Diamond DA40/40F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ALT / VS Selector/Alerter
ALT / VS Selector / Alerter PN 01279-( ) Pilot’s Operating Handbook ENT ALT SEL ALR DH VS BARO S–TEC * Asterisk indicates pages changed, added, or deleted by List of Effective Pages current revision. Retain this record in front of handbook. Upon receipt of a Record of Revisions revision, insert changes and complete table below. Revision Number Revision Date Insertion Date/Initials 1st Ed. Oct 26, 00 2nd Ed. Jan 15, 08 3rd Ed. Jun 24, 16 3rd Ed. Jun 24, 16 i S–TEC Page Intentionally Blank ii 3rd Ed. Jun 24, 16 S–TEC Table of Contents Sec. Pg. 1 Overview...........................................................................................................1–1 1.1 Document Organization....................................................................1–3 1.2 Purpose..............................................................................................1–3 1.3 General Control Theory....................................................................1–3 1.4 Block Diagram....................................................................................1–4 2 Pre-Flight Procedures...................................................................................2–1 2.1 Pre-Flight Test....................................................................................2–3 3 In-Flight Procedures......................................................................................3–1 3.1 Selector / Alerter Operation..............................................................3–3 3.1.1 Data Entry.............................................................................3–3 -
How Doc Draper Became the Father of Inertial Guidance
(Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla. -
Glossary of Terms
Appendix A Glossary of Terms ABOVE GROUND LEVEL (AGL): An elevation datum given in feet above ground level. AIR CARRIER: A person who undertakes directly by lease, or other arrangement, to engage in air transportation. (FAR 1) (Also see Certificated Air Carrier) AIR CARRIERS: The commercial system of air transportation, consisting of the certificated air carriers, air taxis (including commuters), supplemental air carriers, commercial operators of large aircraft, and air travel clubs. (FAA Census) AIR ROUTE TRAFFIC CONTROL CENTER (ARTCC): A facility established to provide air traffic control service to aircraft operating on IFR flight plans within controlled airspace, principally during the en route phase of flight. When equipment capabilities and controller workload permit, certain advisory/assistance services may be provided to VFR aircraft. (AIM) AIR TAXI: A classification of air carriers which directly engage in the air transportation of persons, property, mail, or in any combination of such transportation and which do not directly or indirectly utilize large aircraft (over 30 seats or a maximum payload capacity of more than 7,500 pounds) and do not hold a Certificate of Public Convenience and Necessity or economic authority issued by the Department of Transportation. (Also see commuter air carrier and demand air taxi.) (FAA Census) AIR TRAFFIC CONTROL (ATC): A service operated by appropriate authority to promote the safe, orderly, and expeditious flow of air traffic. (FAR 1) AIRCRAFT ACCIDENT: An occurrence associated with the operation of an aircraft which takes place between the time any person boards the aircraft with the intention of flight and all such persons have disembarked, and in which any person suffers death or serious injury, or in which the aircraft receives substantial damage. -
Installation Manual, Document Number 200-800-0002 Or Later Approved Revision, Is Followed
