ETH23721.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

ETH23721.Pdf Research Collection Doctoral Thesis The Importance of Clathrin-Mediated Endocytosis in Adult Myelinating Schwann Cells Author(s): Gerber, Daniel Paul Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010735322 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ACHTUNG: ERSTE SETIE NICHT DRUCKEN (Druckbefehl von: 1-200) DISS. ETH No. 23721 The Importance of Clathrin-Mediated Endocytosis in Adult Myelinating Schwann Cells a thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by DANIEL PAUL GERBER MSc ETH Biology born 03.10.1987 citizen of Zurich (ZH) accepted on the recommendation of Prof. Dr. Ueli Suter (referee) Prof. Dr. Claire Jacob (co-referee) Prof. Dr. Bernd Wollscheid (co-referee) Dr. Axel Niemann (co-referee) 2016 Introduction 2 Summary Mutations in dynamin 2 (DNM2) have been reported to cause Charcot-Marie-Tooth (CMT) disease, the most prevalent hereditary neuropathy of the peripheral nervous system. The ubiquitously expressed dynamin 2 has a wide range of cellular functions, being involved in various forms of endocytosis, vesicular trafficking and cytoskeletal remodelling. However, its physiological role in the CMT-relevant cell types is poorly understood, which has made it difficult to understand the pathomechanisms leading to CMT. Hence, we generated a Schwann cell-specific inducible knockout mouse (Dnm2iko) to investigate the physiological role of Dnm2 in adult myelinating Schwann cells. Four weeks after induction, Dnm2iko mice developed a severe demyelinating phenotype with paraparesis followed by spontaneous recovery, a clinical course reminiscent of an acute inflammatory demyelinating polyneuropathy (AIDP), the most common subtype of Guillain-Barré-Syndrom (GBS). At a histological level, the demyelination was accompanied by a strong inflammatory response with a prominent macrophage infiltrate. Interestingly, pharmacological ablation of macrophages led to a delayed clinical recovery, thus pointing towards a beneficial role of these inflammatory cells. We than took advantage of a YFP-reporter mouse line to determine the identity of the demyelinating and remyelinating SCs. To our surprise we could show that demyelination in Dnm2iko mice was followed by apoptosis of all the recombined Schwann cells (70 % of all the SCs), and that the remaining 30 % non- recombined SCs were able to repopulate and remyelinate the entire nerve. Overall, these results underline the remarkable plasticity of SCs and show an absolute requirement of dynamin 2 for myelin integrity and survival of adult SCs. A recent study suggested that impaired clathrin-mediated endocytosis (CME) is the major contributing factor in the Dnm2-related forms of CMT. In order to assess the contribution of impaired CME to the observed phenotype in Dnm2iko mice, we generated Schwann cell-specific inducible knockout mice for the µ-subunit (AP2iko) of the adaptor protein complex 2 (AP-2), which is absolutely required for and exclusively involved in CME. In contrast to Dnm2iko, AP2iko mice did not develop an acute demyelinating neuropathy within the first months after recombination. Instead, aged mice developed a chronic peripheral neuropathy with features of de- and remyelination, the formation of outfoldings and onion bulbs, as well as secondary axonal loss. All of these are classical hallmarks of Charcot-Marie-Tooth disease. Finally, we found that the ablation of AP2µ2 or Dnm2 leads to an iron deficiency due to the impaired uptake of transferrin receptor, which could partially contribute to the observed demyelination. In conclusion, our data indicate that SCs rely on CME for long-term maintenance of peripheral nerves, whereas other functions of dynamin 2 are additionally required to ensure SC survival. Introduction 4 Zusammenfassung Spezifische Mutationen im Dynamin 2-Gen führen zu einer Charcot-Marie-Tooth (CMT) Neuropathie. Das ubiquitär exprimierte Dynamin 2 hat eine Vielzahl von Funktionen. Diese reichen von verschiedenen Formen der Endozytose über den intrazellulären Transport von Vesikeln bis hin zur Modulation des Zytoskeletts. Trotzdem ist über die Funktion von Dynamin 2 in denen für CMT relevanten Zelltypen wenig bekannt. Deswegen generierten wir eine induzierbare Knockout-Maus, welche es uns ermöglicht die Expression von Dynamin 2 spezifisch in Schwann Zellen zu inhibieren (Dnm2iko). Vier Wochen nach der Induktion entwickeln diese Mäuse eine starke, aber transiente Neuropathie. Der klinische Phänotyp hat viele Gemeinsamkeiten mit der akuten inflammatorischen demyelinisierenden Polyradikuloneuropathie (AIDP), der häufigsten Unterart des Guillain-Barré-Syndrom (GBS). Wir konnten zeigen, dass die Schwann Zellen in den Dnm2iko Mäusen nach der Demyelinisierung in Apoptose gehen. Dieser Prozess wird von einer starken Entzündungsreaktion begleitet. Die hierbei infiltrierenden Makrophagen sind vorteilhaft für die Regeneration der beschädigten Nerven. Erstaunlicherweise kann der beobachtete Verlust von 70 % aller Schwann Zellen (alle rekombinierten Schwann Zellen) von