The Vegetation of the Coastal Region of Suriname. Results of the Scientific Expedition to Suriname 1948—49 Botanical Series No

Total Page:16

File Type:pdf, Size:1020Kb

The Vegetation of the Coastal Region of Suriname. Results of the Scientific Expedition to Suriname 1948—49 Botanical Series No The vegetation of the Coastal Region of Suriname. Results of the scientific expedition to Suriname 1948—49 botanical series No. 1 by J.C. Lindeman (Utrecht) CONTENTS GENERAL PART CHAPTER I. Introduction. 1 ....... Literature 2 Methods 5 ......... Terminology 7 ......... Vernacular 9 names ........ Value of vernacular names 12 The soil. 14 .......... The climate 18 CHAPTER II. AERIAL PHOTOGRAPHS 21 General remarks 21 Difficulties with herbaceous vegetation; illumination effects. 22 results 25 Interpretation ........ and 25 Mangrove swamps ....... Savannas 26 ......... Forests 27 SPECIAL PART CHAPTER III. DESCRIPTION OF THE LANDSCAPE IN THE INVESTIGATED AREAS 28 I. Wia- Transect from Moengo tapoe to the ‘Wiawiabank’ or wia flat 28 The saline coastal belt 29 . articulatus and Machaerium Typha-Cyperus swamp lunatum scrub 31 ........ Third to sixth with Cereus wood ridge , . 31 . Leersia hexandra and 32 swamps Erythrina glauca groves . Second series of ridges and 33 Cyperus giganteus swamps . The old ridges beyond km 9.5 34 II The 35 swaying swamps ....... The oldest and the savannas 37 ridges ..... II. Coronie 38 of the road 38 Brackish North . area . and fresh-water South of the road 39 Ridge complex swamp Third and fourth line 40 Totness 40 III. Nickerie 41 belt and brackish North of the Nickerie Mangrove swamps River 41 Fresh-water area South of the Nickerie River 44 ... IV. Tibiti 45 CHAPTER IV. MANGROVE AND STRAND 46 . ... I. belts the lower the rivers 46 Mangrove along part of . along rivers outside Suriname 48 Mangrove . and other 49 Epiphytes accompanying species ... II. Coastal 50 mangrove ........ Regressing coast 50 Accrescent 50 coast . Accompanying species ....... 53 Mixed forest 54 mangrove ....... Strand 54 mangrove ........ III. Hibiscus tiliaceus scrub 55 ....... Strand scrub in the Caribbean 56 ...... units 57 Sociological ........ IV. Herbaceous strand communities 58 . CHAPTER V. THE HERBACEOUS SWAMPS 59 ... I. Eleocharis mutata 60 community ...... T II. Brackish ypha angusti folia-Cyperus articulatus swamps 61 Distribution outside Suriname 63 ...... HI. Leersia hexandra 64 swamps ....... IV. 64 Cyperus giganteus-Typha-Scleria swamps ... Distribution outside Suriname 66 ...... V. Rhynchospora corymbosa type 69 Distribution outside Suriname 69 ...... VI. 70 Lagenocarpus guianensis-other Cyperaceae type . Distribution outside Suriname . 71 . CHAPTER VI. SWAMP FOREST 72 I. Mixed wood 72 swamp ....... II. Erythrina glauca wood .74 swamp ... HI. Machaerium lunatum scrub ...... 75 Palm .76 swamp ...... III CHAPTER VII. MARSH FOREST 76 Habitat 76 Floristic 78 composition ....... I. 79 Triplaris surinamensis-Bonafousia tetrastachya type . //. 79 Symphonia globulifera type ...... that both 80 Features are common to . types . - 111. Hura forest 80 crepitans ....... Dominance of 81 palms . IV. association 82 Mauritia-Chrysobalanus ..... CHAPTER SEASONAL FOREST VIII. EVERGREEN . 83 I. Cereus wood 86 ridge ........ II. Intermediate ridge forest 87 ...... Parinari III. ridge forest ....... 87 IV. Typical seasonal forest 88 evergreen . V. Forest the shell near Coronie 88 of ridges .... CHAPTER IX. SAVANNA FOREST AND SAVANNA . 89 I. Savanna 89 forest ........ II. Wallaba forest 90 ........ CHAPTER X. SUCCESSION 91 Successions on clay soil 92 ........ Halosere starting on growing mud flat along the coast . 92 Sere in brackish water. .■ 94 starting . in fresh water 94 Hydroseres ...... Succession on 95 sand, psammosere ...... CHAPTER AUTECOLOGICAL REMARKS XL ... 96 Annotated list of 99 species ...... Selected list of vernacular names . .117 . Additions tables I and II to . .120 . Additions the records of table I to . swamp . 120 Additions to the forest records of table II . 123 . BIBLIOGRAPHY 130 LIST OF ILLUSTRATIONS AND TABLES Panorama of the Great Frontispiece. Swaying swamp I. Climate of Paramaribo and Coronie Fig. 19 Fig. III. Recent abrasion of the coast near Nickerie 51 . IV. distribution of the trees in some forests 84 Fig. Height-class . Table IV. Salt tolerance of the and more important swamp moisture-loving . 98 species . Table V. Biological of the 99 spectra swamp types .... 