TAXON:Xyris Complanata R.Br. SCORE:15.0 RATING:High Risk

Total Page:16

File Type:pdf, Size:1020Kb

TAXON:Xyris Complanata R.Br. SCORE:15.0 RATING:High Risk TAXON: Xyris complanata R.Br. SCORE: 15.0 RATING: High Risk Taxon: Xyris complanata R.Br. Family: Xyridaceae Common Name(s): feathered yellow-eye Synonym(s): Xyris anceps Vahl hatpins Xyris elongata Rudge yellow-eyed grass Xyris laevis R.Br. Xyris malaccensis Steud. Xyris scabra R.Br. Xyris walkeri Wight ex Kunth Assessor: Chuck Chimera Status: Assessor Approved End Date: 10 Mar 2018 WRA Score: 15.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Perennial Herbs, Environmental Weed, Disturbance-Adapted, Water-Dispersed, Prolific Seeder Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n Creation Date: 10 Mar 2018 (Xyris complanata R.Br.) Page 1 of 14 TAXON: Xyris complanata R.Br. SCORE: 15.0 RATING: High Risk Qsn # Question Answer Option Answer 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 y conditions if not a volcanic island) 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 n 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n Geophyte (herbaceous with underground storage organs 504 y=1, n=0 n -- bulbs, corms, or tubers) Evidence of substantial reproductive failure in native 601 y=1, n=0 n habitat 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally 604 Self-compatible or apomictic 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 4+ years = -1 1 Propagules likely to be dispersed unintentionally (plants 701 growing in heavily trafficked areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant 704 Propagules adapted to wind dispersal 705 Propagules water dispersed y=1, n=-1 y 706 Propagules bird dispersed y=1, n=-1 n 707 Propagules dispersed by other animals (externally) 708 Propagules survive passage through the gut 801 Prolific seed production (>1000/m2) y=1, n=-1 y Evidence that a persistent propagule bank is formed (>1 802 y=1, n=-1 y yr) 803 Well controlled by herbicides 804 Tolerates, or benefits from, mutilation, cultivation, or fire Effective natural enemies present locally (e.g. introduced 805 biocontrol agents) Creation Date: 10 Mar 2018 (Xyris complanata R.Br.) Page 2 of 14 TAXON: Xyris complanata R.Br. SCORE: 15.0 RATING: High Risk Supporting Data: Qsn # Question Answer 101 Is the species highly domesticated? n Source(s) Notes Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of "Native to southeastern Asia, Malesia, and Australia; in Hawai'i the flowering plants of Hawaii. Revised edition. University cultivated for use in flower arrangements at least in Hilo and sold as of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. 'ahaniu" [No evidence of domestication] 102 Has the species become naturalized where grown? Source(s) Notes WRA Specialist. 2018. Personal Communication NA 103 Does the species have weedy races? Source(s) Notes WRA Specialist. 2018. Personal Communication NA Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet High tropical" for "tropical or subtropical" Source(s) Notes Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of the flowering plants of Hawaii. Revised edition. University "Native to southeastern Asia, Malesia, and Australia" of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. Wu, Z. Y. & Raven, P. H. (eds.). 2000. Flora of China. Vol. 24 "Wastelands, fields, moist sandy soil in coastal areas. Fujian, Hainan (Flagellariaceae through Marantaceae). Science Press, [Cambodia, India, Indonesia, Laos, Malaysia, New Guinea, Beijing, and Missouri Botanical Garden Press, St. Louis Philippines, Sri Lanka, Thailand, Vietnam; Australia]." 202 Quality of climate match data High Source(s) Notes Wu, Z. Y. & Raven, P. H. (eds.). 2000. Flora of China. Vol. 24 (Flagellariaceae through Marantaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis 203 Broad climate suitability (environmental versatility) y Source(s) Notes "Ecology.ͶOpen, wet places in dry dipterocarp forest, lower Phonsena, P., Chantaranothai, P., & Meesawat, A. (2013). montane oak forest and lower montane oak-pine forest, from sea Revision of Xyris L.