den 30% nicht-rekombinierten Zellen kompensiert werden. Dies führt innerhalb von zwei Wochen nach der stärksten Beeinträchtigung zur Erholung der betroffenen Mäuse. Zusammenfassend können wir sagen, dass Dynamin 2 absolut notwendig für die Erhaltung der Myelinschicht, sowie für das Überleben von adulten myelinisierenden Schwann Zellen ist. Eine kürzlich erschienene Studie hat gezeigt, dass eine beeinträchtigte Clathrin-vermittelte Endozytose (CME) die Hauptursache für die von mutiertem Dynamin 2 hervorgerufene CMT ist. Um eine Verknüpfung des in den Dnm2iko Mäusen beobachteten Phänotyps mit einer beeinträchtigten CME herzustellen, haben wir eine weitere Knockout-Maus generiert. Hierbei wurde die µ-Untereinheit des Adaptorproteinkomplexes 2 (AP-2) spezifisch in adulten myelinisierenden Schwann Zellen abladiert (AP2iko). AP-2 ist ausschliesslich und exklusiv an CME beteiligt. Im Gegensatz zu den Dnm2iko entwickeln AP2iko Mäuse während der ersten Monate keine transiente Neuropathie. Stattdessen manifestiert sich in gealterten Mäusen eine chronische periphere Neuropathie. In der Pathologie offenbarten sich die klassischen Eigenschaften einer CMT, wie eine De- und Remyelinisierung, die Bildung von Outfoldings und Onion-Bulbs, sowie sekundärer Axonverlust. Weiter konnten wir zeigen, dass der Verlust von AP2µ2 oder Dnm2 aufgrund der fehlenden CME zu einem Eisenmangel führt. Dieser Eisenmangel könnte zu der beobachteten Demyelinisierung beitragen. Abschliessend können wir sagen, dass der Phänotyp in den Dnm2iko Mäusen nicht ausschliesslich auf eine verminderte CME zurück zu führen ist. Dennoch führt der Verlust von CME in Schwann Zellen zu einer mit CMT vergleichbaren Neuropathie. Introduction Table of Contents 1 Introduction .............................................................................................................................. 1 1.1 The Vertebrate Peripheral Nervous System and its Myelin ......................................................... 1 1.2 The Origin and Development of Schwann Cells ........................................................................... 2 1.3 The Process of De- and Remyelination in the PNS ....................................................................... 3 1.3.1 Wallerian Degeneration ....................................................................................................... 6 1.3.2 Charcot-Marie-Tooth Neuropathy........................................................................................ 7 1.3.3 Inflammatory Neuropathies ................................................................................................. 9 1.4 The Dynamin Superfamily .......................................................................................................... 10 1.5 Dynamin 2 ................................................................................................................................... 11 1.6 Cellular Functions of Dynamin 2 ................................................................................................. 12 1.7 Dynamin 2 in Disease ................................................................................................................. 13 1.8 The Heterotetrameric Adaptor Complex Family ........................................................................ 14 1.9 The Adaptor Protein Complex 2 ................................................................................................. 15 1.10 Clathrin-Mediated Endocytosis .................................................................................................. 16 1.11 Iron ............................................................................................................................................. 17 1.12 Objective of the Study ................................................................................................................ 19 2 Results ..................................................................................................................................... 21 2.1 SC-Specific Ablation of Dynamin 2 in Adult Mice Results in a Remitting Neuropathy ............... 21 2.1.1 Acute De- and Remyelination upon Dynamin 2 Ablation ................................................... 22 2.1.2 Ablation of Dynamin 2 Causes Schwann Cell Dedifferentiation
Recommended publications
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • The Intrinsically Disordered Proteins of Myelin in Health and Disease
    cells Review Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease Arne Raasakka 1 and Petri Kursula 1,2,* 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway; [email protected] 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland * Correspondence: [email protected] Received: 30 January 2020; Accepted: 16 February 2020; Published: 18 February 2020 Abstract: Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved. Keywords: myelin; intrinsically disordered protein; multiple sclerosis; peripheral neuropathies; myelination; protein folding; protein–membrane interaction; protein–protein interaction 1.
