Lawrlwytho'r Atodiad Gwreiddiol

Total Page:16

File Type:pdf, Size:1020Kb

Lawrlwytho'r Atodiad Gwreiddiol Imperial College London BSc/MSci EXAMINATION June 2014 This paper is also taken for the relevant Examination for the Associateship SUN, STARS AND PLANETS For 2nd, 3rd and 4th -Year Physics Students Monday, 2nd June 2014: 10:00 to 12:00 Answer ALL parts of Section A and TWO questions from Section B. Marks shown on this paper are indicative of those the Examiners anticipate assigning. General Instructions Complete the front cover of each of the FOUR answer books provided. If an electronic calculator is used, write its serial number at the top of the front cover of each answer book. USE ONE ANSWER BOOK FOR EACH QUESTION. Enter the number of each question attempted in the box on the front cover of its corre- sponding answer book. Hand in FOUR answer books even if they have not all been used. You are reminded that Examiners attach great importance to legibility, accuracy and clarity of expression. c Imperial College London 2014 2013/PO2.1 1 Go to the next page for questions Fundamental physical constants a radiation density constant 7.6 × 10−16 J m−1 K−4 c speed of light 3.0 × 108 m s−1 G Gravitational constant 6.7 × 10−11 N m2 kg−2 h Planck’s constant 6.6 × 10−34 J s k Boltzmann’s constant 1.4 × 10−23 JK−1 e electron charge 1.6 × 10−19 C −31 me mass of electron 9.1 × 10 kg −27 mH mass of hydrogen atom 1.7 × 10 kg 23 −1 NA Avogadro’s number 6.0 × 10 mol σ Stefan-Boltzmann constant 5.7 × 10−8 W m−2 K−4 −12 −1 0 permittivity of free space 8.9 × 10 F m −7 −1 µ0 permeability of free space 4π × 10 H m R Gas constant 8.3 × 103 JK−1 kg−1 Astrophysical quantities 26 L solar luminosity 3.8 × 10 W 30 M solar mass 2.0 × 10 kg 8 R solar radius 7.0 × 10 m Teff effective temperature of Sun 5780 K AU astronomical unit 1.5 × 1011 m pc parsec 3.1 × 1016 m Equations of Stellar Structure dm = 4π r 2 ρ dr dP Gmρ = − dr r 2 dT 3κ ρ L = − if heat transport is radiative dr 16π a c r 2 T 3 ! dT 1 T dP = 1 − if heat transport is convective dr γ P dr dL = 4π r 2 ρ dr 2013/PO2.1 2 Go to the next page for questions SECTION A 1. (i) Explain the parallax method for measuring distances to stars. Define parsec. The star known as Bellatrix in Orion has a measured parallax of 13.42 milliarc- secs. Calculate the distance to Bellatrix in parsecs and light years. [6 marks] (ii) Estimate the mean density and central pressure of brown dwarf Teide 1, given that its radius is 0.1R and its mass is 0.052 M . Estimate also the central temperature of Teide 1. Comment on the accuracy of your estimates. [7 marks] (iii) Draw and label the axes of an HR diagram, and sketch carefully the evolutionary track of a 1M star. List the main evolution phases of the star’s life and clearly label these on the diagram. [7 marks] [Total 20 marks] 2013/PO2.1 3 Please go to the next page 2. (i) The Roche limit is the distance from a large massive body, such as a planet, within which a smaller gravitationally bound object will be ripped apart by tidal forces. A simple formula for the Roche Limit can be obtained by comparing the gravitational force between two small bodies of mass m a distance r apart along their orbital radius, that are orbiting a larger body of mass M with an orbital radius of d, where r << d. Show that the value of the Roche Limit obtained in this way is: !1=3 M d = 2 × r R m [10 marks] (ii) Using the result in part (i), derive an expression for the Roche limit for a small body of density ρs orbiting a planet of density ρp in terms of the densities and the radius R of the planet. [5 marks] (iii) Give an example in the Solar System where the Roche Limit plays an important role in the formation of a specific class of structures. [5 marks] [Total 20 marks] 2013/PO2.1 4 Please go to the next page SECTION B 3. (i) Star X has peak blackbody radiation observed at a wavelength λmax = 960nm. For the Sun λmax = 500nm and the Sun’s effective temperature is 5800K. Calcu- late the effective temperature of star X. What is the likely spectral class of star X ? Give a likely characteristic feature of the spectrum of star X. [7 marks] (ii) For a stellar atmosphere to be stable to convection