32 photographs by the author IV Separate in the back flap: Sketch of and soil from of the Fig. II. vegetation profile parts transect Wiawia and of the second line Coronie. flat-Moengo tapoe near Table I. Swamp records. Table II. Forest records. Table III. Analyses of soil samples. Map I. The coastal region and vegetation sketch of the transect Moengo tapoe-Wiawia flat. II. sketch of the Nickerie the Tibiti and Map Vegetation region, savanna the Coronie area. of The scale Great of divine Swaying sun swamp beats conception or seen the with from wind infinite the revels North, —that variation in the storms of design distance and rain and some sweep detail; islands. over” there a “Here it dreary is (JENMAN) a waste, garden on in which magnitude the GENERAL PART CHAPTER I Introduction. The data on which this study is based, were gathered during a scientific which lasted expedition from September 1948 to May 1949. The author had accepted an invitation to join Prof. J. LANJOUW who this entrusted with the botanical of the on expedition was part investigat- ions. They worked in close contact with the other staff members, the Dr D. C. and P. H. and the zoologists GEIJSKES CREUTZBERG, geo-mor- phologists Prof. J. P. BAKKER and Dr A. BEOUWER. Especially the with the latter be of for cooperation group proved to prime importance the study of the vegetation. For more general Information with regard the aims and of this the reader referred to scope expedition is to the preliminary report (26). the During expedition various landscapes were visited and several The contribution describes the main vegetation types investigated. present the coastal of vegetation types occurring in region Suriname and discusses their development and their relations to each other and to the soil. The of the herbaceous will vegetation swamps be discussed in more detail and as far as with that of similar outside Suriname. compared possible swamps The coastal it region as is understood here comprises the whole area formed the sea in recent times. by geologically According to our present knowledge it is roughly delimited by a line, running from Albina in the East over Moengo, Republiek ± 35 km South of Paramaribo, along the River Oreala the Wayombo to a point near on Corantine River. As our all the map I shows, it comprises not only alluvia that YZERMNA designates but also of his continental as fluviomarine a considerable part ones As far the in the of the coastal (BAKKER 25). as ridges younger part region this could be checked with the which are concerned, map unpublished map Dr ZONNEVELD of the C.B.L. had drawn of these ridges and which he kindly placed at my disposal. The whole which covers some consists of alluvial area, 18,000 square km, clays and sands. The majority of the clay soils is permanently inundated and is covered The sand which by extensive swamp vegetations. is locally mixed with the but or replaced by shells, was deposited by sea, locally 2 disturbed by the action of the wind and raised in the form of ridges, in Suriname called "ritsen”. These either in ridges appear singly or groups, and reach a considerable the coast may length. Along present locally strandbars, ridges in statu nascendi, are found with a bare beach in the tidal zone and above the high-tide mark covered by strand vegetation. The from the covered forest. The ridges that are farther removed sea are by number of in the where the oldest ridges is highest eastern part ones rise to a height of 10 m above sea level. Westwards their number decreases while the depth of the coastal flats increases (map I). In the district Nickerie the ridges are reduced to small isolated patches that in the of the disappear immensity swamps. all the of shells The eastern ridges are completely sandy, deposits restricted the where in the being to western part, they occur e.g. sur- of Paramaribo and further westwards Coronie. Near loundings up to Groningen and along the road between the mouth of the Coppename River and Coronie we find examples of shell beds, which are several meters thick and consist exclusively of layers of shells and shell fragments. A of the however, consists of sand with but large part ridges, a slight admixture of shells. The time in the coastal amounted three months we spent region to 29th divided over three trips to different parts of the area. On September 1948 belt of about we entered the coastal in the eastern part Suriname km north of 6 Moengo tapoe. 