Design, Synthesis, and Characterization of Functional Click Nucleic

Total Page:16

File Type:pdf, Size:1020Kb

Design, Synthesis, and Characterization of Functional Click Nucleic DESIGN, SYNTHESIS, AND CHARACTERIZATION OF FUNCTIONAL CLICK NUCLEIC ACID POLYMERS AND CONJUGATES FOR BIOLOGICAL APPLICATIONS By ALEX J. ANDERSON B.S., Vanderbilt University, 2015 M.S., University of Colorado, 2017 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemical and Biological Engineering 2020 Thesis committee: Dr. Christopher N. Bowman, Chair Dr. Stephanie J. Bryant Dr. Virginia L. Ferguson Dr. Jennifer N. Cha Dr. Frank Vernerey Abstract Anderson, Alex J. (PhD. Chemical and Biological Engineering) Design, Synthesis, and Characterization of Functional Click Nucleic Acid Polymers and Conjugates for Biological Applications Thesis directed by Christopher N. Bowman and Stephanie J. Bryant Oligonucleotides are a powerful class of biopolymer which, through Watson-and-Crick hydrogen bonding, are capable of directing the self-assembly of materials as well as recognizing and binding to very specific targets. These features have made oligonucleotides an attractive tool for uses in materials science and biotechnology. However, there are several drawbacks to the implementation of oligonucleotides with a natural backbone (i.e. DNA or RNA) including susceptibility to degradation and a limited scale of production. Click Nucleic Acids (CNAs) represent a new class of oligonucleotide that was designed to alleviate these issues. The distinguishing feature of CNAs is that they are polymerized via radical mediated thiol-ene click chemistry, which vastly increases the speed and scale of oligonucleotide synthesis. This thesis focuses on developing CNA polymers and conjugates and demonstrating the utility of CNAs as an alternative oligonucleotide for various biological applications. Initially, linear polymers and copolymers were synthesized and CNA’s cytocompatibility and ability to interact with cellular components was evaluated. Specifically, it was found that linear PEG-CNA conjugates were taken up by cells quickly through an apparently passive mechanism and did not exhibit significant cytotoxicity. In addition, the ability of CNA homopolymers to bind to mRNA was demonstrated by evaluating its use as an mRNA isolation technique. Taking advantage of the ii inherent insolubility of CNA, functional mRNA was effectively isolated from total RNA extracts in yields comparable to commercially available products as determined by in vitro protein translation and RT-qPCR. The second part of this thesis details the synthesis of a branched CNA conjugate and its ability to form physically crosslinked networks upon the introduction of complementary ssDNA. These gels were found to be viscoelastic and completely thermoreversible, exhibiting a melting transition around 60°C. In all, microscale thermophoresis, circular dichroism spectroscopy, and rheology were all used to study the complex crosslinking interaction between CNA and DNA. Finally, higher order, CNA-microparticle conjugates were developed and their ability to load and delivery ssDNA was assessed. After confirming successful conjugation, CNA functionalized microparticles were found to load approximately 6 pmol ssDNA / mg microparticle and loading was sensitive to ssDNA length and sequence. Release of loaded ssDNA was determined to be temperature dependent, but stable to buffer pH. Further, phagocytosis of microparticles was observed via fluorescence microscopy and corroborated by biochemical analysis. In all, this thesis demonstrates the uses of CNA as a functional oligonucleotide for a variety of biological applications through the design of various conjugate architectures. iii To my Dad and Mom Dad, for inspiring me, every single day Mom, for the love and support you have always provided iv Acknowledgements This dissertation is the culmination of not only years of work, but also years of relationships with my mentors, colleagues, and friends. There is not a way to adequately thank all of the people who have helped me during this process, but I will do my best here. First, I would like to thank my advisors, Christopher Bowman and Stephanie Bryant. I could not have asked for a more supportive pair of mentors. I often got a lot of questions about being a co-advised student and I always say I got the best of both worlds. Your varied expertise challenged me to think about problems from both a materials science and biological perspective which I think is one of the most important skills I developed in graduate school. I thank you both for your guidance and mentorship which have prepared me to take the next steps in my career. I would like to thank my committee, Ginger Ferguson, Jennifer Cha, and Franck Vernerey for their valuable input throughout my years of research. This project got to where it is today through the help of you and your students. In addition, I want to thank all of my collaborators that have helped me on this project. In particular, I want to thank Heidi Culver, Ben Fairbanks, Jasmine Sinha, and Mingtao Chen for lending scientific advice and allowing me to vent when things went awry. This project was made possible through a National Science Foundation supported Materials Research Science and Engineering Center (DMR 1420736). Personally, I was funded by a US Department of Education Graduate Assistantship in Areas of National Need (GAANN) grant. I also would like to thank my undergraduate advisors for encouraging my interest in research and for providing me with opportunities for me to learn new skills and explore different areas of research. Dr. Guelcher and Dr. Duvall, thank you for your willingness to take on an inexperienced undergraduate