Schwarzschild’s criterion 1 dP 1 dρ γP dr > ρ dr must hold. Assuming the plasma of a star behaves as an ideal gas, show that in regions of convective heat transport: ! dT 1 T dP = 1 − dr γ P dr Explain briefly, giving reasons, where convection occurs in the Sun’s interior. [5 marks] (iii) A star cluster has stars of differing masses M and radii R of the same chemical composition. The stars are supported by gas pressure. Giving full working, show by homologous transform that Tc / M=R. 3 2 4 You may take ρc / M=R and Pc / M =R . [5 marks] (iv) Explain what is meant by opacity. Give two examples of sources of opacity, and explain their nature. For the stars in the cluster referred to in part (iii), the opacity is given by κ = −7=2 κoρT . If it is assumed that heat transport in the cluster stars is radiative, by homologous transform, derive a relation between luminosity and mass for the cluster stars. Using this mass-luminosity relation show that the main-sequence lifetime t of the cluster stars varies with mass M as: 1 t / M4.5 [7 marks] (v) What is the significance of the main-sequence turn-off in an HR diagram of a star cluster? The main sequence turn-off in an HR diagram of this star cluster is at log L = −0.1. Explaining your assumptions, estimate the age of this star 10 L cluster. Comment briefly on how and why the HR diagram of a young star cluster would differ to that of a very old star cluster. [6 marks] [Total 30 marks] 2013/PO2.1 5 Please go to the next page 4. (i) Explain what is meant by the thermal timescale τth of the Sun. Derive an ex- pression for τth for the Sun, and calculate its value in years. There was considerable controversy during the 19th century regarding the source of the Sun’s energy. Comment briefly on the possible sources of the Sun’s energy that were considered before the discovery of thermonuclear fu- sion, and why they were thought to be inadequate to explain the luminosity of the Sun. [6 marks] (ii) Write down the overall PPI reaction occuring in the Sun, and, with explanations, calculate the energy released per reaction. −27 You may take the proton mass mH = 1.673 × 10 kg and the He nucleus mass = 3.97mH. Comment on where this reaction occurs in the solar interior, and briefly explain why we observe absorption lines of heavier elements (for example oxygen, iron, gold etc) given the nature of the nuclear fusion reactions in the Sun. [5 marks] (iii) Star Procyon, at a distance of 3.51 pcs has apparent visual magnitude mv = 0.34. Calculate the absolute visual magnitude of Procyon. Also estimate the luminosity of Procyon in solar units L . You may take the absolute visual magnitude of the Sun Mv = 4.83. Assuming Procyon has the same type of nuclear fusion reactions in its core as the Sun, estimate the flux of neutrinos at Earth from Procyon. [7 marks] (iv) In fact Procyon has a fainter companion star, and the two stars Procyon A and B form a binary system. Given the angular separation of Procyon A and B is 4.26 arcsecs, their binary period is 40.82 years and that they have a mass ratio mA =mB = 2.4, calculate the individual masses of the two stars in units of solar mass M . [6 marks] (v) Given the absolute visual magnitude of Procyon B is 13.04, calculate its lumi- nosity. The effective temperature of Procyon B is 7740K, calculate the radius of Pro- cyon B and give your answer in units of solar radius R . What type of star might Procyon B be? what will be its eventual fate? Why might your estimates of luminosity be incorrect? [6 marks] [Total 30 marks] 2013/PO2.1 6 Please go to the next page 5. (i) The transit method for finding exoplanets relies on detecting the dip in a star’s brightness that occurs when a planet passes through our line of sight to the star. For a star of measured, uneclipsed, flux Fs, and radius Rs, show that the fractional change in received flux from this star due to the transit of a planet of radius Rp is: !2 ∆F Rp s = Fs Rs [5 marks] 8 6 (ii) For our own Solar System, RSun = 6.96 ×10 m, rEarth = 6.4 ×10 m and RJupiter is 7.1×107m. Calculate the fractional change in flux received from the Sun by a distant observer as a result of transits of both the Earth and Jupiter across the Sun.
