Are All Radio Galaxies Genuine Ellipticals??
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Local Radio-Galaxy Population at 20
Mon. Not. R. Astron. Soc. 000, 1–?? (2013) Printed 2 December 2013 (MN LATEX style file v2.2) The local radio-galaxy population at 20GHz Elaine M. Sadler1⋆, Ronald D. Ekers2, Elizabeth K. Mahony3, Tom Mauch4,5, Tara Murphy1,6 1Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 2Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 3ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 4Oxford Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH 5SKA Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa 6School of Information Technologies, The University of Sydney, NSW 2006, Australia Accepted 0000 December 08. Received 0000 December 08; in original form 0000 December 08 ABSTRACT We have made the first detailed study of the high-frequency radio-source population in the local universe, using a sample of 202 radio sources from the Australia Telescope 20GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G- 6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20GHz. Our sample includes some classical FR-1 and FR-2 radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR-0) radio AGN which appear lack extended radio emission even at lower frequencies. Most of these FR-0 sources show no evidence for rela- tivistic beaming, and the FR-0 class appears to be a mixed population which includes young Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio galaxies. -
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
ATNF News Issue No
Galaxy Pair NGC 1512 / NGC 1510 ATNF News Issue No. 67, October 2009 ISSN 1323-6326 Questacon "astronaut" street performer and visitors at the Parkes Open Days 2009. Credit: Shaun Amy, CSIRO. Cover page image Cover Figure: Multi-wavelength color-composite image of the galaxy pair NGC 1512/1510 obtained using the Digitised Sky Survey R-band image (red), the Australia Telescope Compact Array HI distribution (green) and the Galaxy Evolution Explorer NUV -band image (blue). The Spitzer 24µm image was overlaid just in the center of the two galaxies. We note that in the outer disk the UV emission traces the regions of highest HI column density. See article (page 28) for more information. 2 ATNF News, Issue 67, October 2009 Contents From the Director ...................................................................................................................................................................................................4 CSIRO Medal Winners .........................................................................................................................................................................................5 CSIRO Astronomy and Space Science Unit Formed ........................................................................................................................6 ATNF Distinguished Visitors Program ........................................................................................................................................................6 ATNF Graduate Student Program ................................................................................................................................................................7 -
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Where Are Compton-Thick Radio Galaxies? a Hard X-Ray View of Three Candidates
MNRAS 000, 000–000 (0000) Preprint 11 September 2018 Compiled using MNRAS LATEX style file v3.0 Where are Compton-thick radio galaxies? A hard X-ray view of three candidates F. Ursini,1 ? L. Bassani,1 F. Panessa,2 A. Bazzano,2 A. J. Bird,3 A. Malizia,1 and P. Ubertini2 1 INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. 2 INAF/Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere, 00133 Roma, Italy. 3 School of Physics and Astronomy, University of Southampton, SO17 1BJ, UK. Released Xxxx Xxxxx XX ABSTRACT We present a broad-band X-ray spectral analysis of the radio-loud active galactic nuclei NGC 612, 4C 73.08 and 3C 452, exploiting archival data from NuSTAR, XMM-Newton, Swift and INTEGRAL. These Compton-thick candidates are the most absorbed sources among the hard X-ray selected radio galaxies studied in Panessa et al.