student and for helping me find my way. v The best piece of advice I can give to new graduate students is to make sure you are surrounded by people you love and who love you. At the end of the day, these are the people who will be your support when things become stressful due to deadlines, important presentations, or more often failures. In my case, I am lucky that I have had such an incredible support system at CU-Boulder, and I would not trade my experience for the world. My labmates in both the Bowman and Bryant research groups are all wonderful people and I cannot thank them all enough for making lab a fun place to work. You all were an integral part to my experience here and made me feel like family from day one. I especially want to thank Elizabeth and Stanley for being awesome lab mentors and more importantly, great friends. I know I asked a lot of stupid questions, but I want to thank you for answering them earnestly and making me feel like I was a part of the lab. Margaret, thank you for being a great labmate, roommate, role model, and friend. When the goings got rough, you always provided a level-headed perspective and weren’t afraid to let me know when I was overreacting, which I sincerely appreciate. Parker also told me to thank Dorie for being his best friends. And Leila, thank you for being my best friend. Your dad was right, your grad school friends will be your friends for life, despite anything anyone says (including me). Oh, and Parker wanted me to thank Butler for being his other best friend. Finally, to all my family and friends everywhere, thank you for your constant love and support! vi Table of Contents Chapter 1 - Introduction .................................................................................................................. 1 1.1 Introduction ........................................................................................................... 1 1.2 Uses of DNA-Polymer Conjugates ....................................................................... 3 1.2.1 Linear Architectures ........................................................................................ 4 1.2.2 Branched Architectures ................................................................................... 5 1.2.3 Higher Order Architectures ............................................................................. 6 1.3 Development of XNA’s and their Polymer Conjugates ........................................ 7 1.3.1 Peptide Nucleic Acids ..................................................................................... 8 1.3.2 Locked Nucleic Acids ................................................................................... 11 1.3.3 Morpholino Nucleic Acids ............................................................................ 12 1.3.4 Other types of XNAs ..................................................................................... 14 1.4 Development of Click Nucleic Acids .................................................................. 15 1.5 Thesis overview ................................................................................................... 17 1.6 References ........................................................................................................... 18 Chapter 2 - Objectives and Scope ................................................................................................. 28 2.1 Aim 1: Identify interactions between linear CNA polymers and copolymers with cells cellular components .................................................................................... 29 2.1.1 Sub-aim 1.1 ................................................................................................... 29 2.1.2 Sub-aim 1.2 ................................................................................................... 30 2.2 Aim 2: Utilize
Recommended publications
  • Overview of DNA Self-Assembling: Progresses in Biomedical Applications
    pharmaceutics Review Overview of DNA Self-Assembling: Progresses in Biomedical Applications Andreia F. Jorge 1 and Ramon Eritja 2,* 1 Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; [email protected] 2 Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain * Correspondence: [email protected]; Tel.: +34-934-006-145 Received: 22 November 2018; Accepted: 8 December 2018; Published: 11 December 2018 Abstract: Molecular self-assembling is ubiquitous in nature providing structural and functional machinery for the cells. In recent decades, material science has been inspired by the nature’s assembly principles to create artificially higher-order structures customized with therapeutic and targeting molecules, organic and inorganic fluorescent probes that have opened new perspectives for biomedical applications. Among these novel man-made materials, DNA nanostructures hold great promise for the modular assembly of biocompatible molecules at the nanoscale of multiple shapes and sizes, designed via molecular programming languages. Herein, we summarize the recent advances made in the designing of DNA nanostructures with special emphasis on their application in biomedical research as imaging and diagnostic platforms, drug, gene, and protein vehicles, as well as theranostic agents that are meant to operate in-cell and in-vivo. Keywords: DNA self-assembling; gene delivery; drug delivery; protein delivery; theranostics; nanomedicine 1. Introduction Nowadays, there is an increasing demand for developing predictive, preventive, and non-invasive patient-centered medicines, ideally combining diagnosis and therapeutics in one single device to enabling early diagnosis, precise treatment, and management of a specific disease, with power to leverage the quality of medical care [1].