35 It required two months to complete the distance of not quite km, this from the the second half of December which separated place ocean. In we reached a place halfway between Coronie and the mouth of the Cop- River and had ten to the distance pename days investigate vegetation some North and South of the Coronie road. After the of the had been the author program expedition completed, had the opportunity to visit the northwestern tip of the coastal region in the district Nickerie. Literature. Additional information obtained from was papers by Lanjouw (35) and data derived from the labels of the and Geijskes (30, 31) some were older collections that are preserved in the Utrecht herbarium. The literature contains but little information with to the in the regard swamp vegetation neighbouring countries, as most travellers, not only in South America but else in the to have confined their attention to everywhere tropics, appear the higher parts of the interior and to have avoided the swampy places. However with the increased interest for studies in recent ecological years there in this aversion of the which in seems to come a change swamps, my opinion was entirely unjustified. The in itself swamp vegetation presents not only many interesting problems, but a sound knowledge of the coastal area is indispensable when 3 the of one wishes to understand the geomorphology and development of the whole.
Recommended publications
  • Frutos Y Semillas De Annonaceae Más Comunes Del Perú 1
    Guía Práctica Frutos y semillas de Annonaceae más comunes del Perú 1 Edward Jimmy Alarcón Mozombite1 1 Universidad Nacional de la Amazonía Peruana (UNAP) Fotos de Edward Jimmy Alarcón Mozombite (JA). Producido por: Edward Jimmy Alarcón Mozombite © Edward Jimmy Alarcón Mozombite [[email protected]] [fieldguides.fieldmuseum.org] [1083] versión 1 10/2018 Introducción La familia Annonaceae está muy bien representada en el Perú, especialmente en la Amazonía peruana, con especies silvestres y cultivadas. En el Perú existen alrededor de 238 especies de Annonaceae (Vásquez & Rojas, 2016), de las cuales 217 especies más 1 variedad son considerados árboles hasta el momento (Vásquez et al., 2018), pero este número irá ascendiendo por el descubrimiento de nuevas especies. Esta familia es ampliamente aprovechada por sus frutos, corteza, fuste y fácilmente reconocida por los “materos” y población que tiene cercanía a los bosques. Una forma de estudiar a esta familia es a través de la revisión de muestras depositadas en Herbarios, donde se registra datos de fenología, distribución, hábitat, usos y nombres vernaculares. Los frutos y semillas son estructuras que presentan ventajas que, al encontrarse secas, se hacen evidentes los surcos, formas, matices, fibras y porosidades que les permite diferenciarse entre especies. El presente trabajo aborda 91 especies, 2 variedades y 2 especímenes identificados a nivel de género para el Perú y 1 especie de Brasil, que equivale a casi el 40% de las especies de Annonaceas en el Perú, es una guía de reconocimiento por medio de las descripciones y fotografías que hacen más fácil su uso para el público en general y profesionales dedicados a la botánica, ciencias forestales, silvicultura, así como para la enseñanza e identificación en campo.
    [Show full text]
  • Birds of the Nova Scotia— New Brunswick Border Region by George F
    Birds of the Nova Scotia— New Brunswick border region by George F. Boyer Occasional Paper Number 8 Second edition Canadian Wildlife Service Environment Canada Environnement Canada Wildlife Service Service de la Faune Birds of the Nova Scotia - New Brunswick border region by George F. Boyer With addendum by A. J. Erskine and A. D. Smith Canadian Wildlife Service Occasional Paper Number 8 Second edition Issued under the authority of the Honourable Jack Davis, PC, MP Minister of the Environment John S. Tener, Director Canadian Wildlife Service 5 Information Canada, Ottawa, 1972 Catalogue No. CW69-1/8 First edition 1966 Design: Gottschalk-)-Ash Ltd. 4 George Boyer banding a barn swallow in June 1952. The author George Boyer was born in Woodstock, New Brunswick, on August 24, 1916. He graduated in Forestry from the University of New Brunswick in 1938 and served with the Canadian Army from 1939 to 1945. He joined the Canadian Wildlife Service in 1947, and worked out of the Sackville office until 1956. During that time he obtained an M.S. in zoology from the University of Illinois. He car­ ried on private research from April 1956 until July 1957, when he rejoined CWS. He worked out of Maple, Ontario, until his death, while on a field trip near Aultsville. While at Sackville, Mr. Boyer worked chiefly on waterfowl of the Nova Scotia-New Brunswick border region, with special emphasis on Pintails and Black Ducks. He also studied merganser- salmon interrelationships on the Miramichi River system, Woodcock, and the effects on bird popu­ lations of spruce budworm control spraying in the Upsalquitch area.
