Dietary Specialization Drives Multiple Independent Losses and Gains in the Bitter Taste Gene Repertoire of Laurasiatherian Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Dietary Specialization Drives Multiple Independent Losses and Gains in the Bitter Taste Gene Repertoire of Laurasiatherian Mammals Dietary specialization drives multiple independent losses and gains in the bitter taste gene repertoire of Laurasiatherian Mammals Liu et al. Frontiers in Zoology (2016) 13:28 DOI 10.1186/s12983-016-0161-1 Liu et al. Frontiers in Zoology (2016) 13:28 DOI 10.1186/s12983-016-0161-1 RESEARCH Open Access Dietary specialization drives multiple independent losses and gains in the bitter taste gene repertoire of Laurasiatherian Mammals Zhijin Liu1,2*†, Guangjian Liu1†, Frank Hailer2†, Pablo Orozco-terWengel2†, Xinxin Tan1,3†, Jundong Tian4, Zhongze Yan1,3, Baowei Zhang5 and Ming Li1* Abstract Background: Bitter taste perception is essential for species with selective food intake, enabling them to avoid unpalatable or toxic items. Previous studies noted a marked variation in the number of TAS2R genes among various vertebrate species, but the underlying causes are not well understood. Laurasiatherian mammals have highly diversified dietary niche, showing repeated evolution of specialized feeding preferences in multiple lineages and offering a unique chance to investigate how various feeding niches are associated with copy number variation for bitter taste receptor genes. Results: Here we investigated the evolutionary trajectories of TAS2Rs and their implications on bitter taste perception in whole-genome assemblies of 41 Laurasiatherian species. The number of intact TAS2Rs copies varied considerably, ranging from 0 to 52. As an extreme example of a narrow dietary niche, the Chinese pangolin possessed the lowest number of intact TAS2Rs(n = 2) among studied terrestrial vertebrates. Marine mammals (cetacea and pinnipedia), which swallow prey whole, presented a reduced copy number of TAS2Rs(n = 0-5). In contrast, independent insectivorous lineages, such as the shrew and insectivorous bats possessed a higher TAS2R diversity (n =52andn = 20-32, respectively), exceeding that in herbivores (n = 9-22) and omnivores (n = 18-22). Conclusions: Besides herbivores, insectivores in Laurasiatheria tend to have more functional TAS2Rsincomparisonto carnivores and omnivores. Furthermore, animals swallowing food whole (cetacean, pinnipedia and pangolin) have lost most functional TAS2Rs. These findings provide the most comprehensive view of the bitter taste gene repertoire in Laurasiatherian mammals to date, casting new light on the relationship between losses and gains of TAS2Rs and dietary specialization in mammals. Keywords: Laurasiatheria, Mammal, Bitter taste receptor, TAS2R, Gene gain and loss, Dietary specialization Background noted a marked variation in the number of TAS2R genes The ability to perceive taste provides animals with import- among various vertebrate species, but the underlying cause ant dietary information that can be crucial for their sur- is not well understood [2, 3]. A study surveying bitter taste vival. Bitter taste perception is mediated by a group of G receptor genes in 52 vertebrate species (fish, birds, amphib- protein-coupled receptors, which are encoded by the type ians, reptiles and mammals) [4] reported that the number 2 taste receptor gene family (TAS2Rs) [1]. Previous studies of TAS2R genesperspeciescorrelateswiththeproportion of plants in their diet. Furthermore, carnivores were found * Correspondence: [email protected]; [email protected] to have fewer TAS2R genes compared to herbivores and † Equal contributors omnivores [5]. Because plant tissues contain more toxic 1Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichen West Road, Chaoyang, compounds than animal tissues, these findings suggest that Beijing 100101, China dietary toxins are a major selective force influencing the Full list of author information is available at the end of the article © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Liu et al. Frontiers in Zoology (2016) 13:28 Page 2 of 9 diversity of the TAS2R repertoire. Given this finding, it is partial and 473 disrupted TAS2Rs) in these genome assem- reasonable to speculate that animals whose diet contains blies were annotated (Fig. 1), with the number of intact more toxins, besides herbivores, tend to have more func- (both complete and partial copies) TAS2Rs varying in the tional TAS2Rs, while animals with less dependence on bit- range from 0 to 52 (Figs. 1 and 2). The sequences and ter taste are likely to lose a certain number of functional genomic locations of these TAS2Rs are