Susceptibility of Catalpa, Chilopsis, and Hybrids to Powdery Mildew

Total Page:16

File Type:pdf, Size:1020Kb

Susceptibility of Catalpa, Chilopsis, and Hybrids to Powdery Mildew JOBNAME: horts 41#7 2006 PAGE: 1 OUTPUT: October 25 00:32:17 2006 tsp/horts/127877/01585 PLANT PATHOLOGY HORTSCIENCE 41(7):1629–1634. 2006. Desertwillow or desertcatalpa, Chilopsis D. Don., is a monotypic genus related to Catalpa Chilopsis Catalpa. Chilopsis linearis (Cav.) Sweet is a Susceptibility of , , and small to medium-sized tree with willow-like leaves and attractive flowers in summer found Hybrids to Powdery Mildew and in washes and arroyos in desert regions of the southwestern United States, from southern Catalpa Sphinx Larvae California to Texas, and south-central Mexico (Henrickson, 1985). The species and its culti- Richard T. Olsen1,4 and Thomas G. Ranney2 vars are grown throughout its native range and Department of Horticultural Science, Mountain Horticultural Crops adjacent regions and are valued for drought Research and Extension Center, North Carolina State University, Fletcher, tolerance and attractive flowers (Dirr, 1998; Henrickson, 1985; Tipton, 1987). NC 28732-9244 Catalpa and Chilopsis are very similar but Charles S. Hodges3 are differentiated by number of stamens, two in Catalpa vs. four in Chilopsis, and leaf Department of Plant Pathology, North Carolina State University, Raleigh, morphology, large ovate to cordate leaves in NC 27695-7616 Catalpa vs. linear to lanceolate leaves in Additional index words. ·Chitalpa tashkentensis, Macrocatalpa, Tecomeae, Bignoniaceae, Chilopsis. Traditional classifications have placed them in the large, pan-tropical tribe Erysiphe elevata, Ceratomia catalpae, disease resistance Tecomeae Endl. (Henrickson, 1985). How- Abstract. A diverse collection of germplasm representing 24 taxa from Catalpa sect. ever, this tribe was shown recently to be Catalpa Paclt and sect. Macrocatalpa Grisebach, Chilopsis D. Don, and ·Chitalpa Elias & paraphyletic, suggesting that the tribe be di- Wisura were screened for susceptibility to powdery mildew (PM) incited by Erysiphe vided with Catalpa (both sections) and Chi- elevata (Burr.) U. Braun & S. Takam and feeding by catalpa sphinx larvae (CSL), lopsis forming a new tribe sister to the Ceratomia catalpae (Boisduval). PM screening was conducted on plants grown in Oroxyleae Gentry (Olmstead, unpublished a lathhouse (50% shade) in 2004 and a gravel pad (100% sun) in 2005. The PM causal data; Spangler and Olmstead, 1999). Interge- organism was identified as E. elevata both years. Disease incidence and severity were neric hybrids between Chilopsis linearis and recorded at 2-week intervals for 6 weeks and used to calculate area under the disease Catalpa bignonioides bred by Rusanov (1964) progress curves (AUDPC) for each year. North American Catalpa in sect. Catalpa, were introduced into the United States in 1977 Chilopsis, and ·Chitalpa taxa were all moderately to highly susceptible to PM. Chinese and formally described by Elias and Wisura Catalpa in sect. Catalpa and West Indian species in sect. Macrocatalpa were resistant to (1991) as ·Chitalpa tashkentensis. ·Chitalpa PM. Hybrids between North American and Chinese Catalpa in sect. Catalpa varied in has performed well in arid climates, but susceptibility, indicating transmission of partial resistance to PM. No differences in suffers in more humid climates from severe survival or growth were found in a no-choice feeding study with CSL reared on taxa from powdery mildew (PM) infections (Dirr, 1998) Chilopsis, ·Chitalpa, or either section of Catalpa. Future breeding of ·Chitalpa can use and in eastern North America from herbivory sources of PM resistance identified in this study, but a source of resistance to CSL was not by catalpa sphinx moth