Down-Regulation of Homeobox Genes MEIS1 and HOXA in MLL-Rearranged Acute Leukemia Impairs Engraftment and Reduces Proliferation

Total Page:16

File Type:pdf, Size:1020Kb

Down-Regulation of Homeobox Genes MEIS1 and HOXA in MLL-Rearranged Acute Leukemia Impairs Engraftment and Reduces Proliferation Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation Kira Orlovskya, Alexander Kalinkovichb,1, Tanya Rozovskaiaa,1, Elias Shezenb, Tomer Itkinb, Hansjuerg Alderc, Hatice Gulcin Ozerd, Letizia Carramusaa, Abraham Avigdore, Stefano Voliniac, Arthur Buchbergf, Alex Mazog, Orit Kolletb, Corey Largmanh,2, Carlo M. Crocec,3, Tatsuya Nakamurac, Tsvee Lapidotb, and Eli Canaania,3 Departments of aMolecular Cell Biology and bImmunology, Weizmann Institute of Science, Rehovot, 76100 Israel; Departments of cMolecular Virology, Immunology and Medical Genetics and dBiomedical Informatics, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; eHematology Division, Sheba Medical Center, Tel-Hashomer, 52621, Israel; Departments of fMicrobiology and Immunology and gBiochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107; and hVeteran Affairs Medical Center, San Francisco, CA 94121 Contributed by Carlo M. Croce, March 24, 2011 (sent for review January 31, 2011) Rearrangements of the MLL (ALL1) gene are very common in acute some translocation and MLL-AF4 (12). Subsequent gene ex- infant and therapy-associated leukemias. The rearrangements un- pression profiling of leukemic cells with MLL rearrangements derlie the generation of MLL fusion proteins acting as potent on- from patients showed up-regulation of MEIS1 and HOXA5– cogenes. Several most consistently up-regulated targets of MLL HOXA10, as well as other genes (13–15). Recently, application fusions, MEIS1, HOXA7, HOXA9, and HOXA10 are functionally re- of ChIP-seq determined that MEIS1, HOXA7, HOXA9, and lated and have been implicated in other types of leukemias. Each HOXA10 are among the 226 primary targets of MLL-AF4 in a of the four genes was knocked down separately in the human human ALL cell line (8). Up-regulation of similar Hoxa genes precursor B-cell leukemic line RS4;11 expressing MLL-AF4. The mu- and Meis1 were obtained in murine model systems (16–19). Many tant and control cells were compared for engraftment in NOD/ studies applying overexpression of HOXA9 and/or MEIS1 showed SCID mice. Engraftment of all mutants into the bone marrow the requirement for both proteins in induction of acute leukemia (BM) was impaired. Although homing was similar, colonization in mice (20, 21). HOXA9 and MEIS proteins function within the by the knockdown cells was slowed. Initially, both types of cells same protein complex (with PBX) and occupy simultaneously the were confined to the trabecular area; this was followed by a rapid same gene targets (22, 23). spread of the WT cells to the compact bone area, contrasted with The consistent up-regulation of several HOXA genes in MLL- a significantly slower process for the mutants. In vitro and in vivo associated leukemias raised the issue whether HOXA5-10 spec- BrdU incorporation experiments indicated reduced proliferation of ify a “HOX code” (18, 24), in which each of the members con- the mutant cells. In addition, the CXCR4/SDF-1 axis was hampered, tributes to pathogenicity and is required for it. Experiments to as evidenced by reduced migration toward an SDF-1 gradient and resolve the issue involved induction of leukemia in mice knocked loss of SDF-1–augmented proliferation in culture. The very similar out for HOXA9. The results varied with the particular MLL fu- phenotype shared by all mutant lines implies that all four genes sion, and with the way by which the MLL fusion was introduced are involved and required for expansion of MLL-AF4 associated into the mutant mice (18, 25, 26). Because murine leukemic cells, leukemic cells in mice, and down-regulation of any of them is not in particular those involved in AML, might not reproduce