listed in the elec- TAS2Rs. To test this hypothesis it is necessary to rely on a tronic supplementary dataset. Among all studied terrestrial taxon with highly diversified and specialized dietary niches. Laurasiatherian mammals the average number of TASR2s Over an estimated ~80 million years of diversification [6], was 18.7 (standard deviation, sd: 8.6), with the Chinese Laurasiatherian mammals have evolved multiple lineage- pangolin presenting the lowest number of intact TAR2Rs specific feeding characteristics, such as the obligate ant- (n = 2). Marine cetaceans (whale and dolphin) and pinni- ingesting pangolins, the insectivorous shrews, carnivores pedia (walrus and seal) also showed few intact TAS2Rs (cats, dogs and allies), ungulate herbivores, herbivorous or (range: 0–5). The insectivorous shrew (Sorex araneus) insectivorous bats, and marine mammals that adopted a showed the largest number of intact TAS2Rs(n = 52). purely marine diet [7]. During the process of diet differenti- Similarly, insect-eating bats also had significantly higher ation in Laurasiatheria, bitter taste preferences presumably numbers of intact TAS2Rs(n = 20-32) compared to evolved adaptively to avoid ingestion of indigestible or fruit-eating flying foxes (n = 14-18; Fishers Exact Test, harmful compounds. In particular, there are several inde- P = 0.008). The numbers of intact TAS2Rsinherbivorous pendent insectivorous lineages (shrews, insectivorous bats ruminants, tylopods and perissodactyls ranged from 15 to and so on). Eating insects is similar to herbivory, where de- 20, 9–13 and 21–27, respectively. The terrestrial Carnivora tecting toxins is important. Many insects release defensive (excluding walrus and seal) had 12–17 functional TAS2Rs secretions that are toxic to their predators [8–10]. It could (Fig. 2). therefore be hypothesized thatinsectivoresmaybeexposed The phylogeny of all alignable TAS2Rs in the 41 stud- to a similar amount of toxins as herbivores. Furthermore, ied Laurasiatherian mammals was constructed, including there are also several independent lineages (cetaceans, pinni- representative orthologs from all 28 clades of Euarchon- peds and pangolins), which have evolved specialised foraging toglires TAS2Rs reported in Hayakawa et al. [12]. The behaviour, ingesting prey whole. These species are likely to gene tree recovered the same 28 main clades of TAS2Rs lose a certain number of functional TAS2Rsduetoless in Laurasiatheria as in Euarchontoglires (hence for all dependence on the taste perception. In summary, Laura- Boreoeutheria), thus we maintained the nomenclature of siatheria offers a unique chance to investigate how various the TAS2Rs clades established by Hayakawa et al. [12]. feeding niches are associated with copy number variation TAS2R6 and TAS2R13 were not found in the studied for bitter taste receptor genes. Since the publication of Li Laurasiatherian mammals (Fig. 3a). Additionally, ortho- and Zhang [4] additional vertebrate genomes have become logs of the clade TAS2R301 in Laurasiatheria were pseu- available for study. Wang and Zhao [11] have reported a dogenized. Conservatively, we conclude that the most small repertoire of TAS2Rsinbirdsbasedonagenomicsur- recent common ancestor (MRCA) of Laurasiatheria had vey including 48 birds. Furthermore, Hayakawa et al. [12] at least 25 intact TAS2Rs. The orthologous and paralo- have described the frequent expansions of the TAS2Rsin gous relationships among the annotated Laurasiatherian the Euarchontoglires clade, which is the sister clade of Laura- TAS2Rs are provided in Additional file 1: Table S2. sitherian mammals. However, less research has been carried out concerning the evolutionary history of the repertoire of Lineage-specific gene degeneration and expansion in TAS2Rs in Laurasitheria. Here we use a comprehensive set Laurasiatherian TAS2Rs of 41 Laurasitherian genomes encompassing all dietary Chinese pangolin (Manis pentadactyla)onlycontainedtwo niches across mammals and test the potential impact of all intact bitter taste genes (TAS2R1 and TAS2R7;Fig.1).In dietary types (herbivory, insectivory, carnivory and omnivory) Cetartiodactylaonlytheminkewhale(Balaenoptera acutor- and foraging behaviours (swallowing the prey whole or not) ostrata) and the Antarctic minke whale (Balaenoptera on the evolutionary scenarios of TAS2Rs in Laurasiatherian bonaerensis)retainasingleTAS2R gene, although each mammals. The results showed that the diverse dietary species retains a different one, i.e. TAS2R16 and TAS2R67, characteristics in Laurasiatheria have had a larger impact
Recommended publications
  • Learning About Mammals
    Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck.