(Xyridaceae) in Thailand. Thai Forest level to 1600 m altitude" [Elevation exceeds 1000 m, demonstrating Bulletin (Botany) 41: 102-139 environmental versatility] Native or naturalized in regions with tropical or 204 y subtropical climates Creation Date: 10 Mar 2018 (Xyris complanata R.Br.) Page 3 of 14 TAXON: Xyris complanata R.Br. SCORE: 15.0 RATING: High Risk Qsn # Question Answer Source(s) Notes "Native to southeastern Asia, Malesia, and Australia; in Hawai'i cultivated for use in flower arrangements at least in Hilo and sold as Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of 'ahaniu, now at least sparingly naturalized in wet muddy areas and the flowering plants of Hawaii. Revised edition. University on lava, ca. 500 m, in the vicinity of Mountain View and Glenwood, of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. Hawai'i, and collected on Kaua'i in 1987 (Lorence & Flynn 5538, BISH). First reported as naturalized by Fosberg (1966b)." Does the species have a history of repeated 205 n introductions outside its natural range? Source(s) Notes Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of "in Hawai'i cultivated for use in flower arrangements at least in Hilo the flowering plants of Hawaii. Revised edition. University and sold as 'ahaniu," of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. CABI. 2018. Invasive Species Compendium. Wallingford , Introduced to Hawaii and West Bengal UK: CAB International. www.cabi.org/isc 301 Naturalized beyond native range y Source(s) Notes "in Hawai'i cultivated for use in flower arrangements at least in Hilo Wagner, W.L., Herbst, D.R.& Sohmer, S.H. 1999. Manual of and sold as 'ahaniu, now at least sparingly naturalized in wet muddy the flowering plants of Hawaii. Revised edition. University areas and on lava, ca. 500 m, in the vicinity of Mountain View and of Hawai͚i Press and Bishop Museum Press, Honolulu, HI. Glenwood, Hawai'i, and collected on Kaua'i in 1987 (Lorence & Flynn 5538, BISH). First reported as naturalized by Fosberg (1966b)." 302 Garden/amenity/disturbance weed Source(s) Notes [Classified as a weed. Identified as an environmental weed in Hawaii. See 3.04] "References: United States of America-N- 101, United Randall, R.P. (2017). A Global Compendium of Weeds. 3rd States of America-N-301, United States of America-N-839, Edition. Perth, Western Australia. R.P. Randall Singapore-W-1290, United States of America-N-1292, Vietnam-A-87, Singapore-W-1839, Singapore-W-1977, Global--1324." 303 Agricultural/forestry/horticultural weed n Source(s) Notes US Fish and Wildlife Service. 2010. Endangered and [Classified as an environmental weed] "Xyris complanata is a Threatened Wildlife and Plants; Determination of clumping herb cultivated for use in floral arrangements. It is Endangered Status for 48 Species on Kauai and naturalized in Hawaii in wet muddy areas and on lava and can Designation of Critical Habitat; Final Rule. 50 CFR Part 17. outcompete native vegetation" Federal Register Vol. 75, No. 70 Randall, R.P. (2017). A Global Compendium of Weeds. 3rd No evidence Edition. Perth, Western Australia. R.P. Randall 304 Environmental weed y Creation Date: 10 Mar 2018 (Xyris complanata R.Br.) Page 4 of 14 TAXON: Xyris complanata R.Br. SCORE: 15.0 RATING: High Risk Qsn # Question Answer Source(s) Notes [Identified as a competitor to native vegetation in montane wet ecosystems] "The nonnative plant threats to the species inhabiting the montane wet ecosystem include the understory and subcanopy species Andropogon glomeratus (bushy bluestem), Andropogon virginicus (broomsedge), Axonopus fissifolius, Clidemia hirta, US Fish and Wildlife Service. 2010. Endangered and Cyperus meyenianus, Erechtites valerianifolia (fireweed), Erigeron Threatened Wildlife and Plants; Determination of karvinskianus, Hedychium gardnerianum, Juncus planifolius, Endangered Status for 48 Species on Kauai and Kalanchoe pinnata, Lantana camara, Paspalum urvillei, Passiflora Designation of Critical Habitat; Final Rule.