all of compensated by the others. the processes occurring in human ALL cells with MLL rear- rangements, we decided to examine the biological effects of leukemic cells’ migration | bone marrow colonization of leukemic cells knockdown of HOX A7,9,10 or MEIS1 in the human leukemic cell line RS4;11, expressing MLL-AF4. earrangements of the MLL/ALL1 gene occur in 20% of Racute lymphoblastic leukemias (ALL) and in 5–6% of acute Results myeloid leukemias (AML) (1, 2). A high percentage of ALLs Knockdown of HOXA Genes or MEIS1 Impairs Engraftment of RS4;11 with MLL rearrangement show biphenotypic traits. The epide- Cells. The precursor B-cell line RS4:11, a classical biphenotypic miology of MLL-associated leukemias is unique (3). They pre- cell line (27), was knocked down for the HOXA7, A9, A10 or dominate infant acute leukemia, and account for the majority of MEIS1 genes. This was done by lentiviral-mediated transduction therapy-related leukemias occurring in cancer patients treated of constructs encoding short hairpin (sh) RNAs, designed to si- with etoposide (VP-16) or doxorubicin (4). The very short la- lence the genes (Table S1). The shRNAs sequences were se- tency of the disease (3, 4) and its aggressive nature suggest the lected to minimize homology to nontarget mRNAs and avoid involvement of a powerful oncogene. Most MLL rearrangements perfect dsRNA stretches of >11 bp; also, no IFN response (28) are due to reciprocal chromosome translocations that link MLL was detected. We applied Western analysis to determine the to any of >100 partner genes (5). This results in production of oncogenic MLL proteins, comprising the N-terminal MLL poly- peptide fused in frame to the C-terminal fragment of a partner Author contributions: K.O., A.K., T.R., E.S., T.I., H.A., L.C., A.A., A.M., O.K., C.M.C., T.N., protein. The partner proteins most commonly found associated T.L., and E.C. designed research; K.O., A.K., T.R., E.S., T.I., H.A., L.C., A.A., and T.N. per- formed research; A.B., and C.L. contributed new reagents/analytic tools; K.O., A.K., T.R., with MLL (AF4, AF9, ENL, AF10, ELL) are transcriptional E.S., T.I., H.A., H.G.O., L.C., A.A., S.V., C.M.C., and T.N. analyzed data; and E.C. and T.L. elongation factors (6). Because these factors physically associate wrote the paper. (6, 7), the function of the most common partner polypeptides The authors declare no conflict of interest. within MLL fusion proteins appears to be the recruitment of the 1A.K. and T.R. contributed equally to this work. other elongation factors, and consequently the augmentation of 2Deceased October 8, 2009. – target genes transcription (8 11). 3To whom correspondence may be addressed. E-mail: [email protected] or eli. Initial gene expression analysis of leukemic cells from ALL [email protected]. patients indicated up-regulation of HOXA9 and HOXA10 and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. their essential cofactor MEIS1 in cells with the t(4;11) chromo- 1073/pnas.1103154108/-/DCSupplemental. 7956–7961 | PNAS | May 10, 2011 | vol. 108 | no. 19 www.pnas.org/cgi/doi/10.1073/pnas.1103154108 Downloaded by guest on September 27, 2021 extent of silencing affected by the different shRNA constructs. HOXA genes (30), in MLL-rearranged cells knocked down for The identity of the HOXA/MEIS1 proteins was further con- HOXA9. To examine whether similar cross-modulation is asso- firmed by their comigration with the corresponding epitope- ciated with MEIS1, HOXA7, and HOXA10 knockdowns, we tagged (Flag or HA) proteins produced in 293T cells expressing analyzed the abundance of HOXA/MEIS1 RNAs by applying the former (Fig. 1A). In most cases we found more than one the technology of NanoString nCounter gene expression system, construct encoding unique shRNA, potent in down-regulation of which captures and counts individual mRNA transcripts by their >80% of the protein; cell lines showing the most efficient hybridization to a multicomplex probe library (31). Cultured lymphoid RS4;11 and SEM cells, both expressing MLL-AF4, knockdown were chosen for further work (Fig. 1A). As controls were treated with MEIS1, HOXA7, HOXA10, or scrambled we used RS4;11 cells infected with the lentiviral vector, and cells siRNAs and the extracted RNAs were reacted with a library expressing HOXA9 shRNA found to be nonpotent in elimina- containing probes for MEIS1 and HOXA and other mRNAs (SI tion of the protein. Two recent studies indicated down-regula- Materials and Methods). Although cells treated with a particular tion of MEIS1 RNA (29, 30), as well as of RNAs of multiple siRNA were down-regulated for its expression, the abundance of the other HOXA (except HOXA5) or MEIS1 RNAs was not reduced (Fig. 1B). We also considered the possibility that the shRNAs induced a general deleterious effect on the cells. However, we found this unlikely because shRNAs directed against different sequences of the same gene and downregulating its expression induced very similar biological and biochemical effects when contrasted with cells expressing shRNAs inefficient in silencing of the gene which behaved like vector-infected or noninfected cells (see Figs. 2 and 6A and Table S2). The transplanted NOD/SCID mice were killed at 1 d (16 h), 1–5 wk (mice injected with control cells), or 1–6 wk (mice injected with mutant cells). At 4 and 6 wk after injection of control and mutant cells, respectively, increasing numbers of animals appeared ill or succumbed to the malignancy. Initially, Fig. 1. Knockdown of MEIS1 and HOXA by lentiviral-mediated delivery of shRNAs or by treatment with siRNAs. (A) Western analysis of MEIS1 and HOXA7, A9, and A10 proteins in nuclear extracts of RS4;11 cells expressing shRNAs directed against one of the four genes (constructs MEIS1_3a, HOXA9_1, HOXA7_1, HOXA10_4a; 3,1,4 specify the gene’s sequence tar- geted, and a or b correspond to different plasmid clones of the same con- struct), or a vector construct, or a control construct.
Recommended publications
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Geminin Deletion Increases the Number of Fetal Hematopoietic Stem Cells by Affecting the Expression of Key Transcription Factors Dimitris Karamitros1,*, Alexandra L
    © 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 70-81 doi:10.1242/dev.109454 RESEARCH ARTICLE STEM CELLS AND REGENERATION Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors Dimitris Karamitros1,*, Alexandra L. Patmanidi1,*, Panoraia Kotantaki1, Alexandre J. Potocnik2, Tomi Bähr-Ivacevic3, Vladimir Benes3, Zoi Lygerou4, Dimitris Kioussis2,‡ and Stavros Taraviras1,‡ ABSTRACT hematological stress and challenges (Beerman et al., 2010; Balancing stem cell self-renewal and initiation of lineage specification Cheshier et al., 2007). The prevailing model of hematopoiesis programs is essential for the development and homeostasis of the supports the existence of long-term hematopoietic stem cells (LT- hematopoietic system. We have specifically ablated geminin in the HSCs), which can provide long-term multipotent reconstitution of developing murine hematopoietic system and observed profound the hematopoietic system, and of short-term hematopoietic stem defects in the generation of mature blood cells, leading to embryonic cells (ST-HSCs) or multipotent progenitors (MPPs), with the lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal potential to generate all blood lineages but with reduced self- liver following geminin ablation, while committed progenitors were renewal capacity (Luc et al., 2007; Mebius et al., 2001; Morrison reduced. Genome-wide transcriptome analysis identified key HSC et al., 1995; Randall et al., 1996; Traver et al., 2001). transcription factors as being upregulated upon geminin deletion, Even though it remains unclear how the balance between self- revealing a gene network linked with geminin that controls fetal renewal of HSCs and fate commitment is controlled and how a hematopoiesis.