9800 Martel Road Lenoir City, TN 37772 PPAAVV8800 High-fidelity Audio-Video In-Flight Entertainment System With DVD/MP3/CD Player and Radio Receiver STC-PMA Document P/N 200-800-0101 Revision 6 September 2005 Installation and Operation Manual Warranty is not valid unless this product is installed by an Authorized PS Engineering dealer or if a PS Engineering harness is purchased. PS Engineering, Inc. 2005 © Copyright Notice Any reproduction or retransmittal of this publication, or any portion thereof, without the expressed written permission of PS Engi- neering, Inc. is strictly prohibited. For further information contact the Publications Manager at PS Engineering, Inc., 9800 Martel Road, Lenoir City, TN 37772. Phone (865) 988-9800. Table of Contents SECTION I GENERAL INFORMATION........................................................................ 1-1 1.1 INTRODUCTION........................................................................................................... 1-1 1.2 SCOPE ............................................................................................................................. 1-1 1.3 EQUIPMENT DESCRIPTION ..................................................................................... 1-1 1.4 APPROVAL BASIS (PENDING) ..................................................................................... 1-1 1.5 SPECIFICATIONS......................................................................................................... 1-2 1.6 EQUIPMENT SUPPLIED ............................................................................................ -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
P:\Dokumentation\Manual-O\DA 62\7.01.25-E
DA 62 AFM Ice Protection System Supplement S03 FIKI SUPPLEMENT S03 TO THE AIRPLANE FLIGHT MANUAL DA 62 ICE PROTECTION SYSTEM FOR FLIGHT INTO KNOWN ICING Doc. No. : 7.01.25-E Date of Issue of the Supplement : 01-Apr-2016 Design Change Advisory : OÄM 62-003 This Supplement to the Airplane Flight Manual is EASA approved under Approval Number EASA 10058874. This AFM - Supplement is approved in accordance with 14 CFR Section 21.29 for U.S. registered aircraft and is approved by the Federal Aviation Administration. DIAMOND AIRCRAFT INDUSTRIES GMBH N.A. OTTO-STR. 5 A-2700 WIENER NEUSTADT AUSTRIA Page 9-S03-1 Ice Protection System DA 62 AFM FIKI Supplement S03 Intentionally left blank. › Page 9-S03-2 05-May-2017 Rev. 2 Doc. # 7.01.25-E DA 62 AFM Ice Protection System Supplement S03 FIKI 0.1 RECORD OF REVISIONS Rev. Chap- Date of Approval Date of Date Signature Reason Page(s) No. ter Revision Note Approval Inserted Rev. 1 to AFM Supplement S03 to AFM 9-S03-1, Doc. No. FAA 7.01.25-E is 1 0 9-S03-3, 10 Oct 2016 14 Oct 2016 Approval approved by 9-S03-4 EASA with Approval No. EASA 10058874 › Rev. 2 to AFM › Supplement › S03 to AFM › Doc. No. › TR-MÄM › All, except 7.01.25-E is › 2 62-254, 05 May 2017 › All approved 13 Nov 2017 › Corrections Cover Page › under the › authority of › DOA › No.21J.052 › Doc. # 7.01.25-E Rev. 2 05-May-2017 Page 9-S03-3 Ice Protection System DA 62 AFM FIKI Supplement S03 0.3 LIST OF EFFECTIVE PAGES Chapter Page Date 9-S03-1 10-Oct-2016 › 9-S03-2 05-May-2017 › 9-S03-3 05-May-2017 › 9-S03-4 05-May-2017 0 › 9-S03-5 05-May-2017 › 9-S03-6 05-May-2017 › 9-S03-7 05-May-2017 › 9-S03-8 05-May-2017 › 9-S03-9 05-May-2017 › 9-S03-10 05-May-2017 1 › 9-S03-11 05-May-2017 › 9-S03-12 05-May-2017 › appr. -
Ac 120-67 3/18/97
Advisory u.s. Department ofTransportation Federal Aviation Circular Ad.nnlstratlon Subject: CRITERIA FOR OPERATIONAL Date: 3/18/97 AC No: 120-67 APPROVAL OF AUTO FLIGHT Initiated By: AFS-400 Change: GUIDANCE SYSTEMS 1. PURPOSE. This advisory circular (AC) states an acceptable means, but not the only means, for obtaining operational approval of the initial engagement or use of an Auto Flight Guidance System (AFGS) under Title 14 of the Code of Federal Regulations (14 CFR) part 121, section 121.579(d); part 125, section 125.329(e); and part 135, section 135.93(e) for the takeoff and initial climb phase of flight. 2. APPLICABILITY. The criteria contained in this AC are applicable to operators using commercial turbojet and turboprop aircraft holding Federal Aviation Administration (FAA) operating authority issued under SPAR 38-2 and 14 CFR parts 119, 121, 125, and 135. The FAA may approve the AFGS operation for the operators under these parts, where necessary, by amending the applicant's operations specifications (OPSPECS). 3. BACKGROUND. The purpose of this AC is to take advantage of technological improvements in the operational capabilities of autopilot systems, particularly at lower altitudes. This AC complements a rule change that would allow the use of an autopilot, certificated and operationally approved by the FAA, at altitudes less than 500 feet above ground level in the vertical plane and in accordance with sections 121.189 and 135.367, in the lateral plane. 4. DEFINITIONS. a. Airplane Flight Manual (AFM). A document (under 14 CFR part 25, section 25.1581) which is used to obtain an FAA type certificate. -
