The Last Group of Mammals Have a True Placenta. the Placental System Is Considered More Advanced Than the Monotreme and Marsupial Reproductive Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Learning About Mammals
Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck. -
PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July -
A Note on the Climbing Abilities of Giant Anteaters, Myrmecophaga Tridactyla (Xenarthra, Myrmecophagidae)
BOL MUS BIOL MELLO LEITÃO (N SÉR) 15:41-46 JUNHO DE 2003 41 A note on the climbing abilities of giant anteaters, Myrmecophaga tridactyla (Xenarthra, Myrmecophagidae) Robert J Young1*, Carlyle M Coelho2 and Dalía R Wieloch2 ABSTRACT: In this note we provide seven observations of climbing behaviour by giant anteaters Five observations were recorded in the field: three of giant anteaters climbing on top of 15 to 20 metre high termite mounds, and two observations of giant anteaters in trees In these cases the animals were apparently trying to obtain food The other two observations are from captivity, one involves a juvenile animal that several times over a three month period climbed in a tree to the height of around 20 metres The final observation, involves an adult female that after being separated from her mother climbed on two occasions over a wall with a fence on top (total height 2 metres) to be reunited with her mother It therefore seems that, despite the fact only one other record of climbing behaviour by giant anteaters exists in the scientific literature that giant anteaters have the ability to climb It also may be the case that young adults are highly motivated to stay with their mothers Key words: giant anteater, Myrmecophaga tridactyla, climbing behaviour, wild, zoos RESUMO: Nota sobre as habilidades trepadoras do tamanduá-bandeira, Myrmecophaga tridactyla (Xenarthra, Myrmecophagidae) Nesta nota apresentamos sete registros de comportamento de subir expressado por tamanduá-bandeira Temos cinco exemplos da natureza: três de tamanduás- -
The Ancestral Eutherian Karyotype Is Present in Xenarthra
The Ancestral Eutherian Karyotype Is Present in Xenarthra Marta Svartman*, Gary Stone, Roscoe Stanyon Comparative Molecular Cytogenetics Core, Genetics Branch, National Cancer Institute-Frederick, Frederick, Maryland, United States of America Molecular studies have led recently to the proposal of a new super-ordinal arrangement of the 18 extant Eutherian orders. From the four proposed super-orders, Afrotheria and Xenarthra were considered the most basal. Chromosome- painting studies with human probes in these two mammalian groups are thus key in the quest to establish the ancestral Eutherian karyotype. Although a reasonable amount of chromosome-painting data with human probes have already been obtained for Afrotheria, no Xenarthra species has been thoroughly analyzed with this approach. We hybridized human chromosome probes to metaphases of species (Dasypus novemcinctus, Tamandua tetradactyla, and Choloepus hoffmanii) representing three of the four Xenarthra families. Our data allowed us to review the current hypotheses for the ancestral Eutherian karyotype, which range from 2n ¼ 44 to 2n ¼ 48. One of the species studied, the two-toed sloth C. hoffmanii (2n ¼ 50), showed a chromosome complement strikingly similar to the proposed 2n ¼ 48 ancestral Eutherian karyotype, strongly reinforcing it. Citation: Svartman M, Stone G, Stanyon R (2006) The ancestral Eutherian karyotype is present in Xenarthra. PLoS Genet 2(7): e109. DOI: 10.1371/journal.pgen.0020109 Introduction Megalonychidae (two species of two-toed sloth), and Dasypo- didae (about 20 species of armadillo) [6–9]. According to Extensive molecular data on mammalian genomes have led molecular data estimates, the radiation of Xenarthra recently to the proposal of a new phylogenetic tree for occurred around 65 mya, during the Cretaceous/Tertiary Eutherians, which encompasses four super-orders: Afrotheria boundary. -
Exploring the Natural Origins of SARS-Cov-2
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.22.427830; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Exploring the natural origins of SARS-CoV-2 1 1 2 3 1,* Spyros Lytras , Joseph Hughes , Wei Xia , Xiaowei Jiang , David L Robertson 1 MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, UK. 2 National School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, China. 3 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China. * Correspondence: [email protected] Summary. The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2 and the distance (~1500 km) from Wuhan to Yunnan province, where the closest evolutionary related coronaviruses circulating in horseshoe bats have been identified, is fueling speculation on the natural origins of SARS-CoV-2. Here we analyse SARS-CoV-2’s related horseshoe bat and pangolin Sarbecoviruses and confirm Rhinolophus affinis continues to be the likely reservoir species as its host range extends across Central and Southern China. This would explain the bat Sarbecovirus recombinants in the West and East China, trafficked pangolin infections and bat Sarbecovirus recombinants linked to Southern China. Recent ecological disturbances as a result of changes in meat consumption could then explain SARS-CoV-2 transmission to humans through direct or indirect contact with the reservoir wildlife, and subsequent emergence towards Hubei in Central China. -