    [Show full text]
  • C/Ebpα Is an Essential Collaborator in Hoxa9/Meis1-Mediated Leukemogenesis
    C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis Cailin Collinsa, Jingya Wanga, Hongzhi Miaoa, Joel Bronsteina, Humaira Nawera, Tao Xua, Maria Figueroaa, Andrew G. Munteana, and Jay L. Hessa,b,1 aDepartment of Pathology, University of Michigan, Ann Arbor, MI 48109; and bIndiana University School of Medicine, Indianapolis, IN 46202 Edited* by Louis M. Staudt, National Institutes of Health, Bethesda, MD, and approved May 19, 2014 (received for review February 12, 2014) Homeobox A9 (HOXA9) is a homeodomain-containing transcrip- with Hoxa9. In addition, C/EBP recognition motifs are enriched tion factor that plays a key role in hematopoietic stem cell expan- at Hoxa9 binding sites. sion and is commonly deregulated in human acute leukemias. A C/EBPα is a basic leucine-zipper transcription factor that plays variety of upstream genetic alterations in acute myeloid leukemia a critical role in lineage commitment during hematopoietic dif- −/− (AML) lead to overexpression of HOXA9, almost always in associ- ferentiation (18). Whereas Cebpa mice show complete loss of ation with overexpression of its cofactor meis homeobox 1 (MEIS1). the granulocytic compartment, recent work shows that loss of α A wide range of data suggests that HOXA9 and MEIS1 play a syn- C/EBP in adult HSCs leads to both an increase in the number ergistic causative role in AML, although the molecular mechanisms of functional HSCs and an increase in their proliferative and leading to transformation by HOXA9 and MEIS1 remain elusive. In repopulating capacity (19, 20). Conversely, CEBPA overexpression can promote transdifferentiation of a variety of fibroblastic cells to this study, we identify CCAAT/enhancer binding protein alpha (C/ the myeloid lineage and can induce monocytic differentiation in EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated α MLL-fusion protein-mediated leukemias (21, 22).
    [Show full text]
  • Supplementary Materials
    Supplementary Materials + - NUMB E2F2 PCBP2 CDKN1B MTOR AKT3 HOXA9 HNRNPA1 HNRNPA2B1 HNRNPA2B1 HNRNPK HNRNPA3 PCBP2 AICDA FLT3 SLAMF1 BIC CD34 TAL1 SPI1 GATA1 CD48 PIK3CG RUNX1 PIK3CD SLAMF1 CDKN2B CDKN2A CD34 RUNX1 E2F3 KMT2A RUNX1 T MIXL1 +++ +++ ++++ ++++ +++ 0 0 0 0 hematopoietic potential H1 H1 PB7 PB6 PB6 PB6.1 PB6.1 PB12.1 PB12.1 Figure S1. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of hematopoietic lineage genes (microarray analysis). Hematopoietic-competent cells (H1, PB6.1, PB7) were separated from hematopoietic-deficient ones (PB6, PB12.1). In this experiment, all hPSCs were tested in duplicate, except PB7. Genes under-expressed or over-expressed in blood-deficient hPSCs are indicated in blue and red respectively (related to Table S1). 1 C) Mesoderm B) Endoderm + - KDR HAND1 GATA6 MEF2C DKK1 MSX1 GATA4 WNT3A GATA4 COL2A1 HNF1B ZFPM2 A) Ectoderm GATA4 GATA4 GSC GATA4 T ISL1 NCAM1 FOXH1 NCAM1 MESP1 CER1 WNT3A MIXL1 GATA4 PAX6 CDX2 T PAX6 SOX17 HBB NES GATA6 WT1 SOX1 FN1 ACTC1 ZIC1 FOXA2 MYF5 ZIC1 CXCR4 TBX5 PAX6 NCAM1 TBX20 PAX6 KRT18 DDX4 TUBB3 EPCAM TBX5 SOX2 KRT18 NKX2-5 NES AFP COL1A1 +++ +++ 0 0 0 0 ++++ +++ ++++ +++ +++ ++++ +++ ++++ 0 0 0 0 +++ +++ ++++ +++ ++++ 0 0 0 0 hematopoietic potential H1 H1 H1 H1 H1 H1 PB6 PB6 PB7 PB7 PB6 PB6 PB7 PB6 PB6 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 Figure S2. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of germ layer differentiation genes (microarray analysis) Selected ectoderm (A), endoderm (B) and mesoderm (C) related genes differentially expressed between hematopoietic-competent (H1, PB6.1, PB7) and -deficient cells (PB6, PB12.1) are shown (related to Table S1).