    [Show full text]
  • Gene Regulation Using Spherical Nucleic Acids to Treat Skin Disorders
    pharmaceuticals Review Gene Regulation Using Spherical Nucleic Acids to Treat Skin Disorders Thomas R. Holmes and Amy S. Paller * Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-312-695-3721 Received: 19 September 2020; Accepted: 30 October 2020; Published: 2 November 2020 Abstract: Spherical nucleic acids (SNAs) are nanostructures consisting of nucleic acids in a spherical configuration, often around a nanoparticle core. SNAs are advantageous as gene-regulating agents compared to conventional gene therapy owing to their low toxicity, enhanced stability, uptake by virtually any cell, and ability to penetrate the epidermal barrier. In this review we: (i) describe the production, structure and properties of SNAs; (ii) detail the mechanism of SNA uptake in keratinocytes, regulated by scavenger receptors; and (iii) report how SNAs have been topically applied and intralesionally injected for skin disorders. Specialized SNAs called nanoflares can be topically applied for gene-based diagnosis (scar vs. normal tissue). Topical SNAs directed against TNFα and interleukin-17A receptor reversed psoriasis-like disease in mouse models and have been tested in Phase 1 human trials. Furthermore, SNAs targeting ganglioside GM3 synthase accelerate wound healing in diabetic mouse models. Most recently, SNAs targeting toll-like receptor 9 are being used in Phase 2 human trials via intratumoral injection to induce immune responses in Merkel cell and cutaneous squamous cell carcinoma. Overall, SNAs are a valuable tool in bench-top and clinical research, and their advantageous properties, including penetration into the epidermis after topical delivery, provide new opportunities for targeted therapies.
    [Show full text]
  • Advances in Oligonucleotide Drug Delivery
    REVIEWS Advances in oligonucleotide drug delivery Thomas C. Roberts 1,2 ✉ , Robert Langer 3 and Matthew J. A. Wood 1,2 ✉ Abstract | Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge. Oligonucleotides are nucleic acid polymers with the In addition to their ability to recognize specific tar- potential to treat or manage a wide range of diseases. get sequences via complementary base pairing, nucleic Although the majority of oligonucleotide therapeutics acids can also interact with proteins through the for- have focused on gene silencing, other strategies are being mation of three-dimensional secondary structures — a pursued, including splice modulation and gene activa- property that is also being exploited therapeutically. For tion, expanding the range of possible targets beyond example, nucleic acid aptamers are structured
    [Show full text]
  • Today's Overview
    Today’s Overview – Introduction to nanoscience and technology – How does light interact with matter on the nanoscale? – Emergent properties: Transition from the bulk to the nanoscale – Colloids – Interfacing nanomaterials with DNA – Design rules for new materials – Applications of spherical nucleic acids Image Courtesy of Bawendi and Coworkers. Chad A. Mirkin There’s Plenty of Room at the Bottom “I am not afraid to consider the final question as to whether, ultimately —in the great future — we can arrange the atoms the way we want; the very atoms, all the way down!“ -- Richard Feynman December 26, 1959 California Institute of Technology Feynman, R. Engineering and Science 1960, 23(5), 22–36. Chad A. Mirkin Historical Significance of Nanomaterials 300 1500 1857 1947 1974 1985 1990s 2000s Early Understanding Rational Design and Observation of of the Nanoscale/ Manipulation of Nanoscale Phenomena Era of Miniaturization Nanoscale Objects Chad A. Mirkin Tools for Studying Nanoparticles JEOL FEI Courtesy Hersam and Coworkers Scanning Electron Transmission Electron Scanning Tunneling Microscope (SEM) Microscope (TEM) Microscope (STM) Qin, L.; Mirkin, C. et al. Science 2005, 309(5731), 113. Jin, R.; Mirkin, C. et al. Nature 2003, 425, 487. Hossain, Hersam, et al. JACS 2010, 132, 43, 15399. Chad A. Mirkin Defining Nanotechnology 1. Developing tools for making, characterizing, and manipulating materials on the nanometer (nm) length scale 2. Determining the chemical and physical consequences of miniaturization. Chad A. Mirkin Size, Shape, and Composition Matter Rayleigh Light Scattering of Nanoparticles Ag Nanoprisms Au Spheres Au Spheres Ag Spheres Ag Spheres Ag Spheres ~100 nm ~100 nm ~50 nm ~100 nm ~80 nm ~40 nm 200 nm 200 nm (the same for all the images) Small 2005, 1, 14.