larvae, Ceratomia found. catalpae (Lepidoptera: Sphingidae) (T.G. Ranney, personal observation). Powdery mildews (PM) are obligate fun- gal parasites (Ascomycetes) characterized by The genus Catalpa Scop. (Bignoniaceae (Alabama to western Florida) and northern epiphytic white mycelium that often cause Juss.) is composed of 11 species in two well- catalpa, C. speciosa (Ward. ex Barn.) Ward. distortions of new growth, chlorosis, necro- defined sections, Catalpa and Macrocatalpa, ex Engelm., is native to the south-central sis, and premature leaf fall (Braun, 1987), differentiated by leaf morphology and seed United States. Both are cultivated as well as limiting both growth and aesthetic qualities characteristics as well as geographic distri- naturalized in many urban areas of the eastern of infected plants. Seven different species of bution (Paclt, 1952). Section Catalpa con- United States (Rehder, 1940). Section Mac- PM have been identified on Catalpa spp. with tains six species of deciduous trees with rocatalpa is comprised of five species of two host-specific to Catalpa: Erysiphe cata- a disjunct distribution between East Asia semievergreen trees restricted to the West lpae Simonyan and E. elevata (syn. Micro- (four species) and eastern North America Indies. These species are poorly represented sphaera elevata Burr.) (Ale-Agha et al., (two species). All species from this section in cultivation, with the exception of C. long- 2004; Braun, 1987; Braun et al., 2002; Farr are in cultivation except C. tibetica Forrest, issima (Jacq.) Dum.-Cours. (Haitian yoke- et al., 1989). Of the two Catalpa-specific but only the two North American species are wood), which is cultivated throughout the PMs, only E. elevata has been reported in commonly cultivated as ornamental trees. West Indies as an important landscape and North America, with E. catalpae currently Southern catalpa, C. bignonioides Walt., is timber species and in Florida and Hawaii for restricted to Europe and Asia (Braun, 1987; native to the southeastern United States landscapes (Francis, 1990). Sinclair et al., 1987). Received for publication 24 Apr. 2006. Accepted Plantations, Cornell University, Ithaca, N.Y.; Lynch, Irene Palmer, and staff of the Mountain for publication 22 July 2006. Benoit Jonckheere and Don Evans, Fairchild Horticultural Crops Research and Extension Cen- This research was funded, in part, by the North Tropical Botanic Garden, Coral Gables, Fla.; ter is greatly appreciated. We thank William Carolina Agricultural Research Service (NCARS), Mark Krautman, Heritage Seedlings, Salem, Swallow for statistical and James F. Walgenbach Raleigh, N.C.; North Carolina Association of Nurs- Ore.; the JC Raulston Arboretum, Raleigh, N.C.; for entomologic advice. From a dissertation sub- erymen, Inc., Raleigh, N.C.; and J. Frank Schmidt Veta Bonnewell, Morton Arboretum, Lisle, Ill.; mitted by R.T.O. in partial fulfillment of the Family Charitable Foundation, Boring, Ore. Bill Carson, Native Texas Nursery, Austin, requirements for the PhD degree. Use of trade names in this publication does not imply Texas; Andrew Bunting, Scott Arboretum, 1Current address: Floral and Nursery Plants Re- endorsement by the NCARS of products named nor Swarthmore, Pa.; the Sir Harold Hillier Gardens, search Unit, USDA-ARS, US National Arboretum, criticism of similar ones not mentioned. Hampshire, UK; and Dawn Stover and David 3501 New York Ave. NE, Washington, DC. We gratefully acknowledge Tom Ward, Arnold Creech, Mast Arboretum, Stephen F. Austin 2Professor. Arboretum, Harvard University, Jamaica Plain, University, Nacogdoches, Texas, for providing 3Professor emeritus. Mass.; Alessandro Chiari, Brooklyn Botanic Gar- germplasm used in our studies. Technical assis- 4To whom reprint requests should be addressed; den, Brooklyn, N.Y.; Mary