    [Show full text]
  • Livro-Inpp.Pdf
    GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).
    [Show full text]
  • Effects of Age on Hummock Succession in Bogs
    Effects of age on hummock succession in bogs By Joel Vallier Abstract Ecological succession is the change in communities over time. We chose to study the successional stages of hummocks in a bog using age. We hypothesized that hummock plant richness should increase then decrease with age because of successional flora species mixing. We also hypothesized that hummock density, and hummock size will increase with age. Our study site was a bog at Mud Lake located in Cheboygan County, Michigan. We set up two 100 meter transects, divided them into zones based on age then recorded hummock surface area and hummock density. Plant richness was also recorded. There was a significant difference in plant richness with hummock age but only when surface area was used a covariant. Surface area was not significantly different among different aged zones. Hummock density did not have any correlation with age. Places were successional flora species mixed provided more plant richness and also showed trends of higher surface area. The tree line altered our results in the youngest zones because it had late successional species mixed with early successional species. This gave one of our youngest zones the highest plant richness. This shows that trends exist between hummock size, and plant richness but the surrounding morphology has a large impact. Introduction Succession within an ecological community is the change in species composition over time. This can change the biodiversity of the environment by altering conditions making it more adaptable by other species (Katz, 1926). This can be seen in the classic hydrosere succession model, where infilling of a shallow lake by sediments produces a sequential trend of vegetation communities staring with marsh shrub and moss species and ending with climax forests composed mostly of woody species (Klinger, 1996).
    [Show full text]
  • The Genera of Bambusoideae (Gramineae) in the Southeastern United States Gordon C
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 1988 The genera of Bambusoideae (Gramineae) in the southeastern United States Gordon C. Tucker Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Tucker, Gordon C., "The eg nera of Bambusoideae (Gramineae) in the southeastern United States" (1988). Faculty Research & Creative Activity. 181. http://thekeep.eiu.edu/bio_fac/181 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. TUCKER, BAMBUSOIDEAE 239 THE GENERA OF BAMBUSOIDEAE (GRAMINEAE) IN THE SOUTHEASTERN UNITED STATESu GoRDON C. T ucKER3 Subfamily BAMBUSOIDEAE Ascherson & Graebner, Synop. Mitteleurop. Fl. 2: 769. 1902. Perennial or annual herbs or woody plants of tropical or temperate forests and wetlands. Rhizomes present or lacking. Stems erect or decumbent (some­ times rooting at the lower nodes); nodes glabrous, pubescent, or puberulent. Leaves several to many, glabrous to sparsely pubescent (microhairs bicellular); leaf sheaths about as long as the blades, open for over tf2 their length, glabrous; ligules wider than long, entire or fimbriate; blades petiolate or sessile, elliptic to linear, acute to acuminate, the primary veins parallel to-or forming an angle of 5-10• wi th-the midvein, transverse veinlets numerous, usually con­ spicuous, giving leaf surface a tessellate appearance; chlorenchyma not radiate (i.e., non-kranz; photosynthetic pathway C.,).
    [Show full text]
  • Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
    CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community.
