Ellipticals in the CPG and in the Sample of Sramek (1975) 44

Total Page:16

File Type:pdf, Size:1020Kb

Ellipticals in the CPG and in the Sample of Sramek (1975) 44 RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES Item Type text; Dissertation-Reproduction (electronic) Authors Stocke, John T. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 19:19:08 Link to Item http://hdl.handle.net/10150/289608 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St. John's Road, Tyler's Green High Wycombe, Bucks, England HP10 8HR 77-24,943 * STOCKE, John Thomas, 1946- RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES. The University of Arizona, Ph.D., 1977 Physics, astronomy and astrophysics Xerox University Microfilms, Ann Arbor, Michigan 48106 RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES by John Thomas Stocke A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 7 THE UNIVERSITY OF ARIZONA. GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by JOHN THOMAS STOCKE entitled RADIO AND OPTICAL PROPERTIES OF DOUBLE GALAXIES be accepted as fulfilling the dissertation requirement for the degree of DOCTOR OF PHILOSOPHY Dissertation Director As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. I'itJJ. - - -- i5" Mmy /97*7 l<fTJ Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to bor­ rowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or re­ production of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the in­ terests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: ACKNOWLEDGMENTS Professionally I would like to thank my advisors, Bill Tifft (official) and Andre Pacholczyk (unofficial) for all their support and for leaving me pretty much alone to do this work. I would also like to thank the National Radio Astronomy Observatory and the Steward Observatory for generous allocations of telescope time. Specifically at N.R.A.O. I thank Pat Crane, Larry Rudnick, Betty Stobie, Elaine Litman, Richard Porcas, Martha Haynes, and Tom Cram for invaluable help. At Steward I thank Eric Jensen, Gary Coleman, Bill Romanishin, and Maxine Howlett. I also appreciate the initial interest of May Kaftan-Kassim in this project. My non-professional debts are much vaster in number because the majority of my time the last five years has not involved astronomical research. The love and support of these many good friends has made my path clearer to me. It is a tribute to them that I have not strayed too far afield during these difficult and wonderful years. To them, Namaste. iii TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vi LIST OF TABLES ^ . viii ABSTRACT ix CHAPTER 1. INTRODUCTION 1 2. A RADIO CONTINUUM SURVEY OF ISOLATED PAIRS OF GALAXIES . 5 2.1. The Observational Sample 8 2.2. The Observational Technique 14 2.2.1. The Eleven Centimeter Survey 14 2.2.2. The Six Centimeter Follow-Up Observa­ tions 17 2.2.3. Limited Baseline Interferometry .... 18 2.3. Observational Results 20 2.3.1. The "Dumbbell" Galaxies 22 2.3.2. Borderline Spiral/Elliptical Sources . 31 2.3.3. Galaxies with Large Halo Sources .... 34 3. DO CLOSE PAIRS OF GALAXIES SHOW AN EXCESS OF RADIO EMISSION? 40 3.1. Comparison with Other Surveys 42 3.2. Internal Statistics 52 3.3. Further Tests of the Separation-Radio Detection Relation 60 3.4. Evidence from Other Sources '67 4. CONCLUSION 76 4.1. General Classes of Explanations for These Observations 78 4.2. Recommendations for Future Work 83 APPENDIX A: DETAILS CONCERNING THE OBSERVATIONAL SAMPLE 86 iv V TABLE OF CONTENTS—Continued Page APPENDIX B: CALIBRATION AND REDUCTION PROCEDURE 94 APPENDIX C: TABLES OF OBSERVATIONAL RESULTS 103 APPENDIX D: COMPARISON OF DETECTION PROBABILITIES FOR TWO DIFFERENT SAMPLES OF GALAXIES 136 REFERENCES 143 LIST OF ILLUSTRATIONS Figure Page 1. A summary of the interaction classification scheme used by Karachentsev in the CPG 13 2. The radio luminosity versus distance plot for the CPG detections 21 3. Photographs of dumbbell and related galaxies 24 4. Photographs of borderline spiral/elliptical sources ... 