Hirshfeld, Cornell tance of Thomas Eaker, Joel Mowrey, Nathan e-mail [email protected]. HORTSCIENCE VOL. 41(7) DECEMBER 2006 1629 JOBNAME: horts 41#7 2006 PAGE: 2 OUTPUT: October 25 00:32:17 2006 tsp/horts/127877/01585 Catalpa sphinx moth is distributed Catalpa sp. #2 (n = 3), and C. bungei var. a given plant at a given observation date throughout the eastern United States from heterophylla (n = 2). (Seem, 1984). Then, AUDPC represents the New York to Florida west to Texas and Iowa Catalpa bignonioides stock plants were cumulative disease intensity for a given plant overlapping with the native and naturalized grown separately in the lathhouse and al- over the length of the study (Jeger and range of natural host plant species C. bigno- lowed to develop PM infections naturally. Viljanen-Rollinson, 2001). Data for each nioides and C. speciosa (Baerg, 1935). Pre- Beginning on 4 Aug. 2004, infected stock year were analyzed separately. Differences vious studies confirmed the suitability of plants were placed in and around study between taxa were compared using analysis Chinese Catalpa species as a food source plants and shaken over the study plants to of variance (PROC GLM; SAS version 8.02; for catalpa sphinx larvae (CSL) (Baerg, 1935; release conidia every other day for 1 week SAS Institute, Cary, N.C.) and means sepa- Bowers, 2003). Host plant species signifi- (total 4·) to supplement natural inocula- rated using Fisher protected least significant cantly affected larval growth (fresh weight), tion. Powdery mildew incidence (I) and difference (LSD)ata = 0.05. but survival was unaffected for larvae reared severity (S) were recorded for each repli- Catalpa sphinx moth larvae screening. A on C. bignonioides, C. bungei C.A. Mey, cate once every 2 weeks for a total of four no-choice feeding study, with the addition of C. fargesii Bureau, C. ovata G. Don, and observation dates. Incidence (I) represented C. linearis ÔRegalÕ, was conducted in Summer C. speciosa (Bowers, 2003). Ceratomia cat- the percentage of leaves infected per plant 2005. On 22 June, fourth and fifth instars alpae larvae sequester catalpol,
Recommended publications
  • Catalpa Bignonioides
    Pub. No. 15 April 2016 Southern Catalpa Catalpa bignonioides by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia The Southern catalpa (Catalpa bignonioides) tree is a common fixture along roadsides and in old landscapes. The big green leaves and distinctive long dangling fruits are noticeable from hundreds of yards away. Although used in the past for a few wood-based products and pioneer medicines, today catalpa is used for shade trees and for growing a special caterpillar. This catalpa “worm” is prized by fishing enthusiast across the South. Family Ties The catalpa tree is a member of the Catalpa or Trumpet-Creeper family (Bignoniaceae). This family contains more than 700 species scattered around the globe, primarily in tropical and sub-tropical regions. This plant family is represented by trees, shrubs and vines in North America. The trumpet creeper (Campsis radicans), cross vine (Bignonia capreolata), and two catalpa trees (Catalpa ssp.) are the most recognized natives of this family in the Southeastern United States. The exotic Asiatic Pau- lownia tree is a member of this family and has been widely planted, now reproducing on its own. The catalpa genus (Catalpa) has 12 species spread across North America, the Caribbean basin, Eastern Asia and Japan. There are two common native catalpa trees in the United States, and one exotic (Catalpa ovata - Chinese catalpa). Catalpa speciosa is the larger and more northern growing of the two native trees. Common names for this catalpa are Northern catalpa, Western catalpa, and catawba-tree. Catalpa bignonioides is the native Southern catalpa.