    [Show full text]
  • 1 Using DNA to Program the Self-Assembly of Colloidal Nanoparticles and Microparticles Preface Deoxyribonucleic Acid
    Accepted version of article first published as Rogers, Shih, Manoharan, Nature Reviews Materials, 1: 16008, 2016. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles W. Benjamin Rogers1,2, William M. Shih3,4,5, Vinothan N. Manoharan1,6 1Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 2Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453 3Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 4Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 5Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 6Department of Physics, Harvard University, Cambridge, MA 02138 Preface Deoxyribonucleic acid (DNA) is not just the stuff of our genetic code; it is also a means to design self-assembling materials. Grafting DNA onto nano- and microparticles can, in principle, “program” them with information telling them exactly how to self-assemble. Although fully programmable assembly has not yet been realized, the groundwork has been laid: with an understanding of how specific interparticle attractions arise from DNA hybridization, we can now make systems that reliably assemble in and out of equilibrium. We discuss these advances and design rules that will allow us to control—and ultimately program—the assembly of new materials. Box 1: Self-assembly is a process by which a system of disordered components spontaneously assembles into an ordered pattern or structure without human intervention. In programmable self-assembly, information is added to the system in order to direct assembly toward a prescribed structure or behavior.
    [Show full text]
  • Dna Enzymes for Peptide-Nucleic Acid Conjugation and for Lysine Methylation
    DNA ENZYMES FOR PEPTIDE-NUCLEIC ACID CONJUGATION AND FOR LYSINE METHYLATION BY CHIH-CHI CHU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Doctoral Committee: Professor Scott K. Silverman, Chair Professor Paul J. Hergenrother Associate Professor Douglas A. Mitchell Professor Steven C. Zimmerman Abstract Proteins and RNA are known to be enzymes in nature. These biopolymers have complex secondary and tertiary structures that can enable substrate binding and catalysis. DNA is primarily double-stranded and is not known to be catalytic in nature. However, given the similarities in chemical structure between DNA and RNA, it is reasonable to think that single- stranded DNA can also form complex structures. In fact, artificial DNA enzymes have been identified in laboratories by in vitro selection. The identification of new enzymes favors the use of nucleic acids over proteins for several reasons. First, nucleic acids can be amplified by natural enzymes whereas proteins cannot be amplified in any way. Second, the number of possible sequences is smaller for nucleic acids (4n, where n is the length of the biopolymer) than for proteins (20n). Therefore, selection experiments for identifying nucleic acid enzymes will cover a larger fraction of total sequence space. Furthermore, of the sequence space that is covered, a large portion of nucleic acid sequences can fold into secondary or tertiary structures, whereas most random sequences of proteins often will not fold and thus will aggregate. Between the two nucleic acid polymers, DNA offers additional advantages over RNA because DNA can be directly amplified by polymerases whereas RNA requires an extra reverse transcription step.
    [Show full text]
  • Spherical Nucleic Acid Nanoparticles: Therapeutic Potential
    BioDrugs https://doi.org/10.1007/s40259-018-0290-5 LEADING ARTICLE Spherical Nucleic Acid Nanoparticles: Therapeutic Potential Chintan H. Kapadia1 · Jilian R. Melamed1 · Emily S. Day1,2,3 © Springer International Publishing AG, part of Springer Nature 2018 Abstract Spherical nucleic acids (SNAs) are highly oriented, well organized, polyvalent structures of nucleic acids conjugated to hollow or solid core nanoparticles. Because they can transfect many tissue and cell types without toxicity, induce minimum immune response, and penetrate various biological barriers (such as the skin, blood–brain barrier, and blood–tumor barrier), they have become versatile tools for the delivery of nucleic acids, drugs, and proteins for various therapeutic purposes. This article describes the unique structures and properties of SNAs and discusses how these properties enable their application in gene regulation, immunomodulation, and drug and protein delivery. It also summarizes current eforts towards clinical translation of SNAs and provides an expert opinion on remaining challenges to be addressed in the path forward to the clinic. Key Points genes includes antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and microRNAs (miRNAs) Spherical nucleic acids (SNAs) are revolutionizing the [4]. Many of these have been investigated in clinical trials felds of diagnostics, gene regulation, immunotherapy, for the treatment of diseases including cancer, neurological and drug and protein delivery. disease, infectious disease, and spinal muscular atrophy, and six nucleic acid-based therapies have been approved by the This article discusses how the unique structure and US Food and Drug Administration (FDA) for clinical use properties of SNAs enable them to maximize their efect [5]. However, translation and clinical success of nucleic acid in various medical applications.