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]
  • Exploring the Natural Origins of SARS-Cov-2
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.22.427830; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Exploring the natural origins of SARS-CoV-2 1 1 2 3 1,* Spyros Lytras ,​ Joseph Hughes ,​ Wei Xia ,​ Xiaowei Jiang ,​ David L Robertson ​ ​ ​ ​ ​ 1 MRC-University​ of Glasgow Centre for Virus Research (CVR), Glasgow, UK. 2 National​ School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, China. 3 Department​ of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China. * Correspondence:​ [email protected] Summary. The lack of an identifiable intermediate host species for the proximal animal ​ ancestor of SARS-CoV-2 and the distance (~1500 km) from Wuhan to Yunnan province, where the closest evolutionary related coronaviruses circulating in horseshoe bats have been identified, is fueling speculation on the natural origins of SARS-CoV-2. Here we analyse SARS-CoV-2’s related horseshoe bat and pangolin Sarbecoviruses and confirm ​ Rhinolophus affinis continues to be the likely reservoir species as its host range extends ​ across Central and Southern China. This would explain the bat Sarbecovirus recombinants ​ in the West and East China, trafficked pangolin infections and bat Sarbecovirus recombinants linked to Southern China. Recent ecological disturbances as a result of changes in meat consumption could then explain SARS-CoV-2 transmission to humans through direct or indirect contact with the reservoir wildlife, and subsequent emergence towards Hubei in Central China.
    [Show full text]
  • Structure and Binding Properties of Pangolin-Cov Spike Glycoprotein Inform the Evolution of SARS-Cov-2 ✉ ✉ Antoni G
    ARTICLE https://doi.org/10.1038/s41467-021-21006-9 OPEN Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2 ✉ ✉ Antoni G. Wrobel 1,5 , Donald J. Benton 1,5 , Pengqi Xu2,1, Lesley J. Calder3, Annabel Borg4, ✉ Chloë Roustan4, Stephen R. Martin1, Peter B. Rosenthal 3, John J. Skehel1 & Steven J. Gamblin 1 1234567890():,; Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2. 1 Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 2 Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China. 3 Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 4 Structural Biology Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK. 5These authors contributed equally: Antoni G. ✉ Wrobel, Donald J. Benton. email: [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:837 | https://doi.org/10.1038/s41467-021-21006-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21006-9 espite intensive research into the origins of the COVID- 19 pandemic, the evolutionary history of its causative A SARS-CoV-2 S D 1,2 agent SARS-CoV-2 remains unclear .