    [Show full text]
  • HOXB7 Is an Erα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading
    Author Manuscript Published OnlineFirst on July 15, 2015; DOI: 10.1158/2159-8290.CD-15-0090 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. HOXB7 is an ERα cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance Kideok Jin1, Sunju Park1, Wei Wen Teo1, Preethi Korangath1, Sean Soonweng Cho1, Takahiro Yoshida1*, Balázs Győrffy2, Chirayu Pankaj Goswami3#, Harikrishna Nakshatri3, Leigh-Ann Cruz1, Weiqiang Zhou4, Hongkai Ji4, Ying Su5, Muhammad Ekram5, Zhengsheng Wu6, Tao Zhu6, Kornelia Polyak5, and Saraswati Sukumar1≠ 1Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 22nd Department of Pediatrics, MTA TTK Lendület Cancer Biomarker Research Group, Semmelweis University, Budapest, Hungary, 3Center for Computational Biology and Bioinformatics, Indiana University, IN, 4Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD and 5Dana- Farber Cancer Institute, Boston, MA. 6Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China. Current address: *Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan #Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA ≠ To whom correspondence may be addressed: Saraswati Sukumar, PhD Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB 1, Room 143, Baltimore, MD 21231-1000. Phone: 410-614-2479 1 Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 15, 2015; DOI: 10.1158/2159-8290.CD-15-0090 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2007-02-28 HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes Mohammad Q. Hassan University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Repository Citation Hassan MQ, Tare RS, Lee SH, Mandeville M, Weiner B, Montecino MA, Van Wijnen AJ, Stein JL, Stein GS, Lian JB. (2007). HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Open Access Articles. https://doi.org/10.1128/MCB.01544-06. Retrieved from https://escholarship.umassmed.edu/oapubs/1334 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MOLECULAR AND CELLULAR BIOLOGY, May 2007, p. 3337–3352 Vol. 27, No. 9 0270-7306/07/$08.00ϩ0 doi:10.1128/MCB.01544-06 Copyright © 2007, American Society for Microbiology. All Rights Reserved. HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genesᰔ Mohammad Q. Hassan,1 Rahul Tare,1† Suk Hee Lee,1 Matthew Mandeville,1 Brian Weiner,1 Martin Montecino,2 Andre J. van Wijnen,1 Janet L. Stein,1 Gary S. Stein,1 and Jane B. Lian1* Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655,1 and Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile2 Received 18 August 2006/Returned for modification 4 October 2006/Accepted 9 February 2007 HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown.
    [Show full text]
  • Genequery™ Human Stem Cell Transcription Factors Qpcr Array
    GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) Catalog #GK125 Product Description ScienCell's GeneQuery™ Human Stem Cell Transcription Factors qPCR Array Kit (GQH-SCT) surveys a panel of 88 transcription factors related to stem cell maintenance and differentiation. Transcription factors are proteins that can regulate target gene transcription level by binding to specific regions of the genome known as enhancers or silencers. Brief examples of how genes may be grouped according to their functions are shown below: • Pluripotency transcription factors: NANOG, POU5F1, SOX2 • Embryonic development: EOMES, FOXC2/D3/O1, HOXA9/A10, KLF2/5, LIN28B, MAX, PITX2, SMAD1, TBX5, ZIC1 • Germ layer formation and differentiation: FOXA2, GATA6, HAND1, ISL1, KLF4, SMAD2, SOX9 • Organ morphogenesis: EZH2, HOXA11/B3/B5/C9, MSX2, MYC, PAX5/8, VDR • Angiogenesis: CDX2, JUN, NR2F2, RUNX1, WT1 • Hematopoiesis and osteogenesis: EGR3, ESR1, GATA1/2/3, GLI2, NFATC1, PAX9, RB1, SOX6, SP1, STAT1 • Neural stem cell maintenance and differentiation: ATF2, CREB1, FOSB, FOXO3, HES1, HOXD10, MCM2/7, MEF2C, NEUROD1/G1, OLIG1/2, PAX3/6, POU4F1, PPARG, SMAD3/4, SNAI1, STAT3 Note : all gene names follow their official symbols by the Human Genome Organization Gene Nomenclature Committee (HGNC). GeneQuery™ qPCR array kits are qPCR ready in a 96-well plate format, with each well containing one primer set that can specifically recognize and efficiently amplify a target gene's cDNA. The carefully designed primers ensure that: (i) the optimal annealing temperature in qPCR analysis is 65°C (with 2 mM Mg 2+ , and no DMSO); (ii) the primer set recognizes all known transcript variants of target gene, unless otherwise indicated; and (iii) only one gene is amplified.