    [Show full text]
  • Beyond Rna and Dna: In-Situ Sequencing of Informational Polymers
    International Workshop on Instrumentation for Planetary Missions (2012) 1136.pdf BEYOND RNA AND DNA: IN-SITU SEQUENCING OF INFORMATIONAL POLYMERS. C. E. Carr1-3,*, G. Ruvkun2-3 and M. T. Zuber1. 1Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge MA. 2Department of Molecular Biology, Massachusetts General Hospital, Boston, MA. 3Department of Genetics, Har- vard Medical School, Boston, MA. *Correspondence to [email protected]. Dust, Introduction: Nucleic acid sequencing provides a Comets, Earth GNA/TNA?? RNA DNA powerful approach to search for life beyond Earth, as Meteors Meteoritic Exchange well as to monitor levels of forward contamination [1, Mars Common ancestor / 2nd genesis / no life 2]. A strong case can be made to look for RNA or Sun Enceladeus 2nd genesis / no life DNA-based life on Mars [3, 4]: any life there could Europa 2nd genesis / no life Complex organics Others 2nd genesis / no life have a common ancestor with life on Earth due to ex- produced around all stars Delivered to Life evolved one or tensive meteoritic transfer between our two planets [5- multiple potentially more times 9] and the potential for transfer of viable microbes. habitable zones Here we argue that in-situ sequencing has a role in Figure 1. Delivery of similar organic material to mul- life detection even beyond the context of meteoritic tiple habitable zones: if life arose beyond Earth, what transfer, such as searching for life in potentially habit- informational polymers would it use? able environments on Enceladus [10, 11], or Europa [12]. This is because 1) sequencing of non standard nucleic acids is now possible, and 2) it may also be possible to sequence even more generic informational As a result, similar organic material may be delivered polymers (IPs).
    [Show full text]
  • United States Patent ( 10) Patent No
    US010328026B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 328 , 026 B2 Thaxton et al. (45 ) Date of Patent: * Jun . 25 , 2019 ( 54 ) SYNTHETIC NANOSTRUCTURES (58 ) Field of Classification Search INCLUDING NUCLEIC ACIDS AND /OR CPC .. .. .. .. A61K 9 / 127 OTHER ENTITIES See application file for complete search history . (71 ) Applicant: Northwestern University, Evanston , IL (56 ) References Cited (US ) U . S . PATENT DOCUMENTS (72 ) Inventors : C . Shad Thaxton , Chicago , IL (US ) ; 5 ,472 , 881 A 12 / 1995 Beebe et al. Chad A . Mirkin , Wilmette , IL ( US) ; 5 , 814 ,666 A 9 / 1998 Green et al . Kaylin M . McMahon , Chicago , IL 5 , 955 , 589 A 9 / 1999 Cook et al. (US ) ; Sushant Tripathy , Evanston , IL 6 , 274 , 337 B1 8 / 2001 Parce et al. (US ) ; Raja Kannan Mutharasan , 6 , 361, 944 B1 3 / 2002 Mirkin et al. 6 ,506 , 564 B1 1 / 2003 Mirkin et al. Chicago , IL ( US ) ; David M . Leander , 6 ,677 , 153 B2 1 / 2004 Iversen St. Louis , MO (US ) ; Andrea Luthi, 7 ,691 , 414 B2 4 / 2010 Sligar et al. Evanston , IL (US ) 7 , 951 ,453 B25 / 2011 Debertret et al . 8 ,323 ,686 B2 * 12/ 2012 Mirkin .. A61K 9 / 1275 424 / 450 ( 73 ) Assignee : Northwestern University, Evanston , IL 8 ,933 ,046 B2 1 / 2015 Machuy et al . (US ) 9 , 216 , 155 B2 8 /2015 Thaxton et al. 9 , 532 , 948 B2 1 / 2017 Mirkin et al. ( * ) Notice: Subject to any disclaimer , the term of this 9 ,693 , 957 B2 7 / 2017 Lin et al. patent is extended or adjusted under 35 2003 /0147966 AL 8 / 2003 Franzen et al .