Recommended publications
  • The Future Life Span of Earth's Oxygenated Atmosphere
    In press at Nature Geoscience The future life span of Earth’s oxygenated atmosphere Kazumi Ozaki1,2* and Christopher T. Reinhard2,3,4 1Department of Environmental Science, Toho University, Funabashi, Chiba 274-8510, Japan 2NASA Nexus for Exoplanet System Science (NExSS) 3School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 4NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA *Correspondence to: [email protected] Abstract: Earth’s modern atmosphere is highly oxygenated and is a remotely detectable signal of its surface biosphere. However, the lifespan of oxygen-based biosignatures in Earth’s atmosphere remains uncertain, particularly for the distant future. Here we use a combined biogeochemistry and climate model to examine the likely timescale of oxygen-rich atmospheric conditions on Earth. Using a stochastic approach, we find that the mean future lifespan of Earth’s atmosphere, with oxygen levels more than 1% of the present atmospheric level, is 1.08 ± 0.14 billion years (1σ). The model projects that a deoxygenation of the atmosphere, with atmospheric O2 dropping sharply to levels reminiscent of the Archaean Earth, will most probably be triggered before the inception of moist greenhouse conditions in Earth’s climate system and before the extensive loss of surface water from the atmosphere. We find that future deoxygenation is an inevitable consequence of increasing solar fluxes, whereas its precise timing is modulated by the exchange flux of reducing power between the mantle and the ocean– atmosphere–crust system. Our results suggest that the planetary carbonate–silicate cycle will tend to lead to terminally CO2-limited biospheres and rapid atmospheric deoxygenation, emphasizing the need for robust atmospheric biosignatures applicable to weakly oxygenated and anoxic exoplanet atmospheres and highlighting the potential importance of atmospheric organic haze during the terminal stages of planetary habitability.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Diameter and Photospheric Structures of Canopus from AMBER/VLTI Interferometry,
    A&A 489, L5–L8 (2008) Astronomy DOI: 10.1051/0004-6361:200810450 & c ESO 2008 Astrophysics Letter to the Editor Diameter and photospheric structures of Canopus from AMBER/VLTI interferometry, A. Domiciano de Souza1, P. Bendjoya1,F.Vakili1, F. Millour2, and R. G. Petrov1 1 Lab. H. Fizeau, CNRS UMR 6525, Univ. de Nice-Sophia Antipolis, Obs. de la Côte d’Azur, Parc Valrose, 06108 Nice, France e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 23 June 2008 / Accepted 25 July 2008 ABSTRACT Context. Direct measurements of fundamental parameters and photospheric structures of post-main-sequence intermediate-mass stars are required for a deeper understanding of their evolution. Aims. Based on near-IR long-baseline interferometry we aim to resolve the stellar surface of the F0 supergiant star Canopus, and to precisely measure its angular diameter and related physical parameters. Methods. We used the AMBER/VLTI instrument to record interferometric data on Canopus: visibilities and closure phases in the H and K bands with a spectral resolution of 35. The available baselines (60−110 m) and the high quality of the AMBER/VLTI observations allowed us to measure fringe visibilities as far as in the third visibility lobe. Results. We determined an angular diameter of / = 6.93 ± 0.15 mas by adopting a linearly limb-darkened disk model. From this angular diameter and Hipparcos distance we derived a stellar radius R = 71.4 ± 4.0 R. Depending on bolometric fluxes existing in the literature, the measured / provides two estimates of the effective temperature: Teff = 7284 ± 107 K and Teff = 7582 ± 252 K.