    [Show full text]
  • Epigenetic Therapy Restores Normal Hematopoiesis in a Zebrafish Model
    Leukemia (2015) 29, 2086–2097 © 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15 www.nature.com/leu ORIGINAL ARTICLE Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98–HOXA9-induced myeloid disease AP Deveau1,2,15, AM Forrester1,2,15, AJ Coombs2,3, GS Wagner2,3, C Grabher4,5, IC Chute6, D Léger6, M Mingay7, G Alexe4,8, V Rajan1,2, R Liwski9,10, M Hirst7,11, K Steigmaier4,8, SM Lewis1,6,12,13, AT Look4 and JN Berman1,2,10,14 Acute myeloid leukemia (AML) occurs when multiple genetic aberrations alter white blood cell development, leading to hyperproliferation and arrest of cell differentiation. Pertinent animal models link in vitro studies with the use of new agents in clinical trials. We generated a transgenic zebrafish expressing human NUP98–HOXA9 (NHA9), a fusion oncogene found in high-risk AML. Embryos developed a preleukemic state with anemia and myeloid cell expansion, and adult fish developed a myeloproliferative neoplasm (MPN). We leveraged this model to show that NHA9 increases the number of hematopoietic stem cells, and that oncogenic function of NHA9 depends on downstream activation of meis1, the PTGS/COX pathway and genome hypermethylation through the DNA methyltransferase, dnmt1. We restored normal hematopoiesis in NHA9 embryos with knockdown of meis1 or dnmt1, as well as pharmacologic treatment with DNA (cytosine-5)-methyltransferase (DNMT) inhibitors or cyclo-oxygenase (COX) inhibitors. DNMT inhibitors reduced genome methylation to near normal levels. Strikingly, we discovered synergy when we combined sub-monotherapeutic doses of a histone deacetylase inhibitor plus either a DNMT inhibitor or COX inhibitor to block the effects of NHA9 on zebrafish blood development.
    [Show full text]
  • Rapid Evolution of Mammalian X-Linked Testis-Expressed Homeobox Genes
    Copyright 2004 by the Genetics Society of America DOI: 10.1534/genetics.103.025072 Rapid Evolution of Mammalian X-Linked Testis-Expressed Homeobox Genes Xiaoxia Wang and Jianzhi Zhang1 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 Manuscript received November 26, 2003 Accepted for publication February 11, 2004 ABSTRACT Homeobox genes encode transcription factors that function in various developmental processes and are usually evolutionarily conserved in their sequences. However, two X-chromosome-linked testis-expressed homeobox genes, one from rodents and the other from fruit flies, are known to evolve rapidly under positive Darwinian selection. Here we report yet another case, from primates. TGIFLX is an X-linked homeobox gene that originated by retroposition of the autosomal gene TGIF2, most likely in a common ancestor of rodents and primates. While TGIF2 is ubiquitously expressed, TGIFLX is exclusively expressed in adult testis. A comparison of the TGIFLX sequences among 16 anthropoid primates revealed a signifi- cantly higher rate of nonsynonymous nucleotide substitution (dN) than synonymous substitution (dS), strongly suggesting the action of positive selection. Although the high dN/dS ratio is most evident outside ف the homeobox, the homeobox has a dN/dS of 0.89 and includes two codons that are likely under selection. Furthermore, the rate of radical amino acid substitutions that alter amino acid charge is significantly greater than that of conservative substitutions, suggesting that the selection promotes diversity of the protein charge profile. More interestingly, an analysis of 64 orthologous homeobox genes from humans and mice shows substantially higher rates of amino acid substitution in X-linked testis-expressed genes than in other genes.
    [Show full text]