    [Show full text]
  • Tbiseries3.Pdf
    b_[^LZE[aâ aL_QLaâ 5â bxâb¶¬²x§o¬Àâ ax¶xÀâ ²¶xÀx§ÅÀâÅxâ¶xÀÊÅÀâ¬|âÀÅÊuxÀâ j§uâ ¶xÀxj¶qâ jqÅÎÅxÀâ¶xjÅxuâŬâÅxâ q¬§Àx¶Îjà Ŭ§âj§uâÑÀxâÊÃÛjŬ§â¬|â¶xÀÅâj§uÀâ § âÅxâ Ê¢uâŶ¬²qÀ#âbxâ Àx¶xÀâq¬§Å§ÊxÀâj§uâ§Åx¶jÅxÀâÅxâ }®¶¢x¶âb¶¬²x§p¬Àâaqx§Åqâj§uâbxq§qjâax¶xÀ#âbxâÀÅÊuxÀâ²ÊoÀxuâ§âÅÀâÀx¶xÀâjÎxâoxx§âqj¶à ¶xuâ ¬ÊÅâÑŧâ Åxâ §Åx¶§jŬ§j âb¶¬²x§o¬ÀⲶ¬¶j¢¢x#â[qqjÀ¬§jÕ âÅÀâÀx¶xÀâ¢jÕⲶxÀx§ÅâÅxâ ¶xÀÊÅÀâ¬|â¬Åx¶âÀÅÊuxÀâÒqâq¬§Å¶oÊÅxâŬâÅxâ¬oxqÅÎxÀâ¬|âÅxâb¶¬²x§o¬ÀⲶ¬¶j¢¢x+â GQ^KDbDâ T\YQZTVQRULâ EQEVQ[bPLLTâKLYâPDDNâ aÅxxxâPj§ÀâÅz¶â ^jÅÅx¶§Àâ §â Ŷ¬´qjâ ¶j§â}®¶xÀÅâ§â NÊÕj§jâ5ĺPj§Àâ Åx¶âaÅxxx#â fjx§§x§?âbxâb¶¬²x§o¬ÀâM¬Ê§ujÞ Å¬§#â Qâčĺ1â  c¶¬²x§o¬ÀâÀx¶xÀâ bxÀÀâ_ÀʧÎx¶ÀÅxÅâdŶxqÅ#â fÅâ¶x ,â fÅâÀÊ¢¢j¶Õâ§â KÊÅq$â QaEZâ=.8125.188â aÊoxqÅâxju§À@âŶ¬²qj â¶j§â}®¶xÀÅÀBâ NÊÕj§jâ5ĺ ²x§¬¬Õ#â Ģĺ 1==5â aÅqçâb¶¬²x§o¬Àâ D â¶ÅÀâ¶xÀx¶Ïxu#âY¬â²j¶Åâ¬|âÅÀâ²ÊoqjŬ§ âj²j¶Å⬢âoo¬¶j²qâujÅjâo ¶x|âµÊ¬ÅjŬ§Àâ§â q¶Åqjâ¶xÎxÒÀâ ¢jÕâoxâ¶x²¶¬uÊqxuâ ¶x¶xq¬¶uxu⬶â²ÊoÀxuâ § âj§Õâ}®¶¢â §qÊu§â²¶§ÅⲬŬà q¬²Õ â¢q¶¬}®¶¦ âxxqŶ¬§q⬶âxxqŶ¬¢j§xÅqâ¶xq¬¶uâÒŬÊÅâÒ¶ÅÅx§â²x¶¢ÀÀ¬§â G¬Îx¶âuxÀ§Aâ Kj¢¬§uâG¬¢¢Ê§qjŬ§â ^¶§ÅxuâoÕ?â exx§¢j§âK¶Êx¶À âihjx§§x§#â G¬Îx¶â²¬Å¬âªÀxÅ@â fjjojâ¶xÀÅⲬŬâoÕâPj§ÀâÅx¶âaÅxxx+â $DD,@6BM26MD@9>2($3M @$26M-9@,BDM26MEH$6$M JƗƗ°L ƗƗƗ/×Ɨ $ƗƗƗƗ °ƗRƗ %Ɨ ĵHĴ_5èįæHIJ5ĹƗ Ɨ0ƗƗ Ɨ ƗƗ LƗ Ɨ ƗH0Ɨ°ƗpL Ɨ ƗWƗƗ ƗHLƗ6íŪLàƗJ*BGG8GƗƗ/0 àƗ Ɨ °Ɨ ƗƗ Ɨ< ƗƗB0Ɨ Ɨ ƗƗƗ ŊƗƗ Ɨ1AƗƗƗ1PƗ ƗƗƗ19;P9Ɨ Ɨ æŶƗýºžƗèýººŢºƗ ƗƗ@&ƗƗ1µƗƗ'L Ɨ ]¶¬¢¬Å{¶>â ]¶¬|#J¶#X S)D"â fy¶y¶â Îy¶n¬¨uy¨âjj¨âvyâMjqÊÅyÅâE¬¬yâÎj¨âwyâ d¨Îy¶ÁÅyÅâdŶyqÅâ byâ¨ÎyÁÅjŬ¨Áâ¶y²¬¶Åyuâ¨â ÅÁâÅyÁÁâÐy¶yâqj¶¶yuâ ¬ÊÅâjÅâÅyâb¶¬²y¨n¬Áâ]¶¬¶j¢¢yâN ÊÖj¨j â 14LâNj¶¨yÅÅÁŶyzÅ
    [Show full text]
  • Ii \ T MEXICAN GRASSES in the UNITED STATES NATIONAL
    ■ . ~+j-,r?7-w- - i i - . \ t MEXICAN GRASSES IN THE UNITED STATES NATIONAL HERBARIUM. By A. S, Hitchcock INTRODUCTION. The following list of grasses, based entirely upon specimens in the United States National Herbarium, is a preliminary paper, in which the scattered data upon Mexican grasses have been brought together and arranged in a convenient form. The species included have been accepted, for the most part, in their traditional sense. It has been impracticable to examine the types of many of the earlier described species since these specimens are located in European herbaria. For this reason the synonymy has been confined mostly to those names that could be fixed by an examination of American types, or concerning the application of which there was little doubt. The largest number of unidentified names are found in Fournier's work on Mexican grasses.1 This results