    [Show full text]
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • DESERT WILLOW 'BUBBA' Chilopsis Linearis 'Bubba' Characteristics
    DESERT WILLOW ‘BUBBA’ Chilopsis linearis ‘Bubba’ Characteristics Type: Tree Sun: Full sun Zone: 6 to 10 Water: Low to Moderate Height: 25-30 feet Maintenance: Low Spread: 25-30 feet Flower: Showy, Fragrant Bloom Time: Spring through Summer Fruit: Showy Bloom Description: Dark Burgundy and Tolerate: Drought, Dry Soil Pink Texas Native Culture Chilopsis linearis ‘Bubba’ is a vigorous, fast-growing upright selection of desert willow that originated in Texas. Compared to other selections it has a strong vertical form and is less shrubby. It also has glossy, darker green, more lush foliage than other desert willows. It has the capacity to easily grow up to 30 feet tall in the landscape. Starting in late spring and through the summer ‘Bubba’ produces masses of large, fragrant, two-tone burgundy and pink flowers. Like other desert willows ‘Bubba’ is a great choice for full sun, low maintenance, water efficient landscapes. Although it is not seedless, it produces fewer pods than most selections. Each pod containing many winged seeds. Noteworthy Characteristics Chilopsis linearis, commonly known as desert willow, is a large shrub or small multi-trunked tree with a loose open crown. It typically grows to 15-25’ tall with a spread to 10-15’ wide, though some varieties, like ‘Bubba’, grow taller. It is native to gravelly and rocky soils in the Southwestern U.S. and northern Mexico where it is usually found growing in desert grasslands, sandy washes or springs. While the narrow, long leaf shape is indeed willow-like, Chilopsis linearis is in fact related to Catalpa trees, Yellow Bells (Tecoma stans), and Trumpet Vine (Campsis radicans).While oversized in comparison to other members of its family, ‘Bubba’ remains reasonably sized for compact growing spaces as an ornamental accent.
    [Show full text]
  • Chilopsis Linearis (Desert Willow)
    Chilopsis linearis (Desert Willow) Desert willow is a fast-growing tree reaching up to 25 feet with spectacular trumpet –shaped flowers and glossy green, willow-like foliage. Chilopsis linearis is native to the southwestern United States and northern Mexico, and is commonly seen in dry washes from 1500 to 5000 feet. The fragrant orchid-like flowers in varying colors attract hummingbirds. Desert willow blooms in clusters from May through October. In winter, this tree is deciduous which reveals its interesting branch structure. Desert willow can be planted on western and southern exposures where shade is desired in summer, and allows radiant heat to warm homes or structures in winter. Chilopsis linearis pro- vides light shade for other plants such as Mexican honeysuckle and penstemons. Once estab- lished, this tree can survive on rainfall alone, but supplemental irrigation during the summer will produce more attractive foliage and flowers. Desert willow prefers well drained soil. Its natural form is multi-trunked, but careful pruning will encourage development of a more tree-like form. Desert willow enhances the oasis feeling of a landscape and is a valuable source of food for native wildlife. Because of its leafless nature in the winter, consider grouping evergreen desert trees and shrubs nearby. The many forms of desert willow vary considerably in growth habit, mature height, leaf size, and flower color. Chilopsis can be a tall, upright tree or a weeping shrub. Mature heights range from 18 to 25 feet. The leaves are narrow and lanceolate (lance shaped). Different cultivated varieties of desert willow offer flower colors of white, light pink, lavender, deep purple-red, and royal purple.
    [Show full text]
  • Hawk Moths of North America Is Richly Illustrated with Larval Images and Contains an Abundance of Life History Information
    08 caterpillars EUSA/pp244-273 3/9/05 6:37 PM Page 244 244 TULIP-TREE MOTH CECROPIA MOTH 245 Callosamia angulifera Hyalophora cecropia RECOGNITION Frosted green with shiny yellow, orange, and blue knobs over top and sides of body. RECOGNITION Much like preceding but paler or Dorsal knobs on T2, T3, and A1 somewhat globular and waxier in color with pale stripe running below set with black spinules. Paired knobs on A2–A7 more spiracles on A1–A10 and black dots on abdomen cylindrical, yellow; knob over A8 unpaired and rounded. lacking contrasting pale rings. Yellow abdominal Larva to 10cm. Caterpillars of larch-feeding Columbia tubercle over A8 short, less than twice as high as broad. Silkmoth (Hyalophora columbia) have yellow-white to Larva to 6cm. Sweetbay Silkmoth (Callosamia securifera) yellow-pink instead of bright yellow knobs over dorsum similar in appearance but a specialist on sweet bay. Its of abdomen and knobs along sides tend to be more white than blue (as in Cecropia) and are yellow abdominal tubercle over A8 is nearly three times as set in black bases (see page 246). long as wide and the red knobs over thorax are cylindrical (see page 246). OCCURRENCE Urban and suburban yards and lots, orchards, fencerows, woodlands, OCCURRENCE Woodlands and forests from Michigan, southern Ontario, and and forests from Canada south to Florida and central Texas. One generation with mature Massachusetts to northern Florida and Mississippi. One principal generation northward; caterpillars from late June through August over most of range. two broods in South with mature caterpillars from early June onward.