    [Show full text]
  • Current Aspects of Sirna Bioconjugate for in Vitro and in Vivo Delivery
    molecules Review Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery Wanyi Tai Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, Hubei, China; [email protected]; Tel.: +86-027-68759987 Received: 16 May 2019; Accepted: 8 June 2019; Published: 13 June 2019 Abstract: Studies on siRNA delivery have seen intense growth in the past decades since siRNA has emerged as a new class of gene therapeutics for the treatment of various diseases. siRNA bioconjugate, as one of the major delivery strategies, offers the potential to enhance and broaden pharmacological properties of siRNA, while minimizing the heterogeneity and stability-correlated toxicology. This review summarizes the recent developments of siRNA bioconjugate, including the conjugation with antibody, peptide, aptamer, small chemical, lipidoid, cell-penetrating peptide polymer, and nanoparticle. These siRNA bioconjugate, either administrated alone or formulated with other agents, could significantly improve pharmacokinetic behavior, enhance the biological half-life, and increase the targetability while maintaining sufficient gene silencing activity, with a concomitant improvement of the therapeutic outcomes and diminishment of adverse effects. This review emphasizes the delivery application of these siRNA bioconjugates, especially the conjugation strategy that control the integrity, stability and release of siRNA bioconjugates. The limitations conferred by these conjugation strategies have also been covered. Keywords: siRNA bioconjugate; siRNA scaffold; asymmetric siRNA; lipid siRNA conjugate; spherical siRNA 1. Introduction RNA interference (RNAi) is a powerful gene silencing tool that utilizes 21–25-nucleotide (nt) small interfering RNA (siRNA) to degrade a particular mRNA in highly sequence-specific manner.
    [Show full text]
  • Evaluating TNA Stability Under Simulated Physiological Conditions
    Bioorganic & Medicinal Chemistry Letters 26 (2016) 2418–2421 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Evaluating TNA stability under simulated physiological conditions Michelle C. Culbertson a, Kartik W. Temburnikar a, Sujay P. Sau a,c, Jen-Yu Liao a,c, Saikat Bala a,c, ⇑ John C. Chaput a,b,c, a Biodesign Institute, Arizona State University, Tempe, AZ 85287-5301, USA b Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-5301, USA c Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA article info abstract Article history: Chemically modified oligonucleotides are routinely used as diagnostic and therapeutic agents due to their Received 12 March 2016 enhanced biological stability relative to natural DNA and RNA. Here, we examine the biological stability Revised 30 March 2016 of a-L-threofuranosyl nucleic acid (TNA), an artificial genetic polymer composed of repeating units of Accepted 31 March 2016 0 0 a-L-threofuranosyl sugars linked by 2 ,3 -phosphodiester bonds. We show that TNA remains undigested Available online 1 April 2016 after 7 days of incubation in the presence of either 50% human serum or human liver microsomes and is stable against snake venom phosphordiesterase (a highly active 30 exonuclease). We further show that Keywords: TNA will protect internal DNA residues from nuclease digestion and shield complementary RNA strands Threose nucleic acid from RNA degrading enzymes. Together, these results demonstrate that TNA is an RNA analogue with Biological stability RNA analogue high biological stability. Ó 2016 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Theranostics Molecular Beacons of Xeno-Nucleic Acid for Detecting
    Theranostics 2013, Vol. 3, Issue 6 395 Ivyspring International Publisher Theranostics 2013; 3(6):395-408. doi: 10.7150/thno.5935 Review Molecular Beacons of Xeno-Nucleic Acid for Detecting Nucleic Acid Qi Wang2, Lei Chen1, Yitao Long1, He Tian1 and Junchen Wu1, 1. Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, China. 2. College of Public Health, Nantong University, China. Corresponding author: Junchen Wu, Meilong 130, Shanghai 200237, China. Telephone: (+86) 21-6425-3674, fax: (+86) 21-6425-2258, E-mail: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.01.23; Accepted: 2013.04.10; Published: 2013.05.05 Abstract Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluoro- phores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and dis- advantages.
    [Show full text]