    [Show full text]
  • Ɑ6ß1 Andɑ7ß1 Integrins Are Required in Schwann Cells to Sort
    The Journal of Neuroscience, November 13, 2013 • 33(46):17995–18007 • 17995 Cellular/Molecular ␣6␤1 and ␣7␤1 Integrins Are Required in Schwann Cells to Sort Axons Marta Pellegatta,1,2 Ade`le De Arcangelis,3 Alessandra D’Urso,1 Alessandro Nodari,1 Desire´e Zambroni,1 Monica Ghidinelli,1,2 Vittoria Matafora,1 Courtney Williamson,2 Elisabeth Georges-Labouesse,3† Jordan Kreidberg,4 Ulrike Mayer,5 Karen K. McKee,6 Peter D. Yurchenco,6 Angelo Quattrini,1 Lawrence Wrabetz,1,2 and Maria Laura Feltri1,2 1San Raffaele Scientific Institute, Milano 20132, Italy, 2Hunter James Kelly Research Institute, University at Buffalo, State University of New York, New York 14203, 3Development and Stem Cells Program, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 7104, Institut National de la Sante´ et de la Recherche Me´dicale U964, Universite´ de Strasbourg, Illkirch 67404, France, 4Department of Medicine, Children’s Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, 5Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom, and 6Robert Wood Johnson Medical School, Piscataway, New Jersey, New Jersey 08854 During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the ␤1 integrin subunit are required for radial sorting; however, which of the 11 ␣ integrins that can pair with ␤1 forms the functional receptor is unknown.
    [Show full text]
  • Open Full Page
    Published OnlineFirst December 17, 2015; DOI: 10.1158/0008-5472.CAN-15-0884 Cancer Tumor and Stem Cell Biology Research Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-kB Signaling Pathway Naoki Ohtsu1, Yuka Nakatani2, Daisuke Yamashita3, Shiro Ohue3, Takanori Ohnishi3,and Toru Kondo1,2 Abstract Glioblastoma (GBM)–initiating cells (GIC) are a tumorigenic as Eva1 overexpression enhanced these properties. Eva1 deficien- subpopulation that are resistant to radio- and chemotherapies cy was also associated with decreased expression of stemness- and are the source of disease recurrence. Therefore, the identifi- related genes, indicating a requirement for Eva1 in maintaining cation and characterization of GIC-specific factors is critical GIC pluripotency. We further demonstrate that Eva1 induced GIC toward the generation of effective GBM therapeutics. In this study, proliferation through the activation of the RelB-dependent non- we investigated the role of epithelial V-like antigen 1 (Eva1, also canonical NF-kB pathway by recruiting TRAF2 to the cytoplasmic known as myelin protein zero-like 2) in stemness and GBM tail. Taken together, our findings highlight Eva1 as a novel tumorigenesis. Eva1 was prominently expressed in GICs in vitro regulator of GIC function and also provide new mechanistic and in stem cell marker (Sox2, CD15, CD49f)-expressing cells insight into the role of noncanonical NF-kB activation in GIC, derived from human GBM tissues. Eva1 knockdown in GICs thus offering multiple potential therapeutic targets for preclinical reduced their self-renewal and tumor-forming capabilities, where- investigation in GBM. Cancer Res; 76(1); 171–81. Ó2015 AACR.