from the incomplete or unsatis- factory descriptions and from the fact that the specimens cited under a given species either may not agree with the diagnosis, or may belong to two or more species, at least in different herbaria. An examination of the original specimens will undoubtedly lead to the identification of the greater part of these names. There are several specimens that have been omitted from the list because they have not been identified and are apparently unde- scribed species. They belong to genera, however, that are much in need of critical revision and further study of them is deferred for the present. In subsequent articles it is hoped to work out the classifi- cation of the tropical American grasses upon a type basis KEY TO THE GENEBA.
    [Show full text]
  • The Identity of Ucuqui by Joao Murca Fires1 and Richard Evans Schultes2
    THE IDENTITY OF UCUQUI BY JOAO MURCA FIRES1 AND RICHARD EVANS SCHULTES2 ONE of the results of recent field work in the upper Rio Negro basin of Brazil has been the identification of a useful plant of that area—the ucuqui. The fruit of this tree has an edible and delicious mesocarp and is an impor- tant part of the diet of the native peoples of the region. Investigation has shown that the ucuqui is an unde- scribed species of the sapotaceous genus Pouteria. It is altogether fitting that, in publishing a description of this food plant, we employ as a specific epithet the common name which refers exclusively to this species over the greater part of its range. Pouteria Ucuqui is immediately set apart from all other species of the genus by the excessively developed disk which surrounds the ovary. Pouteria Ucuqui Pi res &, Schultes sp. nov. Arbor enormis, usque ad centum viginti pedes alta, radicibus tabularibus, trunco columnari usque ad tres pedes in diametro, cortice crasso, molli, extus atrobadio 1 Chief, Section of Biology, Instituto Agronomico do Norte, Belem do Para, Brazil. * Botanist, Bureau of Plant Industry, Soils, and Agricultural Engi- neering, Agricultural Research Administration, U.S. Department of Agriculture; Research Fellow, Botanical Museum, Harvard Univer- sity ; Collaborator, Instituto Agronomico do Norte. [87] et intus sanguineo cum latice alho aquosoque. Hamuli juniores, inflorescentiae, petioli et foliorum nervi indu- mento ferrugineo-pulverulento vel ferrugineo-furfuraceo obtecti. Folia alterna, bene coriacea, elliptica, basi et apice acuta vel obtusiuscula, plerumque cum acumine 7-10 mm. longo, margine Integra, 11—20 cm.