(2016). We find an X-ray absorbing column density in every case below 1:5 × 1024 cm−2, and no evidence for a strong reflection continuum or iron K α line. Therefore, none of these sources is properly Compton-thick. We review other Compton-thick radio galaxies reported in the literature, arguing that we currently lack strong evidences for heavily absorbed radio-loud AGNs. Key words: galaxies: active – galaxies: Seyfert – X-rays: galaxies – X-rays: individual: NGC 612, 4C 73.08, 3C 452 1 INTRODUCTION 2000). A number of local CT AGNs have been detected thanks to recent hard X-ray surveys with INTEGRAL (Sazonov et al. 2008; A significant fraction of active galactic nuclei (AGNs) are known Malizia et al. -
Sample Program of Study
Sample Program of Study - Nurse Anesthetist Program 126 Credits* (Specialty coursework in BOLD) Year One – Preclinical Year Summer Cr Fall Cr Spring Cr NAN 543 Principles of Anesthesia I 3 NAN 718 Prof Aspects NA I 1 NAN 544 Principles of Anes II 2 NGC 501 Conceptual Foundations 3 NGC 527 Eval and Gen Evidence for HC II 3 NAN 544L Principles of Anes II Lab 1 NGC 518 Health Promotion 3 NGC 527L Eval and Gen Evidence II Lab 1 NAN 672 Pharm Anesth/Adj Drugs 3 NGC 520 Scientific Communications 2 NGC 634 Organizational Leadership 3 NAN 719 Prof Aspects NA II 1 NGC 625 Pathophysiology for APN I 3 NGC 575 Adv Helth Assessmnt (CRNA) 2 NGC 502 Informatics 3 NGC 612 Pharmacotherapeutics 4 NGC 509 Ethics* 3 NGC 626 Pathophysiology for APN II 3 NGC 526 Eval and Gen Evidence for HC I 4 Total Credits 14 Total Credits 17 Total Credits 17 Year Two – Clinical Year I Summer Fall Spring NAN 598 Intro to NA Clin Prac (1 d/wk) 2 NAN 545 Principles of Anes III 3 NAN 546 Principles of Anes IV 3 NAN 601 NA Clin Pract I (3 d/wk) 6 NAN 602 NA Clin Pract II (4 d/wk) 8 NAN 603 NA Clin Pract III (4 d/wk) 8 NGC 632 Interpreting HC Policy 3 NAN 711 Current Top Anes 1 NAN 712 Current Top Anes II 1 NGC 692 Grantsmanship 1 NGC 701 State of the Science 3 NAN 721 Anes Crisis Res Mgt I 1 NGC 638 Program Evaluation 3 Total Credits 12 Total Credits 15 Total Credits 16 Year Three – Clinical Year II Summer Fall Spring NAN 604 NA Clin Pract IV (4 d/wk) 6 NAN 605 NA Clin Pract V (4 d/wk) 6 NAN 547 Principles of Anes V 3 NGC 725 DNP Advanced Clinical Prac I 2 NAN 713 Current Top Anes III 1 NAN 606 NA Clin Pract VI (4 d/wk) 8 NGC 798 DNP Capstone Course I 1 NAN 722 Anes Crisis Res Mgt II 1 NAN 714 Current Top Anes IV 1 NGC 533 Teaching in Nursing 3 NGC 726 DNP Advanced Clinical Prac II 2 NGC 799 DNP Capstone Course II 1 Total Credits 9 Total Credits 14 Total Credits 12 *Effective for all students matriculating Spring 2015 and thereafter, N509 is not a required course and the total credits will be 123. -
Arxiv:1801.08245V2 [Astro-Ph.GA] 14 Feb 2018
Draft version June 21, 2021 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE MASSIVE SURVEY IX: PHOTOMETRIC ANALYSIS OF 35 HIGH MASS EARLY-TYPE GALAXIES WITH HST WFC3/IR1 Charles F. Goullaud Department of Physics, University of California, Berkeley, CA, USA; [email protected] Joseph B. Jensen Utah Valley University, Orem, UT, USA John P. Blakeslee Herzberg Astrophysics, Victoria, BC, Canada Chung-Pei Ma Department of Astronomy, University of California, Berkeley, CA, USA Jenny E. Greene Princeton University, Princeton, NJ, USA Jens Thomas Max Planck-Institute for Extraterrestrial Physics, Garching, Germany. Draft version June 21, 2021 ABSTRACT We present near-infrared observations of 35 of the most massive early-type galaxies in the local universe. The observations were made using the infrared channel of the Hubble Space Telescope (HST ) Wide Field Camera 3 (WFC3) in the F110W (1.1 µm) filter. We measured surface brightness profiles and elliptical isophotal fit parameters from the nuclear regions out to a radius of ∼10 kpc in most cases. We find that 37% (13) of the galaxies in our sample have isophotal position angle rotations greater than 20◦ over the radial range imaged by WFC3/IR, which is often due to the presence of neighbors or multiple nuclei. Most galaxies in our sample are significantly rounder near the center than in the outer regions. This sample contains six fast rotators and 28 slow rotators. We find that all fast rotators are either disky or show no measurable deviation from purely elliptical isophotes. Among slow rotators, significantly disky and boxy galaxies occur with nearly equal frequency. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Publications 2019 16 Jul 2021
Publications 2019 16 Jul 2021 1 *Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J. and 297 coauthors "Observation of inverse Compton emission from a long γ-ray burst". Nature, 575, 459-463 (2019). https://doi.org/10.1038/s41586-019-1754-6 (C) 2 *Agarwal, D.; Lorimer, D.R.; Fialkov, A.; Bannister, K.W.; Shannon, R.M.; Farah, W.l; Bhandari, S.; Macquart, J.-P.; Flynn, C.; Pignata, G.; and 12 coauthors "A fast radio burst in the direction of the Virgo Cluster". MNRAS, 490, 1-8 (2019). https://doi.org/10.1093/mnras/stz2574 (A) 3 Agliozzo, C.; Mehner, A.; Phillips, N.M.; Leto, P.; Groh, J.H.; Noriega-Crespo, A.; Buemi, C.; Cavallaro, F.; Cerrigone, L.; Ingallinera, A.; and 4 coauthors "A massive nebula around the luminous blue variable star RMC 143 revealed by ALMA". A&A, 626, 126, (2019). https://doi.org/10.1051/0004-6361/201935239 (C) 4 *Allison, J.R.; Mahony, E.K.; Moss, V.A.; Sadler, E.M.; Whiting, M.T.; Allison, R.F.; Bland-Hawthorn, J.; Curran, S.J.; Emonts, B.H.C.; Lagos, C.D.P.; and 6 coauthors "PKS B1740-517: an ALMA view of the cold gas feeding a distant interacting young radio galaxy". MNRAS, 482, 2934-2949 (2019). https://doi.org/10.1093/mnras/sty2852 (A) 5 *Alsaberi, R.Z.E.; Barnes, L.A.; Filipović, M.D.; Maxted, N.I.; Sano, H.; Rowell, G.; Bozzetto, L.M.; Gurovich, S.; Urošević, D.; Onić, D.; and 12 coauthors "Radio emission from interstellar shocks: Young type Ia supernova remnants and the case of N 103B in the Large Magellanic Cloud". -
Ellipticals in the CPG and in the Sample of Sramek (1975) 44
RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES Item Type text; Dissertation-Reproduction (electronic) Authors Stocke, John T. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 19:19:08 Link to Item http://hdl.handle.net/10150/289608 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. -
Annual Report 1979
ANNUAL REPORT 1979 EUROPEAN SOUTHERN OBSERVATORY Cover Photograph This image is the result 0/ computer analysis through the ESO image-processing system 0/ the interaeting pair 0/galaxies ES0273-JG04. The spiral arms are disturbed by tidal/orces. One 0/ the two spirals exhibits Sey/ert characteristics. The original pfate obtained at the prime/ocus 0/ the 3.6 m telescope by S. Laustsen has been digitized with the new PDS machine in Geneva. ANNUAL REPORT 1979 presented to the Council by the Director-General, Prof. Dr. L. Woltjer Organisation Europeenne pour des Recherehes Astronomiques dans I'Hemisphere Austral EUROPEAN SOUTHERN OBSERVATORY TABLE OF CONTENTS INTRODUCTION ............................................ 5 RESEARCH................................................. 7 Schmidt Telescope; Sky Survey and Atlas Laboratory .................. 8 Joint Research with Chilean Institutes 9 Conferences and Workshops .................................... 9 FACILITIES Telescopes 11 Instrumentation 12 Image Processing ............................................. 13 Buildings and Grounds 15 FINANCIAL AND ORGANIZATIONAL MATTERS ................ 17 APPENDIXES AppendixI-UseofTeiescopes 22 Appendix II - Programmes 33 Appendix III - Publications ..................................... 47 Appendix IV - Members of Council, Committees and Working Groups for 1980. ................................................... 55 3 INTRODUCTION Several instruments were completed during ihe year, while others progressed weIl. Completed and sent to La Silla for installation