International Journal of Molecular Sciences Review Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging? Paweł Matryba 1,2,3,*, Kacper Łukasiewicz 4 , Monika Pawłowska 3,5 , Jacek Tomczuk 1 and Jakub Goł ˛ab 1 1 Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland;
[email protected] (J.T.);
[email protected] (J.G.) 2 The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, 02-097 Warsaw, Poland 3 Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland;
[email protected] 4 Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
[email protected] 5 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland * Correspondence:
[email protected] Abstract: The rapid development of super-resolution microscopy (SRM) techniques opens new avenues to examine cell and tissue details at a nanometer scale. Due to compatibility with specific labelling approaches, in vivo imaging and the relative ease of sample preparation, SRM appears to be a valuable alternative to laborious electron microscopy techniques. SRM, however, is not free from drawbacks, with the rapid quenching of the fluorescence signal, sensitivity to spherical aberrations and light scattering that typically limits imaging depth up to few micrometers being the most pronounced ones. Recently presented and robustly optimized sets of tissue optical clearing (TOC) techniques turn biological specimens transparent, which greatly increases the tissue thickness Citation: Matryba, P.; Łukasiewicz, K.; Pawłowska, M.; Tomczuk, J.; that is available for imaging without loss of resolution.