The Conservation Game
From Penguins to Pandas - the conservation game Armadillo Fact Files © RZSS 2014 Armadillos There are 21 species of armadillo. They are divided into 8 groups: dwarf fairy giant hairy long nosed naked tail three banded yellow banded All armadillos have an outer covering of strong bony plates and horny skin. Most of the species can bring their legs in under this covering to protect themselves but it is only the three banded armadillos that can roll up into a tight ball. Most are active at night (nocturnal) and have poor eyesight but very good hearing and sense of smell. They all have large claws on their front feet to dig for insects and for burrowing. There is little known about some species of armadillo. At the time of writing (May 2014), the Royal Zoological Society of Scotland (RZSS) are studying four species - giant, southern naked tail, nine banded and yellow banded. Edinburgh Zoo, owned by RZSS holds 2 species, the larger hairy and the southern three banded. These animals are not on show but are sometimes seen in our animal presentations, such as ‘Animal Antics’. Armadillo in different languages Portuguese: tatu Spanish: armadillo (it means ‘little armoured one’ in Spanish) French: tatou Mandarin Chinese: 犰狳 (qiu yu) 2 Dwarf armadillo 1 species dwarf or pichi (Zaedyus pichiy) Distribution Argentina and Chile Diet insects, spiders and plants Breeding gestation 60 days litter size 1 - 2 Size Length: 26 - 33cm Tail length 10 - 14cm Weight 1 - 1.5kg Interesting facts comes out in daytime unlike most other species, it hibernates over -
Structure and Binding Properties of Pangolin-Cov Spike Glycoprotein Inform the Evolution of SARS-Cov-2 ✉ ✉ Antoni G
ARTICLE https://doi.org/10.1038/s41467-021-21006-9 OPEN Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2 ✉ ✉ Antoni G. Wrobel 1,5 , Donald J. Benton 1,5 , Pengqi Xu2,1, Lesley J. Calder3, Annabel Borg4, ✉ Chloë Roustan4, Stephen R. Martin1, Peter B. Rosenthal 3, John J. Skehel1 & Steven J. Gamblin 1 1234567890():,; Coronaviruses of bats and pangolins have been implicated in the origin and evolution of the pandemic SARS-CoV-2. We show that spikes from Guangdong Pangolin-CoVs, closely related to SARS-CoV-2, bind strongly to human and pangolin ACE2 receptors. We also report the cryo-EM structure of a Pangolin-CoV spike protein and show it adopts a fully-closed conformation and that, aside from the Receptor-Binding Domain, it resembles the spike of a bat coronavirus RaTG13 more than that of SARS-CoV-2. 1 Structural Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 2 Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China. 3 Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, NW1 1AT, London, UK. 4 Structural Biology Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK. 5These authors contributed equally: Antoni G. ✉ Wrobel, Donald J. Benton. email: [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:837 | https://doi.org/10.1038/s41467-021-21006-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21006-9 espite intensive research into the origins of the COVID- 19 pandemic, the evolutionary history of its causative A SARS-CoV-2 S D 1,2 agent SARS-CoV-2 remains unclear . -
Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. -
Smutsia Temminckii – Temminck's Ground Pangolin
Smutsia temminckii – Temminck’s Ground Pangolin African Pangolin Working Group and the IUCN Species Survival Commission Pangolin Specialist Group) is Temminck’s Ground Pangolin. No subspecies are recognised. Assessment Rationale The charismatic and poorly known Temminck’s Ground Pangolin, while widely distributed across the savannah regions of the assessment region, are severely threatened by electrified fences (an estimated 377–1,028 individuals electrocuted / year), local and international bushmeat and traditional medicine trades (since 2010, the number of Darren Pietersen confiscations at ports / year has increased exponentially), road collisions (an estimated 280 killed / year) and incidental mortalities in gin traps. The extent of occurrence Regional Red List status (2016) Vulnerable A4cd*†‡ has been reduced by an estimated 9–48% over 30 years National Red List status (2004) Vulnerable C1 (1985 to 2015), due to presumed local extinction from the Free State, Eastern Cape and much of southern KwaZulu- Reasons for change No change Natal provinces. However, the central interior (Free State Global Red List status (2014) Vulnerable A4d and north-eastern Eastern Cape Province) were certainly never core areas for this species and thus it is likely that TOPS listing (NEMBA) (2007) Vulnerable the corresponding population decline was far lower overall CITES listing (2000) Appendix II than suggested by the loss of EOO. Additionally, rural settlements have expanded by 1–9% between 2000 and Endemic No 2013, which we infer as increasing poaching pressure and *Watch-list Data †Watch-list Threat ‡Conservation Dependent electric fence construction. While throughout the rest of Africa, and Estimated mature population size ranges widely increasingly within the assessment region, local depending on estimates of area of occupancy, from 7,002 and international illegal trade for bushmeat and to 32,135 animals. -