32 5. Photographs of spiral galaxies with large halo sources . 36 6. Histograms of the radio luminosity distribution for spirals and ellipticals in the CPG and in the sample of Sramek (1975) 44 7. Histograms of the optical luminosity distribution of the CPG galaxies and the Sramek (1975) galaxies 45 8. The distribution of spectral indices in the CPG detections for all sources, spirals only, and ellipticals only ... 47 • / * 9. Detection percentage versus corrected apparent magnitude for the CPG and Sramek (1975) 49 10. Detection percentage versus corrected apparent magnitude for CPG subclasses 53 11. Detection percentage versus physical separation (part a) and separation index (part b) 54 12. The absolute optical luminosity distributions of the CPG galaxies evenly divided in terms of separation index ... 58 13. A histogram of the radio powers for the CPG detections evenly divided by separation index 59 14. The optical luminosity distributions of the CPG galaxies divided by isolation class 64 vi vii LIST OF ILLUSTRATIONS—Continued Figure Page 15. Detection percentages of isolated galaxies compared to the full Sramek (1975) sample 69 16. Detection percentages of CPG galaxies versus Roche separation parameter (s/r) 82 17. Aperture efficiency curve for the 11 centimeter receiver on the NRAO 91 meter telescope 97 18. Association determination plot from Wright (1974a) with all CPG detections plotted on it 131 19. Detection percentage versus corrected apparent magnitude for the samples of Sramek (1975) and Wright (1974a) 138 20. Corrected detection percentage versus corrected apparent magnitude for the Wright (1974a) and Sulentic (1976a) samples 141 LIST OF TABLES Table Page 1. Dumbbell and related galaxies 23 2. Galaxies with halo sources 35 3. Detection percentages of CPG subclasses 55 4. Isolation class statistics 63 5. Isolated galaxy radio data 68 6. Burns and Owen 3CR field radio sources 73 7." De Young's out-of-cluster list 75 8. Pairs with large velocity differences 89 9. <V/V > estimator for the CPG 93 max 10. Minimum detection limits for galaxies at high declinations 99 11. Single dish detections with confirming interferometry . 104 12. Detected pairs with no confirming interferometry 110 13. Single dish detections near galaxy pairs Ill 14. Sources less than full sample detection limit 113 15. Sources detected only in other surveys 114 16. Basic interferometry data for sources in Table 11 .... 115 17. Basic interferometry data for sources near galaxy pairs . 119 18. Optical data for detected galaxies 121 19. Detection percentages of galaxy surveys 139 viii ABSTRACT This dissertation is an empirical study of the basic radio and optical properties of a large, well-defined, complete sample of isolated pairs of galaxies. The selection criterion for this sample requires that these galaxies are in some of the sparsest regions of space. Because such representatives of the "field" population have recently been shown to be exceedingly rare, a survey of these galaxies allows a comprehensive study of the radio source phenomenon in regions of galaxy density as different from rich clusters as possible.
Recommended publications
  • Clusters of Galaxies…
    Budapest University, MTA-Eötvös François Mernier …and the surprisesoftheir spectacularhotatmospheres Clusters ofgalaxies… K complex ) ⇤ Fe ) α [email protected] - Wallon Super - Wallon [email protected] Fe XXVI (Ly (/ Fe XXIV) L complex ) ) (incl. Ne) α α ) Fe ) ) α ) α α ) ) ) ) α ⇥ ) ) ) α α α α α α Si XIV (Ly Mg XII (Ly Ni XXVII / XXVIII Fe XXV (He S XVI (Ly O VIII (Ly Si XIII (He S XV (He Ca XIX (He Ca XX (Ly Fe XXV (He Cr XXIII (He Ar XVII (He Ar XVIII (Ly Mn XXIV (He Ca XIX / XX Yo u are h ere ! 1 km = 103 m Yo u are h ere ! (somewhere behind…) 107 m Yo u are h ere ! (and this is the Moon) 109 m ≃3.3 light seconds Yo u are h ere ! 1012 m ≃55.5 light minutes 1013 m 1014 m Yo u are h ere ! ≃4 light days 1013 m Yo u are h ere ! 