    [Show full text]
  • How Does Protein Zero Assemble Compact Myelin?
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Teneurin 2 in Neuronal Network Formation 4699
    Development 129, 4697-4705 (2002) 4697 Printed in Great Britain © The Company of Biologists Limited 2002 DEV1819 Teneurin 2 is expressed by the neurons of the thalamofugal visual system in situ and promotes homophilic cell-cell adhesion in vitro Beatrix P. Rubin1,*, Richard P. Tucker2,*, Marianne Brown-Luedi1, Doris Martin1 and Ruth Chiquet-Ehrismann1,† 1Friedrich Miescher Institute, Novartis Research Foundation, PO Box 2543, CH-4002 Basel, Switzerland 2Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA 95616, USA *These authors contributed equally to this work †Author for correspondence (e-mail: [email protected]) Accepted 20 June 2002 SUMMARY The transmembrane glycoprotein teneurin 2 is expressed domain of teneurin 2 by HT1080 cells induced cell by neurons in the developing avian thalamofugal visual aggregation, and the extracellular domain of teneurin 2 system at periods that correspond with target recognition became concentrated at sites of cell-cell contact in and synaptogenesis. Partial and full-length teneurin 2 neuroblastoma cells. These observations indicate that the constructs were expressed in cell lines in vitro. Expression homophilic binding of teneurin 2 may play a role in the of the cytoplasmic domain is required for the induction of development of specific neuronal circuits in the developing filopodia, the transport of teneurin 2 into neurites and visual system. the co-localization of teneurin 2 with the cortical actin cytoskeleton. In addition, expression of the extracellular Key words: DOC4, Neurestin, Odz, Tenm, Tena, Ten-m, Chicken INTRODUCTION in a signal transduction cascade, as mutational analysis showed that ten-m/odz is a member of the ‘pair-rule’ gene family and Teneurins are a family of type II transmembrane proteins has a central role in determining the segmentation of the originally discovered in Drosophila.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Proteolytically Released Lasso/Teneurin-2 Induces Axonal
    RESEARCH ARTICLE Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal growth cones Nickolai V Vysokov1,2,3,4, John-Paul Silva2,5, Vera G Lelianova1,2, Jason Suckling2,6, John Cassidy2,7, Jennifer K Blackburn1,8, Natalia Yankova2,9, Mustafa BA Djamgoz2, Serguei V Kozlov10, Alexander G Tonevitsky11,12, Yuri A Ushkaryov1,2* 1School of Pharmacy, University of Kent, Chatham, United Kingdom; 2Department of Life Sciences, Imperial College London, London, United Kingdom; 3Wolfson Centre for Age Related Diseases, King’s College London, London, United Kingdom; 4BrainPatch Ltd, London, United Kingdom; 5Department of Bioanalytical Sciences, Non-clinical development, UCB-Pharma, Berkshire, United Kingdom; 6Thomsons Online Benefits, London, United Kingdom; 7Arix Bioscience, London, United Kingdom; 8Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, United States; 9Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom; 10Center for Advanced Preclinical Research, National Cancer Institute, Frederick, United States; 11Higher School of Economics, Moscow, Russia; 12Scientific Research Centre Bioclinicum, Moscow, Russia Abstract A presynaptic adhesion G-protein-coupled receptor, latrophilin-1, and a postsynaptic transmembrane protein, Lasso/teneurin-2, are implicated in trans-synaptic interaction that *For correspondence: Correspondence: y.ushkaryov@ contributes to synapse formation. Surprisingly, during neuronal development, a substantial kent.ac.uk proportion of Lasso is released into the intercellular space by regulated proteolysis, potentially precluding its function in synaptogenesis. We found that released Lasso binds to cell-surface Competing interest: See latrophilin-1 on axonal growth cones. Using microfluidic devices to create stable gradients of page 27 soluble Lasso, we show that it induces axonal attraction, without increasing neurite outgrowth.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]