    [Show full text]
  • Environmental Science in the Course of Different Levels
    THIS PAGE IS BLANK NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS New Delhi · Bangalore · Chennai · Cochin · Guwahati · Hyderabad Jalandhar · Kolkata · Lucknow · Mumbai · Ranchi PUBLISHING FOR ONE WORLD Visit us at www.newagepublishers.com Copyright © 2006 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (10) : 81-224-2330-2 ISBN (13) : 978-81-224-2330-3 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com Education is a process of development which includes the three major activities, teaching, training and instruction. Teaching is social as well as a professional activity. It is science as well as art. Modern education is not in a sphere but it has a long and large area of study. Now a days most part of the world population is facing different problems related with the nature and they are studying the solutions to save the nature and global problems, but on the second hand we even today do not try to understand our local problems related to the nature. So for the awareness of the problems of P nature and pollution the higher education commission has suggested to add the Environmental Science in the course of different levels.
    [Show full text]
  • Alkaloids and Volatile Constituents from the Stem of Fusaea Longifolia (Aubl.) Saff
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Received 11/27/04. Accepted 03/31/05 15(2): 115-118, Abr./Jun. 2005 Alkaloids and volatile constituents from the stem of Fusaea longifolia (Aubl.) Saff. (Annonaceae) J.F. Tavares1, J.M. Barbosa-Filho1, M.S. da Silva*1, J.G.S. Maia2, E.V.L. da-Cunha1,3 Artigo 1Laboratório de Tecnologia Farmacêutica “Delby Fernandes de Medeiros”, Universidade Federal da Paraíba, Caixa Postal 5009, 58051-970, João Pessoa, PB, Brasil. 2 Departamento de Engenharia Química e de Alimentos, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-900 Belém, PA, Brasil. 3 Departamento de Farmácia, Universidade Estadual da Paraíba, CCBS, 58100-000, Campina Grande, PB, Brasil. ABSTRACT: A phytochemical study of the ethanol extract and an extraction of the volatile compounds, performed by means of Clevenger apparatus were carried out with the stem of Fusaea longifolia (Aubl.) Saff. (Annonaceae). The ethanol extract yielded O-methylmoschatoline, isolated for the fi rst time in this species, and stepholidine, reported for the fi rst time in genus Fusaea. The structural identifi cation of the alkaloids was made based on the analysis of their NMR spectra. Through the use of GC and GC-MS, two sesquiterpenoids, α-cadinol (12.5%) and spatulenol (12.0%) were identifi ed as the major constituents of the essential oil. Keywords: Fusaea longifolia, Annonaceae, alkaloids, volatile constituents. INTRODUCTION MATERIAL AND METHODS The family Annonaceae, created by Jussieu in Plant material 1789 (Hutchinson, 1973), is comprised by 2.300 species distributed in approximately 130 pantropical genera The botanic material was collected in the (Maas et al., 2001).
    [Show full text]
  • Wood Anatomy of the Neotropical Sapotaceae Xxiv. Ecclinusa
    WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE XXIV. ECCLINUSA RESEARCH PAPER FPL 395 FOREST PRODUCTS LABORATORY FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE MADISON, WIS. MAY 1981 Abstract Ecclinusa is a small genus of South American species characterized by their pale-brown, roseate, or sometimes rust-colored woods of moderate density (specific gravity averages 0.71). The small pores are in clustered-echelon arrangement or in laterally spaced files in echelon or radial arrangement. Ecclinusa is a silica accumulating genus, attaining concentrations of 2.05 percent in E. guianensis. Since its inception in 1839, the genus has remained remarkably stable and has accumulated a minimal amount of synonomy. Preface The Sapotaceae form an important part of the ecosystem in the neotropics; for example, limited inventories made in the Amazon Basin indicate that this family makes up about 25 percent of the standing timber volume there. This would represent an astronomical volume of timber but at present only a very small fraction is being utilized. Obviously, better information would help utilization-- especially if that information can result in clear identification of species. The Sapotaceae represent a well-marked and natural family but the homogeneous nature of their floral characters makes generic identification extremely dif- ficult. This in turn is responsible for the extensive synonomy. Unfortunately, species continue to be named on the basis of flowering or fruiting material alone and this continues to add to the already confused state of affairs. This paper on Ecclinusa is the twenty-fourth in a series describing the anatomy of the secondary xylem of the neotropical Sapotaceae.
    [Show full text]