1014 m 1017 m ≃10.6 light years 1021 m Yo u are h ere ! ≃106 000 light years 1 million ly Yo u are h ere ! The Local Group Andromeda (M31) 1 million ly Yo u are h ere ! The Local Group Triangulum (M33) 1 million ly Yo u are h ere ! The Local Group 10 millions ly The Virgo Supercluster Virgo cluster 10 millions ly The Virgo Supercluster M87 Virgo cluster 10 millions ly The Virgo Supercluster 2dFGRS Survey The large scale structure of the universe Abell 2199 (429 000 000 light years) Abell 2029 (1.1 billion light years) Abell 2029 (1.1 billion light years) Abell 1689 Abell 1689 (2.2 billion light years) Les amas de galaxies 53 Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”…
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • ING Bibliography and Analysis for Papers Published in 1996
    ING La Palma Technical Note no. 109 ING bibliography and analysis for papers published in 1996 W L Martin (RGO) J E Sinclair (RGO) February 1997 Bibliography Below is the list of research papers published in 1996 that resulted from observations made at the Isaac Newton Group of Telescopes. Only papers appearing in refereed journals have been included, although many useful data have also appeared elsewhere, notably in workshop and conference proceedings. Papers marked (INT), etc. at the end of the reference indicate those papers which also include results from the INT, etc. Published Papers in Refereed Journals, 1996. Using ING telescopes WHT 1. José A.Acosta-Pulido, Baltasar Vila-Vilaro, Ismael Pérez-Fournon, Andrew S.Wilson & Zlatan I.Tsvetanov, "Toward an understanding of the Seyfert galaxy NGC 5252: A spectroscopic study" Astrophys J. 464, 177 2. Eric J.Bakker, L.B.F.M.Waters, Henny J.G.L.M.Lamers, Norman R.Trams & Frank L.A. Van der Wolf, "Detection Of C2, CRN, and NaI D absorption in the AGB remnant of HD 56126" Astron Astrophys. 310, 893 3. E.J.Bakker, F.L.A. Van der Wolf, H.J.G.L.M.Lamers, A.F.Gulliver, R.Ferlet & A.Vidal-Madjar. "The optical spectrum of HR 4049" Astron. Astrophys. 306, 924. 4. T.Böhm et al. "Azimuthal structures in the wind and chromosphere of the Herbig Ae star AB Aurigae" Astron Astrophys. Suppl. 120, 431. 5. R.G.Bower, G.Hasinger, F.J.Castander, A.Aragón-Salamanca, R.S.Ellis, I.M.Gioia, J.P.Henry, R.Burg, J.P.Huchra, H.Böhringer, U.G.Briel & B.McLean, "The ROSAT North Ecliptic Pole Deep Survey" MNRAS 281, 59.
    [Show full text]
  • Uncovering the Orbit of the Hercules Dwarf Galaxy
    MNRAS 000,1{15 (2019) Preprint 3 December 2019 Compiled using MNRAS LATEX style file v3.0 Uncovering the Orbit of the Hercules Dwarf Galaxy Alexandra L. Gregory1?, Michelle L. M. Collins1, Denis Erkal1, Erik Tollerud2, Maxime Delorme1, Lewis Hill1, David J. Sand3, Jay Strader4 Beth Willman5, 1Department of Physics, University of Surrey, Guildford, GU2 7XH, Surrey, UK 2Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 3Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Rm. N204, Tucson, AZ 85721-0065, USA 4Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 5National Optical-Infrared Astronomy Research Laboratory, 950 North Cherry Avenue, Tucson, AZ 85719, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present new chemo{kinematics of the Hercules dwarf galaxy based on Keck II{ DEIMOS spectroscopy. Our 21 confirmed members have a systemic velocity of vHerc = −1 +1:4 −1 46:4 1:3 kms and a velocity dispersion σv;Herc = 4:4−1:2 kms . From the strength of the± Ca II triplet, we obtain a metallicity of [Fe/H]= 2:48 0:19 dex and dispersion +0:18 − ± of σ[Fe=H] = 0:63−0:13 dex. This makes Hercules a particularly metal{poor galaxy, placing it slightly below the standard mass{metallicity relation. Previous photometric and spectroscopic evidence suggests that Hercules is tidally disrupting and may be on a highly radial orbit. From our identified members, we measure no significant velocity gradient. By cross{matching with the second Gaia data release, we determine an ∗ uncertainty{weighted mean proper motion of µα = µα cos(δ) = 0:153 0:074 mas −1 −1 − ± yr , µδ = 0:397 0:063 mas yr .