    [Show full text]
  • Santa Fe National Forest
    Chapter 1: Introduction In Ecological and Biological Diversity of National Forests in Region 3 Bruce Vander Lee, Ruth Smith, and Joanna Bate The Nature Conservancy EXECUTIVE SUMMARY We summarized existing regional-scale biological and ecological assessment information from Arizona and New Mexico for use in the development of Forest Plans for the eleven National Forests in USDA Forest Service Region 3 (Region 3). Under the current Planning Rule, Forest Plans are to be strategic documents focusing on ecological, economic, and social sustainability. In addition, Region 3 has identified restoration of the functionality of fire-adapted systems as a central priority to address forest health issues. Assessments were selected for inclusion in this report based on (1) relevance to Forest Planning needs with emphasis on the need to address ecosystem diversity and ecological sustainability, (2) suitability to address restoration of Region 3’s major vegetation systems, and (3) suitability to address ecological conditions at regional scales. We identified five assessments that addressed the distribution and current condition of ecological and biological diversity within Region 3. We summarized each of these assessments to highlight important ecological resources that exist on National Forests in Arizona and New Mexico: • Extent and distribution of potential natural vegetation types in Arizona and New Mexico • Distribution and condition of low-elevation grasslands in Arizona • Distribution of stream reaches with native fish occurrences in Arizona • Species richness and conservation status attributes for all species on National Forests in Arizona and New Mexico • Identification of priority areas for biodiversity conservation from Ecoregional Assessments from Arizona and New Mexico Analyses of available assessments were completed across all management jurisdictions for Arizona and New Mexico, providing a regional context to illustrate the biological and ecological importance of National Forests in Region 3.
    [Show full text]
  • Basidiomycetes Inhabiting the Ornamental Tree Catalpa (Bignoniaceae)
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 19(2010) Basidiomycetes inhabiting the ornamental tree Catalpa (Bignoniaceae) JURAJ PACLT Nam Benku, Martina 24/4083 81107 Bratislava 1, Slovakia Accepted 11. 1.2010 Key words: Basidiomycetes. - Fungus-host associations, Catalpa. Abstract: Attention is paid to all basidiomycetous species hitherto known to occur on Catalpa as host plant. During 1955-1997 more than 20 new fungus-host associations from diverse species of Catalpa grown in Europe could be found by the author. Zusammenfassung: Basidiomyzeten, die bisher von Catalpa als Wirtspflanze bekannt sind, werden aufgeführt. Dem Autor gelang es, 1955-1997 mehr als zwanzig neue Pilz-Wirt-Assoziationen von ver- schiedenen in Europa angepflanzten Catalpa-Artcn zu finden. Catalpa SCOP. (Bignoniaceae), called cigar-tree in the USA, a genus native to the United States of America [Southern Catalpa = C. hignonioides WALTER, Hardy Ca- talpa = C. speciosa (WARDER ex BARNEY) ENGELM.], West Indies and/or China. Common species of the genus are favoured as ornamental trees due to their showy panicles of flowers and long cigar-like pendent capsular fruits as well. In Europe, spe- cies of Catalpa are often cultivated as park- and street-trees. OUDEMANS (1923) mentioned only four species of Basidiomycetes for Catalpa, i.e., Polyponts distortus (= Abortipoms biennis). Pistil/aha mucedina. Pistil/aria mucoroides, and Polyponis distinctus (nomen dubium). Six further basidiomycetous species collected on Catalpa were listed in the next host index by SEYMOUR (1929): Exidia saccharina, Polyponis adustus (= Bjerkandera adusta), Schizophyllum commune, Stereum albobadium (= Dendrophora alhobadia), Stereum versicolor, and Trametes sepium (= Antrodia al- bida).