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Smutsia Temminckii – Temminck's Ground Pangolin
    Smutsia temminckii – Temminck’s Ground Pangolin African Pangolin Working Group and the IUCN Species Survival Commission Pangolin Specialist Group) is Temminck’s Ground Pangolin. No subspecies are recognised. Assessment Rationale The charismatic and poorly known Temminck’s Ground Pangolin, while widely distributed across the savannah regions of the assessment region, are severely threatened by electrified fences (an estimated 377–1,028 individuals electrocuted / year), local and international bushmeat and traditional medicine trades (since 2010, the number of Darren Pietersen confiscations at ports / year has increased exponentially), road collisions (an estimated 280 killed / year) and incidental mortalities in gin traps. The extent of occurrence Regional Red List status (2016) Vulnerable A4cd*†‡ has been reduced by an estimated 9–48% over 30 years National Red List status (2004) Vulnerable C1 (1985 to 2015), due to presumed local extinction from the Free State, Eastern Cape and much of southern KwaZulu- Reasons for change No change Natal provinces. However, the central interior (Free State Global Red List status (2014) Vulnerable A4d and north-eastern Eastern Cape Province) were certainly never core areas for this species and thus it is likely that TOPS listing (NEMBA) (2007) Vulnerable the corresponding population decline was far lower overall CITES listing (2000) Appendix II than suggested by the loss of EOO. Additionally, rural settlements have expanded by 1–9% between 2000 and Endemic No 2013, which we infer as increasing poaching pressure and *Watch-list Data †Watch-list Threat ‡Conservation Dependent electric fence construction. While throughout the rest of Africa, and Estimated mature population size ranges widely increasingly within the assessment region, local depending on estimates of area of occupancy, from 7,002 and international illegal trade for bushmeat and to 32,135 animals.
    [Show full text]
  • Pangolin Genomes and the Evolution of Mammalian Scales and Immunity
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Research Pangolin genomes and the evolution of mammalian scales and immunity Siew Woh Choo,1,2,3,22 Mike Rayko,4,22 Tze King Tan,1,2 Ranjeev Hari,1,2 Aleksey Komissarov,4 Wei Yee Wee,1,2 Andrey A. Yurchenko,4 Sergey Kliver,4 Gaik Tamazian,4 Agostinho Antunes,5,6 Richard K. Wilson,7 Wesley C. Warren,7 Klaus-Peter Koepfli,8 Patrick Minx,7 Ksenia Krasheninnikova,4 Antoinette Kotze,9,10 Desire L. Dalton,9,10 Elaine Vermaak,9 Ian C. Paterson,2,11 Pavel Dobrynin,4 Frankie Thomas Sitam,12 Jeffrine J. Rovie-Ryan,12 Warren E. Johnson,8 Aini Mohamed Yusoff,1,2 Shu-Jin Luo,13 Kayal Vizi Karuppannan,12 Gang Fang,14 Deyou Zheng,15 Mark B. Gerstein,16,17,18 Leonard Lipovich,19,20 Stephen J. O’Brien,4,21 and Guat Jah Wong1 1Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; 2Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; 3Genome Solutions Sdn Bhd, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia; 4Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; 5CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal; 6Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; 7McDonnell
    [Show full text]
  • Pangolin Genomes and the Evolution of Mammalian
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Pangolin genomes and the evolution of mammalian scales 2 and immunity 3 4 The International Pangolin Research Consortium (IPaRC) 5 Siew Woh Choo1,10,14*, Mike Rayko2*, Tze King Tan1,10, Ranjeev Hari1,10, Aleksey Komissarov2, Wei 6 Yee Wee1,10, Andrey Yurchenko2, Sergey Kliver2, Gaik Tamazian2, Agostinho Antunes16,17, Richard K. 7 Wilson3, Wesley C. Warren3, Klaus-Peter Koepfli15, Patrick Minx3, Ksenia Krasheninnikova2, Antoinette 8 Kotze20,21, Desire L. Dalton20,21, Elaine Vermaak20, Ian C. Paterson10,18, Pavel Dobrynin2, Frankie Thomas 9 Sitam11, Jeffrine Rovie Ryan Japning11, Warren E. Johnson15, Aini Mohamed Yusoff1,10, Shu-Jin Luo9, 10 Kayal Vizi Karuppannan11, Gang Fang19, Deyou Zheng8, Mark B. Gerstein5,6,7, Leonard Lipovich4,12, 11 Stephen J. O’Brien 2,13 and Guat Jah Wong1 12 13 1Genome Informatics Research Laboratory, High Impact Research (HIR) Building, University of Malaya, 14 50603 Kuala Lumpur, Malaysia. 15 2Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia. 16 3McDonnell Genome Institute, Washington University, St Louis, MO 63108, USA. 17 4Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA. 18 5Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA 19 6Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, 20 CT 06520, USA. 21 7Department of Computer Science, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 22 06520, USA. 23 8Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 24 10461, USA.