    [Show full text]
  • A Remarkably Large Depleted Core in the Abell 2029 BCG IC 1101
    MNRAS 471, 2321–2333 (2017) doi:10.1093/mnras/stx1635 Advance Access publication 2017 June 30 A remarkably large depleted core in the Abell 2029 BCG IC 1101 Bililign T. Dullo,1,2,3‹ Alister W. Graham4 and Johan H. Knapen2,3 1Departamento de Astrof´ısica y Ciencias de la Atmosfera,´ Universidad Complutense de Madrid, E-28040 Madrid, Spain 2Instituto de Astrof´ısica de Canarias, V´ıa Lactea´ S/N, E-38205 La Laguna, Tenerife, Spain 3Departamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 4Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Accepted 2017 June 27. Received 2017 June 27; in original form 2016 November 29 ABSTRACT We report the discovery of an extremely large (Rb ∼2.77 arcsec ≈ 4.2 kpc) core in the brightest cluster galaxy, IC 1101, of the rich galaxy cluster Abell 2029. Luminous core-Sersic´ galaxies contain depleted cores – with sizes (Rb) typically 20–500 pc – that are thought to be formed by coalescing black hole binaries. We fit a (double nucleus) + (spheroid) + (intermediate-scale component) + (stellar halo) model to the Hubble Space Telescope surface brightness profile of IC 1101, finding the largest core size measured in any galaxy to date. This core is an order of magnitude larger than those typically measured for core-Sersic´ galaxies. We find that the spheroid’s V-band absolute magnitude (MV)of−23.8 mag (∼25 per cent of the total galaxy light, i.e. including the stellar halo) is faint for the large Rb, such that the observed core is 1.02 dex ≈ 3.4σ s (rms scatter) larger than that estimated from the Rb–MV relation.
    [Show full text]
  • Gaia DR2 White Dwarfs in the Hercules Stream Santiago Torres1,2, Carles Cantero1, María E
    A&A 629, L6 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936244 & c ESO 2019 Astrophysics LETTER TO THE EDITOR Gaia DR2 white dwarfs in the Hercules stream Santiago Torres1,2, Carles Cantero1, María E. Camisassa3,4, Teresa Antoja5, Alberto Rebassa-Mansergas1,2, Leandro G. Althaus3,4, Thomas Thelemaque6, and Héctor Cánovas7 1 Departament de Física, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860 Castelldefels, Spain e-mail: [email protected] 2 Institute for Space Studies of Catalonia, c/Gran Capità 2-4, Edif. Nexus 104, 08034 Barcelona, Spain 3 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina 4 Instituto de Astrofísica de La Plata, UNLP-CONICET, Paseo del Bosque s/n, 1900 La Plata, Argentina 5 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 6 Industrial and Informatic Systems Deparment, EPF - École d’Ingénieurs, 21 boulevard Berthelot, 34000 Montpellier, France 7 European Space Astronomy Centre (ESA/ESAC), Operations Deparment, Villanueva de la Cañada, 28692 Madrid, Spain Received 5 July 2019 / Accepted 7 August 2019 ABSTRACT Aims. We analyzed the velocity space of the thin- and thick-disk Gaia white dwarf population within 100 pc by searching for signatures of the Hercules stellar stream. We aimed to identify objects belonging to the Hercules stream, and by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. Methods. We applied a kernel density estimation to the UV velocity space of white dwarfs.
    [Show full text]
  • HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land
    HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land 1 Executive Summary • There are now 420 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 27 November, nineteen published papers in 2020 • HET papers have 29363 citations – Average of 70, median of 39 citations per paper – H-number of 90 – 81 papers have ≥ 100 citations; 175 have ≥ 50 cites • Wide angle surveys account for 26% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 47% of the papers and 47% of the citations, respectively. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 420 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2020 a total of fifteen HET papers appeared; nineteen have been published to date in 2020. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time.
