditions of Sofia Field
    Растениевъдни науки, 2019, 56(6) Bulgarian Journal of Crop Science, 2019, 56(6) Comparative study on the growth and development of annual and biannual plants of species from genus Catalpa at the conditions of Sofia field Rosen Sokolov Institute of Ornamental and Medicinal Plants, 1222 Negovan, Sofia, Bulgaria E-mail: [email protected] Citation Sokolov, R. (2019). Comparative study on the growth and development of annual and biannual plants of species from genus Catalpa at the conditions of Sofia field.Rastenievadni nauki, 56(6), 63-68 Abstract The possibility for propagation, ecological requirements and growth peculiarities of the species from genus Catalpa (fam. Bignoniaceae) in Bulgaria are insufficiently studied. Catalpa is a tree with attractive ornamental value, compact form and relatively fixed size. It originates from South America and China. Catalpa spp. differ significantly from each other by their requirements to environmental conditions (temperature, humidity and oth- ers), growth characteristics and susceptibility to diseases and pests. In our country catalpa species and varieties with delayed growth in the time are only few. The objective of this study was to optimize the production of propa- gating material of catalpa species and their varieties under the conditions of Sofia field. For three years (2014 to 2016), seeds were harvested from the studied species, they were sown, and the young plants were grown for at least 2 years in order to establish their growth abilities and their performance in the ecological conditions in Sofia region. The results of our study showed that direct outdoor sowing reduces the labour costs associated with the production of young plants, but at the expense of the number of plants obtained from the seeds.
    [Show full text]
  • Nueces County Plant List
    710 E. Main, Suite 1 (361) 767-5217 - Phone Robstown, TX 78380 (361) 767-5248 - Fax NUECES COUNTY LANDSCAPE PLANT LIST COMMON NAME SCIENTIFIC NAME HABIT LIGHT WATER SALT TOL. TX. NATIVE COMMENT GROUND COVER Asparagus fern Asparagus sprengeri Evergreen F/P L Y N Perennial Spider Plant, Airplane Plant Chlorophytum comosum Perennial F/P/S M N N May freeze Fig Ivy Ficus pumila Perennial F/P/S M N N Creeping Vine Shore Juniper Juniperus conferta Evergreen F M N N Trailing Juniper Juniperus horizontalis. Evergreen F M N N Bar Harbor, Blue Rug Tam Trailing Lantana Lantana montevidensis Simi - F L N Y Trailing Purple or White Deciduous Lighting Lily Turf, Liriope, Big Blue Liriope muscari Evergreen P/S M N N Mondo Grass, Monkey Grass Ophiopogon japonicus Evergreen P/S M N N Trailing Rosemary Rosemarinus prostrata Evergreen F/P L/M N N Needs drainage Purple Heart Setcreasea pallida Evergreen P/S M N N Arrowhead plant Syngunium podophyllum Evergreen P/S M N N Vine Asiatic Jasmine Trachelospermum asiaticum Evergreen F/S L Y N Verbena Verbena spp. Perennial F L N Y Wedelia Wedelia trilobata Perennial F/P M Y N PALM Cocus Plumosa, Queen Palm Arecastrum romanzoffanum Evergreen F L Y N Half-hardy/25' Fast Grower Mexican Blue Palm Brahea armata Evergreen F L N N Not for the island Pindo, Cocos Australis, Jelly Butia capitata Evergreen F L Y N 1 COMMON NAME SCIENTIFIC NAME HABIT LIGHT WATER SALT TOL. TX. NATIVE COMMENT Mediterranean Fan Palm Chamaerops humulis Evergreen F L Y N Hardy, bushy to 10' Sago Palm Cycas revoluta Evergreen F L Y N Cycad - to
    [Show full text]
  • County of Riverside Friendly Plant List
    ATTACHMENT A COUNTY OF RIVERSIDE CALIFORNIA FRIENDLY PLANT LIST PLANT LIST KEY WUCOLS III (Water Use Classification of Landscape Species) WUCOLS Region Sunset Zones 1 2,3,14,15,16,17 2 8,9 3 22,23,24 4 18,19,20,21 511 613 WUCOLS III Water Usage/ Average Plant Factor Key H-High (0.8) M-Medium (0.5) L-Low (.2) VL-Very Low (0.1) * Water use for this plant material was not listed in WUCOLS III, but assumed in comparison to plants of similar species ** Zones for this plant material were not listed in Sunset, but assumed in comparison to plants of similar species *** Zones based on USDA zones ‡ The California Friendly Plant List is provided to serve as a general guide for plant material. Riverside County has multiple Sunset Zones as well as microclimates within those zones which can affect plant viability and mature size. As such, plants and use categories listed herein are not exhaustive, nor do they constitute automatic approval; all proposed plant material is subject to review by the County. In some cases where a broad genus or species is called out within the list, there may be multiple species or cultivars that may (or may not) be appropriate. The specific water needs and sizes of cultivars should be verified by the designer. Site specific conditions should be taken into consideration in determining appropriate plant material. This includes, but is not limited to, verifying soil conditions affecting erosion, site specific and Fire Department requirements or restrictions affecting plans for fuel modifications zones, and site specific conditions near MSHCP areas.
    [Show full text]