Recommended publications
  • Common Name: DRUMMOND's YELLOW-EYED GRASS
    Common Name: DRUMMOND’S YELLOW-EYED GRASS Scientific Name: Xyris drummondii Malme Other Commonly Used Names: none Previously Used Scientific Names: none Family: Xyridaceae (yellow-eyed grass) Rarity Ranks: G3/S1 State Legal Status: Special Concern Federal Legal Status: none Federal Wetland Status: OBL Description: Perennial herb usually occurring in clumps; base of the plant with a shiny, reddish-brown patch, often buried in sand. Leaves 1¼ - 4 inches (3 - 10 cm) long, less than ¼ inch (1.5 - 5 mm) wide, flat, leaf bases overlapping and forming a fan. Flower stalk 1½ - 8 inches (4 - 25 cm) tall, ribbed, with a leaf-like sheath, as long as or slightly shorter than most of the leaves, enclosing the base of the stalk. Cone-like flower spike - inch (3 - 8 mm) long, oval, solitary at the top of the flower stalk, composed of many tan, papery, rounded, overlapping bracts, each bract with a small green patch; spikes usually produce only 1 flower per day. Flower with 3 yellow petals, rising from under a bract, opening in the morning and withering around noon; sepals are hidden under the bracts. Similar Species: Yellow-eyed grasses are very similar; this species is distinguished by the reddish-brown patch at the base of the plant and by the sheath of the flower stalk which is about the same length as the leaves. Related Rare Species: Harper’s yellow-eyed grass (Xyris scabrifolia, Special Concern) has a fleshy, pink-purple base; a twisted flower stalk with a sheath shorter than the leaves; and rounded petals. Its leaves are covered with tiny bumps which give them a rough texture and a glazed look.
    [Show full text]
  • Inflorescence Architecture and Floral Morphology of Aratitiyopea Lopezii (Xyridaceae) Lisa M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 17 2007 Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae) Lisa M. Campbell New York Botanical Garden, Bronx Dennis Wm. Stevenson New York Botanical Garden, Bronx Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Campbell, Lisa M. and Stevenson, Dennis Wm. (2007) "Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 17. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/17 Aliso 23, pp. 227–233 ᭧ 2007, Rancho Santa Ana Botanic Garden INFLORESCENCE ARCHITECTURE AND FLORAL MORPHOLOGY OF ARATITIYOPEA LOPEZII (XYRIDACEAE) LISA M. CAMPBELL1, 2 AND DENNIS WM.STEVENSON1 1The New York Botanical Garden, Bronx, New York 10458, USA 2Corresponding author ([email protected]) ABSTRACT Aratitiyopea lopezii is a robust perennial species of Xyridaceae from seasonally saturated, mid- to high-elevation, sandstone and granite sites in northern South America. The species lacks the scapose inflorescence characteristic of Xyridaceae and, having the gestalt of a rhizomatous bromeliad, it is seemingly aberrant in the family. However, closer examination confirms features consistent with the family and the previously noted morphological similarities to Orectanthe. Details of inflorescence structure and floral morphology are presented and compared to other genera of Xyridaceae. Key words: Aratitiyopea, Bromeliaceae, gynoecium appendage, inflorescence, Navia, nectary, Orec- tanthe, osmophore, pollen, Xyridaceae. INTRODUCTION florescence, and the few exceptions to this growth form (i.e., some Abolboda species, Achlyphila, and Aratitiyopea) have Aratitiyopea (Xyridaceae) is a monospecific genus of her- not been critically evaluated.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Four New Species of <I>Xyris</I> (<I>Xyridaceae