Instrument Landing System and Its Requirement in India
JOURNAL OF CRITICAL REVIEWS ISSN- 2394-5125 VOL 7, ISSUE 14, 2020 INSTRUMENT LANDING SYSTEM AND ITS REQUIREMENT IN INDIA Shivendra Shrivastava1, Rahul Kumar Verma2, Gp Capt M Shrivastava3 1,2Amity University, Noida 3Air Force [email protected], [email protected], [email protected] Abstract: The ILS is a navigational aid invented in the forties it helps aircrafts in landing. The pilots still consider the ILS as one of the most reliable means of guidance it continues to be used around the world. This paper examines what is an ILS its categories, components and the relevance of ILS in India. Since all Indian airports do not have ILS it causes disruption of flights, passenger discomfort and loss of business. The ILS has been compared with other advance systems of navigation in the market. Considering seamless movement of flights a necessity for business and development of India, the paper proposes ILS/GAGAN installation at all Indian airports. Key words - ILS, Localizer, Glide slope, Yagi antenna. BACKGROUND The development of an instrument landing system (ILS) began during World War I in the twenties but it was not until the thirties that some substantial research was carried out. The airports used to fire flares to guide the commercial airliners. There was a lot of research work carried out by USA and UK from 1930 to 1947 in developing a system in order to land aircrafts safely in low visibility conditions. This was a direct outcome of World War 2 since during the war the USAF bombers could not carry out bombing over Europe in foggy weather conditions. -
FAA Order 7110.10Y, Flight Services
U.S. DEPARTMENT OF TRANSPORTATION JO 7110.10Y CHANGE FEDERAL AVIATION ADMINISTRATION CHG 2 Air Traffic Organization Policy Effective Date: November 10, 2016 SUBJ: Flight Services 1. Purpose of This Change. This change transmits revised pages to Federal Aviation Administration Order JO 7110.10Y, Flight Services, and the Briefing Guide. 2. Audience. This change applies to select offices in Washington headquarters, service area offices, the William J. Hughes Technical Center, the Mike Monroney Aeronautical Center, and to all air traffic field facilities, international aviation field offices, and the interested aviation public. 3. Where Can I Find This Change? This change is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_ notices/. 4. Explanation of Policy Change. See the Explanation of Changes attachment which has editorial corrections and changes submitted through normal procedures. The Briefing Guide lists only new or modified material, along with background. 5. Distribution. This change is distributed to select offices in Washington headquarters, service area offices, the William J. Hughes Technical Center, the Mike Monroney Aeronautical Center, and to all air traffic field facilities, international aviation field offices, and the interested aviation public. 6. Disposition of Transmittal. Retain this transmittal until superseded by a new basic order. 7. Page Control Chart. See the page control chart attachment. Distribution: ZAT-793; ZAT-464; Initiated By: AJR-0 ZAT-423 (External) Vice President, System Operations Services 11/10/16 JO 7110.10Y CHG 2 Flight Services Explanation of Changes Change 2 Direct questions through appropriate facility/service center office staff to the Office of Primary Interest (OPI) a. -
Digital Fly-By-Wire