    [Show full text]
  • Pangolin-Id-Guide-Rast-English.Pdf
    COURTESY OF LISA HYWOOD / TIKKI HYWOOD FOUNDATION PANGOLIN SPECIES IDENTIFICATION GUIDE: A RAPID ASSESSMENT TOOL FOR FIELD AND DESK Citation: Cota-Larson, R. 2017. Pangolin Species Identification Guide: A Rapid Assessment Tool for Field and Desk. Prepared for the United States Agency for International Development. Bangkok: USAID Wildlife Asia Activity. Available online at: http://www.usaidwildlifeasia.org/resources. Cover: Ground Pangolin (Smutsia temminckii). Photo: Lisa Hywood/Tikki Hywood Foundation For hard copies, please contact: USAID Wildlife Asia, 208 Wireless Road, Unit 406 Lumpini, Pathumwan, Bangkok 10330 Thailand Tel: +66 20155941-3, Email: [email protected] About USAID Wildlife Asia The USAID Wildlife Asia Activity works to address wildlife trafficking as a transnational crime. The project aims to reduce consumer demand for wildlife parts and products, strengthen law enforcement, enhance legal and political commitment, and support regional collaboration to reduce wildlife crime in Southeast Asia, particularly Cambodia; Laos; Thailand; Vietnam, and China. Species focus of USAID Wildlife Asia include elephant, rhinoceros, tiger, and pangolin. For more information, please visit www.usaidwildlifeasia.org Disclaimer The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. ANSAR KHAN / LIFE LINE FOR NATURE SOCIETY CONTENTS ACKNOWLEDGMENTS 2 HOW TO USE THIS GUIDE 2 INTRODUCTION TO PANGOLINS 3 RANGE MAPS 4 SPECIES SUMMARIES 6 HEADS AND PROFILES 10 SCALE DISTRIBUTION 12 FEET 14 TAILS 16 SCALE SAMPLES 18 SKINS 22 PANGOLIN PRODUCTS 24 END NOTES 28 REGIONAL RESCUE CENTER CONTACT INFORMATION 29 ACKNOWLEDGMENTS TECHNICAL ADVISORS: Lisa Hywood (Tikki Hywood Foundation) and Quyen Vu (Education for Nature-Vietnam) COPY EDITORS: Andrew W.
    [Show full text]
  • Insights Into the Chinese Pangolin's (Manis Pentadactyla) Diet in a Peri-Urban Habitat
    Short Communication Tropical Conservation Science Volume 10: 1–7 Insights Into the Chinese Pangolin’s ! The Author(s) 2017 Reprints and permissions: (Manis pentadactyla) Diet in a Peri-Urban sagepub.com/journalsPermissions.nav DOI: 10.1177/1940082917709648 Habitat: A Case Study From Hong Kong journals.sagepub.com/home/trc Roger Ho Lee1, Khan Cheung1, John R. Fellowes, and Benoit Gue´nard1 Abstract Gut content analysis of a juvenile Chinese pangolin revealed eight ant and one termite species being preyed on. The identification of > 26,000 prey items and a comparison with local ant communities suggest a selective foraging behavior and a tendency for direct predation on arboreal or epigaeic ant nests within secondary forest and shrubland habitats. Keywords arboreal ants, conservation, endangered species, gut content analysis, myrmecophagous, subtropical, urban landscape Introduction feeding behavior of Chinese pangolins on a subset of social insects (Wu, Liu, Li, & Sun, 2005), the identifica- The Chinese pangolin (Manis pentadactyla L. 1758) has tion of the specific ant and termite species consumed as experienced a dramatic population decline over the past prey could substantially assist conservation programs. 20 years, leading to its recent reclassification on the However, existing data on diet are scarce and based IUCN Red List from Lower Risk/Near Threatened to mostly on indirect methods, such as inspection of food Critically Endangered (Challender et al., 2014). Despite leftovers at foraging burrows (e.g., Li, Zhou, Guo, Guo, being listed
    [Show full text]
  • Scaling up Pangolin Conservation