    [Show full text]
  • Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe
    Journal of High Energy Physics, Gravitation and Cosmology, 2021, 7, 98-122 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe Puthalath Koroth Raghuprasad Independent Researcher, Odessa, TX, USA How to cite this paper: Raghuprasad, P.K. Abstract (2021) Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a This is the final article in our series dealing with the interplay of spin and Spinning Universe. Journal of High Energy gravity that leads to the generation, and continuation of celestial body mo- Physics, Gravitation and Cosmology, 7, tions in the universe. In our prior studies we focused on such interactions in 98-122. https://doi.org/10.4236/jhepgc.2021.71005 the elementary particles, and in the celestial bodies in the solar system. Fore- most among the findings was that, along with gravity, matter at all levels ex- Received: March 23, 2020 hibits axial spin. We further noted that all freestanding bodies outside our Accepted: December 19, 2020 solar system, including the largest such units, the stars and galaxies also spin Published: December 22, 2020 on their axes. Also, the axial rotation speed of planets in our solar system has Copyright © 2021 by author(s) and a linear positive relationship to their masses, thus hinting at its fundamental Scientific Research Publishing Inc. and autonomous nature. We have reported that this relationship between the This work is licensed under the Creative size of the body and its axial rotation speed extends to the stars and even the Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Tracking Star Formation in Dwarf Cluster Galaxies Cody Millard Rude
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Tracking Star Formation In Dwarf Cluster Galaxies Cody Millard Rude Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Rude, Cody Millard, "Tracking Star Formation In Dwarf Cluster Galaxies" (2015). Theses and Dissertations. 1829. https://commons.und.edu/theses/1829 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. TRACKING STAR FORMATION IN DWARF CLUSTER GALAXIES by Cody Millard Rude Bachelor of Science, University of University of Minnesota Duluth, 2009 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2015 PERMISSION Title Tracking Star Formation in Dwarf Cluster Galaxies Department Physics and Astrophysics Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in their absence, by the chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • A RADIO RELIC and a SEARCH for the CENTRAL BLACK HOLE in the ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R
    Faculty Scholarship 2017 A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy Sarah Burke-Spolaor Kayhan Gültekin Marc Postman Tod R. Lauer Joanna M. Taylor See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Burke-Spolaor, Sarah; Gültekin, Kayhan; Postman, Marc; Lauer, Tod R.; Taylor, Joanna M.; Lazio, T. Joseph W.; and Moustakas, Leonidas A., "A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy" (2017). Faculty Scholarship. 448. https://researchrepository.wvu.edu/faculty_publications/448 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors Sarah Burke-Spolaor, Kayhan Gültekin, Marc Postman, Tod R. Lauer, Joanna M. Taylor, T. Joseph W. Lazio, and Leonidas A. Moustakas This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/448 Draft version September 5, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 A RADIO RELIC AND A SEARCH FOR THE CENTRAL BLACK HOLE IN THE ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R. Lauer7, Joanna M. Taylor6, T. Joseph W. Lazio8, and Leonidas A. Moustakas8 Draft version September 5, 2018 ABSTRACT We present VLA images and HST/STIS spectra of sources within the center of the brightest cluster galaxy (BCG) in Abell 2261.
    [Show full text]
  • Unveiling the Composition of Radio Plasma Bubbles in Galaxy Clusters with the Sunyaev-Zel’Dovich Effect
    A&A 430, 799–810 (2005) Astronomy DOI: 10.1051/0004-6361:20041576 & c ESO 2005 Astrophysics Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect C. Pfrommer1,T.A.Enßlin1, and C. L. Sarazin2 1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str.1, PO Box 1317, 85741 Garching, Germany e-mail: [email protected] 2 Department of Astronomy, University of Virginia, PO Box 3818, Charlottesville, VA 22903-0818, USA Received 2 July 2004 / Accepted 23 August 2004 Abstract. The Chandra X-ray Observatory is finding a large number of cavities in the X-ray emitting intra-cluster medium which often coincide with the lobes of the central radio galaxy. We propose high-resolution Sunyaev-Zel’dovich (SZ) observa- tions to infer the still unknown dynamically dominant component of the radio plasma bubbles. This work calculates the thermal and relativistic SZ emission of different compositions of these plasma bubbles while simultaneously allowing for the cluster’s kinetic SZ effect. As examples, we present simulations of an Atacama Large Millimeter Array (ALMA) observation and of a Green Bank Telescope (GBT) observation of the cores of the Perseus cluster and Abell 2052. We predict a 5σ detection of the southern radio bubble of Perseus in a few hours with the GBT and ALMA while assuming a relativistic electron population within the bubble. In Abell 2052, a similar detection would require a few tens of hours with either telescope, the longer ex- posures mainly being the result of the higher redshift and the lower central temperature of this cluster.
    [Show full text]