TF-2001-02 DFRC Digital Fly-By-Wire "The All-Electric Airplane" Skies around the world are being filled with a new generation of military and commercial aircraft, and the majority of them are beneficiaries of one of the most significant and successful research programs conducted by NASA's Dryden Flight Research Center -- the Digital Fly-By-Wire flight control system. The Dryden DFBW program has changed the way commercial and military aircraft are designed and flown. Aircraft with fly-by- wire systems are safer, more reliable, easier to fly, more NASA F-8 modified to test a digital fly-by-wire flight control system. maneuverable and fuel NASA Photo ECN 3276 efficient, and maintenance costs are reduced. Flight control systems link pilots in their cockpits with moveable control surfaces out on the wings and tails. These control surfaces give aircraft directional movement to climb, bank, turn, and descend. Since the beginning of controlled flight in the early 1900s, wires, cables, bellcranks, and pushrods were the traditional means of connecting the control surfaces to the control sticks and rudder pedals in the cockpits. As aircraft grew in weight and size, hydraulic mechanisms were added as boosters because more power was needed to move the controls. The Digital Fly-By-Wire (DFBW) program, flown from 1972 to 1985, proved that an electronic flight control system, teamed with a digital computer, could successfully replace mechanical control systems. 1 Electric wires are the linkage between the cockpit automatically compensates -- as many as 40 and control surfaces on a DFBW aircraft. Command commands a second -- to keep the aircraft in a stable signals from the cockpit are processed by the digital environment. -
NAV/COMM TEST SET, IFR-4000, Operation Manual
NAV/COMM TEST SET IFR-4000 Operation Manual This page intentionally left blank. OPERATION MANUAL NAV/COMM TEST SET IFR 4000 PUBLISHED BY VIAVI Solutions, Inc. COPYRIGHT VIAVI Solutions, Inc. 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Reissued Jan 2010 Issue-2 Mar 2010 Issue-3 Sep 2011 Issue-4 Jul 2015 Issue-5 Nov 2019 Electromagnetic Compatibility: For continued EMC compliance, all external cables must be shielded and three meters or less in length. Nomenclature Statement: In this manual IFR 4000, 4000, Test Set or Unit refers to the IFR 4000 NAV/COMM Test Set. Product Warranty Refer to http://www.viavisolutions.com/en-us/warranty-information for the Product Warranty information. THIS PAGE INTENTIONALLY LEFT BLANK. SAFETY FIRST: TO ALL OPERATIONS PERSONNEL REFER ALL SERVICING OF UNIT TO QUALIFIED TECHNICAL PERSONNEL. THIS UNIT CONTAINS NO OPERATOR SERVICEABLE PARTS. WARNING: USING THIS EQUIPMENT IN A MANNER NOT SPECIFIED BY THE ACCOMPANYING DOCUMENTATION MAY IMPAIR THE SAFETY PROTECTION PROVIDED BY THE EQUIPMENT. CASE, COVER OR PANEL REMOVAL Opening the Case Assembly exposes the operator to electrical hazards that can result in electrical shock or equipment damage. Do not operate this Test Set with the Case Assembly open. SAFETY IDENTIFICATION IN TECHNICAL MANUAL This manual uses the following terms to draw attention to possible safety hazards, that may exist when operating or servicing this equipment. CAUTION: THIS TERM IDENTIFIES CONDITIONS OR ACTIVITIES THAT, IF IGNORED, CAN RESULT IN EQUIPMENT OR PROPERTY DAMAGE (E.G., FIRE). -
IFR Approaches Briefing
IFR Approaches Briefing 1. Name the various segments of a typical instrument approach and the purpose of each segment. 2. What does the notation "NoPt" on an approach chart meant? 3. If a standard procedure turn is shown, what types of course reversals are authorized? 4. What type of course reversal is authorized if a teardrop PT or holding pattern in-lieu-of a PT is shown? 5. What does the absence of a procedure turn depiction on an approach chart indicate? 6. What does the phrase "...cleared for straight-in approach" mean? 7. Where is the MAP on a precision approach and on a non-precision approach? 8. If timing information is not provided to identify the MAP on a non- precision approach, how is the MAP determined. 9. Where do you normlly begin timing for the map when you are flying a VOR approach using an off-airport facility? 10. What is the minimum aircraft equipment required for an ILS approach? 11. What is the lowest possible DA and visibility for a category I ILS Page 1 of 4 approach? 12. What equipment must be operational for you to use those minimums? 13. Where are the various marker beacons located? 14. As you pass over each marker beacon, what Morse code will you hear, and what color of light will illuminate on the marker beacon receiver? 15. What is the sensitivity of the CDI responding to a localizer signal compared to a VOR signal? 16. What are the correct procedures for using pitch and power when you fly ILS approach? 17.