    July 2014 SCALING UP PANGOLIN CONSERVATION IUCN SSC Pangolin Specialist Group Conservation Action Plan Compiled by Daniel W. S. Challender, Carly Waterman and Jonathan E. M. Baillie SCALING UP PANGOLIN CONSERVATION IUCN SSC Pangolin Specialist Group Conservation Action Plan July 2014 Compiled by Daniel W. S. Challender, Carly Waterman and Jonathan E. M. Baillie IUCN SSC Pangolin Specialist Group C/o Zoological Society of London Regent’s Park London England NW1 4RY W: www.pangolinsg.org F: IUCN/SSC Pangolin Specialist Group T: @PangolinSG Cover photo: Temminck’s ground pangolin © Scott & Judy Hurd Suggested citation: Challender, DWS, Waterman, C, and Baillie, JEM. 2014. Scaling up pangolin conservation. IUCN SSC Pangolin Specialist Group Conservation Action Plan. Zoological Society of London, London, UK. 1 Acknowledgements It would have been impossible to produce this The meeting would not have been possible without action plan, or hold the 1st IUCN SSC Pangolin the generous financial and/or in-kind support from a Specialist Group Conservation Conference in number of organisations, specifically the Wildlife June 2013 from which it emanates, without the Reserves Singapore Conservation Fund. commitment and enthusiasm of a large number of people, and the support of a number of Thanks are also extended to the International Union organisations committed to pangolin conservation. for the Conservation of Nature (IUCN) Species Survival Commission (SSC), the Zoological Society of London Thanks are extended to all members of the IUCN SSC (ZSL), San Antonio Zoo, Houston Zoo, TRAFFIC, Pangolin Specialist Group, and both members and and Ocean Park Conservation Foundation Hong Kong. non-members for their passion and dedication Particular thanks also to Sonja Luz and her team at throughout the four day conference, specifically: the Night Safari, Wildlife Reserves Singapore, for their Gary Ades, Claire Beastall, Bosco Chan, logistical and organizational support throughout Ya Ting Chan, Jason Chin, Ju lian Chong, Yi Fei the event.
    [Show full text]
  • The Last Group of Mammals Have a True Placenta. the Placental System Is Considered More Advanced Than the Monotreme and Marsupial Reproductive Systems
    11/1/19 The last group of mammals have a true placenta. The placental system is considered more advanced than the monotreme and marsupial reproductive systems. Placental mammals all bear live young, which are nourished before birth in the mother's uterus through the placenta. Longer gestation periods allow placental mammals to give birth to relatively large and mature infants. The placental method of mammal reproduction requires a greater maternal investment of time and energy than does non-placental, but results in greater benefits to the infant. The babies are protected inside the mother for a longer period, allowing for more complex development. San Francisco Zoo 1 11/1/19 An unborn fetus develops inside the mother’s uterus. The placenta provides the oxygen and nutrients the fetus needs to survive. The placenta is usually passed out of the body after the fetus is born. The embryos developed by the live-birth method are not endangered by temperature change, desiccation, or oxygen deprivation but there is an extra cost to the parent. When born, placental mammals are much more developed than marsupials due to their longer gestation periods. Smaller species normally have a shorter gestation period than larger animals. The degree of development of the newborn varies among species. Humans have a relatively long gestation period compared to the rest of the animal kingdom and are born underdeveloped compared with other primates. Developing young get their first nourishment from their mother’s milk. Most primates, all hoofstock and the marine mammals are born precocial; they are able to move around on their own shortly after birth and have camouflage colors and cryptic behaviors to avoid predation while trailing their parents and nursing until thay are capable of feeding on their own.
    [Show full text]