    Blumea 57, 2012: 116–124 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651912X654191 Four new species of Xyris (Xyridaceae) from Thailand P. Phonsena1, P. Chantaranothai1, A. Meesawat1 Key words Abstract Four new species of Xyris (Xyridaceae), X. bituberosa, X. buengkanensis, X. emarginata, and X. thai­ landica from North-Eastern Thailand are described and illustrated. A provisional conservation assessment for each new species species is given. Thailand Xyridaceae Published on 1 August 2012 Xyris INTRODUCTION & Boonsuk 6418 (holo KKU; iso BK, BKF, C, L), Thailand, Bueng Kan, Phu Wua Wildlife Sanctuary, alt. 400 m, 25 Sept. 2009. Xyridaceae is a small tropical and subtropical family, comprising Etymology. The specific epithet refers to the 2-lobed corm. c. 385 species in five genera: Abolboda Humb. & Bonpl. (1813), Achlyphila Maguire & Wurdack (1960), Aratitiyopea Steyerm. Solitary perennial herb, 40–50(–75) cm tall with a 2-lobed & P.E.Berry (1984), Orectanthe Maguire (1958), and Xyris L. corm. Corm-lobes yellowish brown, subglobose, (0.8–)1–1.5 (1753). Xyris is the largest genus of the family, with more than by (1.2–)1.5–2.3 cm, containing starch grains. Leaves (2–)3–4 250 species (Kral 2000), and is distributed mainly in tropical per plant, linear or subterete, (12–)25–37 cm by 2–2.3 mm, and subtropical North and South America, with about 50 spe- with a ligule; blade smooth, margin entire, apex bluntly oblique cies in Africa, and smaller numbers in Asia and Australia. The to acute. Scape terete, subterete below the spike, 1–1.5 mm other four genera are restricted to South America (Dahlgren et diam.
    [Show full text]
  • Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales
    Cunninghamia 8(4): 2004 Hunter, Vegetation of Basket Swamp National Park 453 Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales John T. Hunter School of Human & Environmental Studies, University of New England NSW 2351, AUSTRALIA Email: [email protected] Abstract: The vegetation of Basket Swamp National Park (2820 ha), 30 km north east of Tenterfield (28°54’S, 152°09’E) in the Tenterfield Shire, in the Northern Tablelands Bioregion NSW, is described. Seven vegetation communities are mapped based on survey of plots, subsequent ground-truthing, air photo interpretation and substrate. Communities described are: (1) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Open Forests, (2) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Grassy Open Forests, (3) Leptospermum trinervium (Tea-tree) – Leptospermum polygalifolium subsp. transmontanum (Creek Tea-tree) Riparian Scrub, (4) Leptospermum trinervium (Tea-tree) – Kunzea obovata (Pink Kunzea) – Leptospermum novae-angliae (New England Tea-tree) Heaths & Shrublands, (5) Ceratopetalum apetalum (Coachwood) – Lophostemon confertus (Brush Box) Closed Forest, (6) Eucalyptus obliqua (Messmate) – Eucalyptus campanulata (Blackbutt) Tall Open Forests, and (7) Baeckea omissa (Baeckea) – Baloskion stenocoleum (Sedge) Heathy Sedgelands. All but two communities (3 & 7) were considered adequately reserved locally, no listed endangered or vulnerable commu- nities were found. Thirty-six taxa were considered to be of conservation significance of which two are listed as vulnerable on Schedule 2 of the NSW TSC Act. A further nine have been reported under the RoTAP criteria. Cunninghamia (2004) 8(4): 453–466 Introduction Basket Swamp National Park is located approximately 30 km north east of Tenterfield and 10 km west of the Mount Lindsay Highway (28°54’S, 152°09’E) (Fig.