Eutheria (Placental Mammals)
Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction have supernumerary teeth (e.g. some whales, armadillos, Eutheria (or Placentalia) is the most taxonomically diverse etc.), in extant placentals the number of teeth is at most of three branches or clades of mammals, the other two three upper and lower incisors, one upper and lower being Metatheria (or Marsupialia) and Prototheria (or canine, four upper and lower premolars, and three upper Monotremata). When named by Gill in 1872, Eutheria and lower molars. Except for one fewer upper molar, a included both marsupials and placentals. It was Huxley in domestic dog retains this pattern. Compared to reptiles, 1880 that recognized Eutheria basically as used today to mammals have fewer skull bones through fusion and loss, include only placentals. McKenna and Bell in their although bones are variously emphasized in each of the Classification of Mammals, published in 1997, chose to three major mammalian taxa. use Placentalia rather than Eutheria to avoid the confusion Physiologically, mammals are all endotherms of varying of what taxa should be included in Eutheria. Others such as degrees of efficiency. They are also homeothermic with a Rougier have used Eutheria and Placentalia in the sense relatively high resting temperature. These characteristics used here. Placentalia includes all extant placentals and are also found in birds, but because of anatomical their most recent common ancestor. -
Pangolin Genomes and the Evolution of Mammalian Scales and Immunity
Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Research Pangolin genomes and the evolution of mammalian scales and immunity Siew Woh Choo,1,2,3,22 Mike Rayko,4,22 Tze King Tan,1,2 Ranjeev Hari,1,2 Aleksey Komissarov,4 Wei Yee Wee,1,2 Andrey A. Yurchenko,4 Sergey Kliver,4 Gaik Tamazian,4 Agostinho Antunes,5,6 Richard K. Wilson,7 Wesley C. Warren,7 Klaus-Peter Koepfli,8 Patrick Minx,7 Ksenia Krasheninnikova,4 Antoinette Kotze,9,10 Desire L. Dalton,9,10 Elaine Vermaak,9 Ian C. Paterson,2,11 Pavel Dobrynin,4 Frankie Thomas Sitam,12 Jeffrine J. Rovie-Ryan,12 Warren E. Johnson,8 Aini Mohamed Yusoff,1,2 Shu-Jin Luo,13 Kayal Vizi Karuppannan,12 Gang Fang,14 Deyou Zheng,15 Mark B. Gerstein,16,17,18 Leonard Lipovich,19,20 Stephen J. O’Brien,4,21 and Guat Jah Wong1 1Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; 2Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; 3Genome Solutions Sdn Bhd, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia; 4Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; 5CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal; 6Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; 7McDonnell -
Mammalia) of São José De Itaboraí Basin (Upper Paleocene, Itaboraian), Rio De Janeiro, Brazil
The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil Lílian Paglarelli BERGQVIST Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) [email protected] Érika Aparecida Leite ABRANTES Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) Leonardo dos Santos AVILLA Departamento de Geologia/IGEO/CCMN/UFRJ, Cidade Universitária, Rio de Janeiro/RJ, 21949-940 (Brazil) and Setor de Herpetologia, Museu Nacional/UFRJ, Quinta da Boa Vista, Rio de Janeiro/RJ, 20940-040 (Brazil) Bergqvist L. P., Abrantes É. A. L. & Avilla L. d. S. 2004. — The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26 (2) : 323-337. ABSTRACT Here we present new information on the oldest Xenarthra remains. We conducted a comparative morphological analysis of the osteoderms and post- cranial bones from the Itaboraian (upper Paleocene) of Brazil. Several osteo- derms and isolated humeri, astragali, and an ulna, belonging to at least two species, compose the assemblage. The bone osteoderms were assigned to KEY WORDS Mammalia, Riostegotherium yanei Oliveira & Bergqvist, 1998, for which a revised diagno- Xenarthra, sis is presented. The appendicular bones share features with some “edentate” Cingulata, Riostegotherium, taxa. Many of these characters may be ambiguous, however, and comparison Astegotheriini, with early Tertiary Palaeanodonta reveals several detailed, derived resem- Palaeanodonta, blances in limb anatomy. This suggests that in appendicular morphology, one armadillo, osteoderm, of the Itaboraí Xenarthra may be the sister-taxon or part of the ancestral stock appendicular skeleton.