    [Show full text]
  • Oct16 Trees to Pollard October 2016 the Garden
    Pollarding trees Catalpa bignonioides ‘Aurea’ showing fresh growth in May after pollarding in STUMPS TO early spring. Cutting o the main stem SANDALL TIM / RHS of a tree may seem like horticultural vandalism, but pollarding the right plant produces dramatic e ects stars Catalpa Author: Ian Tocher, RHS Trials Indian bean trees become more shrubby when Team Horticulturist Sambucus pollarded, with large, strongly coloured foliage. Elders respond well to pollarding, becoming smaller, ✤ Selections to choose: catalpas are trees, ollarding is an ancient pruning technique, more-upright plants, with larger, lush, better-coloured lowering in late summer, with long, decorative used from prehistoric times to produce wood foliage, often elegantly dissected, depending on cultivar. bean-like pods. When pollarded, these features and fodder. Certain trees, such as willow and ✤ Selections to choose: although often regarded as are lost, but the larger leaves gained thereby are impressive. Golden Catalpa bignonioides ‘Aurea’ ash, were decapitated at about 2m (6½ft) tall; shrubby weeds, there are some highly ornamental will provide strong contrast with surrounding the new shoots that sprouted, above the reach Sambucus (elder) with purple or gold foliage. One good example is Sambucus nigra f. porphyrophylla ‘Eva’, herbaceous plants. Its foliage is e ective with Pof browsing animals, were harvested every few years. Echinops bannaticus ‘Taplow Blue’, iery red with its dark, lacily dissected foliage. Elegant ‘Guincho Pollarding is diff erent from coppicing, which requires Purple’, named after Guincho Gardens in Co. Down, crocosmia and Geranium palmatum. Purple the plants to be cut down to ground level. Nowadays Northern Ireland, has bolder, bronze-purple dissected Catalpa x erubescens ‘Purpurea’ (inset), with RHS many ornamental trees and shrubs are pollarded to / new leaves that are almost black, is foliage followed in summer by unusual tufts of bright GR AH A create spectacular decorative eff ects, including larger M dramatic alongside iery-lowered green leaves.
    [Show full text]
  • Argania Spinosa)
    plants Article Isolation and Functional Analysis of a PISTILLATA-like MADS-Box Gene from Argan Tree (Argania spinosa) Marwa Louati 1 , Blanca Salazar-Sarasua 2 , Edelín Roque 2, José Pío Beltrán 2, Amel Salhi Hannachi 1 and Concepción Gómez-Mena 2,* 1 Faculty of Sciences of Tunis, Campus Farhat Hached El Manar, University of Tunis El Manar, Tunis 2092, Tunisia; [email protected] (M.L.); [email protected] (A.S.H.) 2 Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (B.S.-S.); [email protected] (E.R.); [email protected] (J.P.B.) * Correspondence: [email protected] Abstract: Argan trees (Argania spinosa) belong to a species native to southwestern Morocco, playing an important role in the environment and local economy. Argan oil extracted from kernels has a unique composition and properties. Argan trees were introduced in Tunisia, where hundreds of trees can be found nowadays. In this study, we examined reproductive development in Argan trees from four sites in Tunisia and carried out the functional characterization of a floral homeotic gene in this non-model species. Despite the importance of reproductive development, nothing is known about the genetic network controlling flower development in Argania spinosa. Results obtained in several plant species established that floral organ development is mostly controlled by MADS-box genes and, in particular, APETALA3 (AP3) and PISTILLATA (PI) homologs are required for proper petal and stamen identity. Here, we describe the isolation and functional characterization Citation: Louati, M.; Salazar-Sarasua, B.; Roque, E.; Beltrán, J.P.; Salhi of a MADS-box gene from Argania spinosa.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Moths of Ohio Guide
    MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1.
    [Show full text]