    [Show full text]
  • Fire in the Southeastern Grasslands, By
    Fire in the Southeastern Grasslands RICHARD J. VOGL Department of Biology California State University Los Angeles, CA 90032 INTRODUCTION ~ERE has been more research on the effects of fire in the southeastern United States than in any region of North America. Most studies have been concerned with the effects of fire on the trees, including the role of fire in controlling hardwood suc­ cession, fire damage to trees, the effects of fire on soils and litter, the influence of fire on conifer growth and reproduction, and the relationships of fire to tree diseases (Garren 1943; Ahlgren and Ahlgren 1960; Cushwa 1968). A lesser, but stilI substantial number of studies have been focused on the effects of fire on forage yields and livestock production (Wahlenberg et al. 1939), and the use of fire in wildlife management in the Southeast. But academic or phy­ tosociological studies of the vegetational composition and of the effects of fire on the understory vegetation are generally lacking. Except for some range and wildlife research and several general studies (Wells and Shunk 1931; Leukel and St<Jkes 1939; Biswell and Lemon 1943; Burton 1944; Lemon 1949, 1967; Campbell 1955; Biswell1958; Hodgkins 1958; Arata 1959; Cushwa et al. 1966, 1970; Wolters 1972) , most investigators have ignored the herbaceous cover or grassland vegetation under southeastern trees. Even early botanists often became more interested in the unusual botanical features such as the southern extent of Appalachian tree species (Harper 1943, 1952), the description of the silaceous dunes of the 175 RICHARD J. VOGL Gulf Coast (Kurz 1942), the habits of eastern red cedar (Harper 1912), the vegetation of the Okefenokee Swamp (Wright and Wright 1932), or why the Black Belt Prairie of Alabama was treeless (Ranking and Davis 1971), thereby neglecting the widespread and common grassland vegetation and its relationship to fire.
    [Show full text]
  • Xyridaceae, Poales)
    Braz. J. Bot (2016) 39(2):721–727 DOI 10.1007/s40415-015-0244-9 Seed micromorphology and its taxonomic significance to Xyris (Xyridaceae, Poales) 1 1 1 Kaire de Oliveira Nardi • Aline Oriani • Vera Lucia Scatena Received: 24 August 2015 / Accepted: 14 December 2015 / Published online: 19 January 2016 Ó Botanical Society of Sao Paulo 2016 Abstract The seed micromorphology was studied in 2014) and Xyris (Weinzieher 1914; Rudall and Sajo 1999; eight species of Xyris (Xyridaceae) with taxonomic pur- Nardi et al. 2015) and proved to be useful taxonomically. poses. The results show that the presence of longitudinal The importance of seed coat ornamentation for the taxon- endotegmic ridges in the seed coat is a pattern for the genus omy of Xyris has already been demonstrated in the litera- and that the shape of these ridges differentiates among the ture (Wanderley 1992; Silva 2010; Mota et al. 2015). Mota species. The following characteristics are also useful to et al. (2015), for example, analyzed the seed coat surface of identify the species: shape and size of the seed, number of 17 species of Xyris and used characteristics such as length cell rows between the ridges, and the striation pattern of the and shape of seed, type of striae, and pattern of cross-lines seed coat. Based on these characteristics, a standard ter- to distinguish among species. It is worth pointing out that minology is proposed to describe the seed coat in species of the knowledge of the ontogeny of the seed is very impor- the genus. An identification key for the studied species is tant for the analysis of micromorphology because it facil- also provided.
    [Show full text]
  • Poales Poales 4 Main Groups: • Acorales - Sister to All Monocots • Alismatales – Inc
    Poales Poales 4 main groups: • Acorales - sister to all monocots • Alismatales – inc. Aroids - jack in the pulpit • “Lilioids” (lilies, orchids, yams) cattails, rushes, sedges – non-monophyletic – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Poales Poales • showy flowers, Evolutionary trends: • showy flowers, insect or bird insect or bird pollinated • nectar to pollen gathering to pollinated wind pollination • +/- reduced • reduced flowers - loss of • +/- reduced flowers, insect or perianth flowers, insect or wind pollinated wind pollinated • unisexuality sometimes • bracts become important • reduced • reduced flowers, wind • flowers to florets in spikelets flowers, wind pollinated pollinated 1 Poales II: wind pollinated families Xyridaceae - yellow eye grass Small family (5/260) of rush-like leaves with • “grade” centered in the terminal spike of small but showy yellow (or Guayana Shield and blue) petalled-flowers with no nectar. distinctive in tepui-top flora Inflorescence with spirally arranged bracts. • +/- reduced flowers, insect or wind pollinated Xyris difformis Xyris torta - yellow-eyed grass Xyridaceae - yellow eye grass Xyridaceae - yellow eye grass Subfamily with Xyris is widespread and includes Other subfamily is diverse only on Guayana northern hemisphere species. Shield and Brazilian cerrados Abolboideae distribution Xyridoideae (Xyris) distribution Orectanthe Xyris difformis Abolboda 2 Eriocaulaceae - pipewort Eriocaulaceae - pipewort
    [Show full text]
  • Xyridaceae, Poales) in New Caledonia, with Description of a New Species Jérémie Morel, Jérôme Munzinger
    Novitates neocaledonicae. Taxonomy and nomenclature of the genus Xyris (Xyridaceae, Poales) in New Caledonia, with description of a new species Jérémie Morel, Jérôme Munzinger To cite this version: Jérémie Morel, Jérôme Munzinger. Novitates neocaledonicae. Taxonomy and nomenclature of the genus Xyris (Xyridaceae, Poales) in New Caledonia, with description of a new species. Phytotaxa, Magnolia Press 2021, 502, pp.219 - 229. 10.11646/phytotaxa.502.3.1. hal-03238529 HAL Id: hal-03238529 https://hal.inrae.fr/hal-03238529 Submitted on 27 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phytotaxa 502 (3): 219–229 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.502.3.1 Novitates neocaledonicae. XIII. Taxonomy and nomenclature of the genus Xyris (Xyridaceae, Poales) in New Caledonia, with description of a new species JÉRÉMIE MOREL1 & JÉRÔME MUNZINGER2 1AMAP, Université Montpellier, IRD, CIRAD, CNRS, INRAE, F-34000 Montpellier (France). [email protected]; https://orcid.org/0000-0001-7969-2609 2AMAP, Université Montpellier, IRD, CIRAD, CNRS, INRAE, F-34000 Montpellier (France).
    [Show full text]
  • TENNESSEE YELLOW-EYED GRASS Scientific Name: Xyris
    Common Name: TENNESSEE YELLOW-EYED GRASS Scientific Name: Xyris tennesseensis Kral Other Commonly Used Names: none Previously Used Scientific Names: none Family: Xyridaceae (yellow-eyed grass) Rarity Ranks: G2/S1 State Legal Status: Endangered Federal Legal Status: Endangered Federal Wetland Status: OBL Description: Perennial herb with a fleshy, bulbous base, usually occurring in small clumps. Leaves are 5½ - 18 inches (14 - 45 cm) long, ¼ - inch (0.5 - 1 cm) wide, erect, flat or slightly twisted with swollen, pink or purple leaf bases overlapping up to one-third the length of the blade. Flower stalk is 12 - 28 inches (30 - 70 cm) tall, straight, unbranched, ribbed, and slightly flattened in cross-section; the upper stalk is angled or winged; a reddish-brown sheath, shorter than the leaves, encircles the base of the stalk. A single, cone-like flower spike, - inch (1 - 1.5 cm) long and bluntly oval, is held at the top of the flower stalk; it is composed of many tan, rounded, overlapping bracts; spikes usually produce only 1 flower per day, from the rounded tip of a bract. The flower has 3 oblong, yellow petals; sepals do not show above the tip of the bract. Similar Species: Carolina yellow-eyed grass (Xyris difformis) has rough leaf surfaces and flat leaf bases. Twisted yellow-eyed grass (X. torta) has swollen leaf bases but its leaves are less than ¼ inch (0.5 cm) wide, twisted, with strongly raised veins. Both may occur with Tennessee yellow-eyed grass. Related Rare Species: See Drummond’s yellow-eyed grass (Xyris drummondii) on this website.
    [Show full text]
  • Nuclear Genes, Matk and the Phylogeny of the Poales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]