    [Show full text]
  • • Flux and Luminosity • Brightness of Stars • Spectrum of Light • Temperature and Color/Spectrum • How the Eye Sees Color
    Stars • Flux and luminosity • Brightness of stars • Spectrum of light • Temperature and color/spectrum • How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective zone D) Photosphere E) Chromosphere Flux and luminosity • Luminosity - A star produces light – the total amount of energy that a star puts out as light each second is called its Luminosity. • Flux - If we have a light detector (eye, camera, telescope) we can measure the light produced by the star – the total amount of energy intercepted by the detector divided by the area of the detector is called the Flux. Flux and luminosity • To find the luminosity, we take a shell which completely encloses the star and measure all the light passing through the shell • To find the flux, we take our detector at some particular distance from the star and measure the light passing only through the detector. How bright a star looks to us is determined by its flux, not its luminosity. Brightness = Flux. Flux and luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Distance-Luminosity relation: Which star appears brighter to the observer? Star B 2L L d Star A 2d Flux and luminosity Luminosity A Distance B 1 =2 = LuminosityB Distance A 2 Flux Luminosity Distance 2 A = A B Flux B Luminosity B DistanceA 1 2 1 1 =2 =2 = Flux = 2×Flux 2 4 2 B A Brightness of stars • Ptolemy (150 A.D.) grouped stars into 6 `magnitude’ groups according to how bright they looked to his eye.
    [Show full text]
  • Habitability of the Early Earth: Liquid Water Under a Faint Young Sun Facilitated by Strong Tidal Heating Due to a Nearby Moon
    Habitability of the early Earth: Liquid water under a faint young Sun facilitated by strong tidal heating due to a nearby Moon Ren´eHeller · Jan-Peter Duda · Max Winkler · Joachim Reitner · Laurent Gizon Draft July 9, 2020 Abstract Geological evidence suggests liquid water near the Earths surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snow- ball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction { and therefore heat { in the Hadean R. Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 G¨ottingen, Germany E-mail: [email protected] J.-P. Duda G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many E-mail: [email protected] M. Winkler Max Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Ger- many E-mail: [email protected] J. Reitner G¨ottingenCentre of Geosciences, Georg-August-University G¨ottingen, 37077 G¨ottingen,Ger- many G¨ottingenAcademy of Sciences and Humanities, 37073 G¨ottingen,Germany E-mail: [email protected] L.
    [Show full text]
  • M31 Andromeda Galaxy Aq
    Constellation, Star, and Deep Sky Object Names Andromeda : M31 Andromeda Galaxy Lyra : Vega & M57 Ring Nebula Aquila : Altair Ophiuchus : Bernard’s Star Auriga : Capella Orion : Betelgeuse , Rigel & M42 Orion Nebula Bootes : Arcturus Perseus : Algol Cancer : M44 Beehive Cluster Sagittarius: Sagittarius A* Canes Venatici: M51 Whirlpool Galaxy Taurus : Aldebaran , Hyades Star Cluster , M1 Crab Nebula & Canis Major : Sirius M45 Pleiades Canis Minor : Procyon Tucana : Small Magellanic Cloud (SMC) Cassiopeia : Cassiopeia A & Tycho’s “Star” Ursa Minor : Polaris Centaurus : Proxima Centauri Virgo : Spica Dorado/Mensa : Large Magellanic Cloud (LMC) Milky Way Galaxy Gemini : Castor & Pollux Hercules : M13 Globular Cluster Characteristics of Stars (Compared with Sun) Class Color Temp. ( 1000 K) Absolute Magnitude Solar Luminosity Solar Mass Solar Diameter O Blue 60 -30 -7 1,000,000 50 100 to 1000 B Blue -White 30 -10 -3 10,000 10 10 to 100 A White 10 -7.5 +2 100 2 2 to 10 F White -Yellow 7.5 -6.5 +4 10 1.5 1 to 2 G Yellow 6.5 -4.5 +4.6 1 1 1 K Orange 4.5 -3.5 +11 1/100 0.5 0.5 M Red 3.5 -2.8 +15 1/100,000 0.08 0.1 Magnitude Magnitude scales: The smaller the magnitude number, the brighter the star Every 5 magnitudes = 100 times the brightness of object Every magnitude = 2.512 times the brightness of object Apparent magnitude = the brightness of object as seen from the viewer’s viewpoint (Earth) Absolute magnitude = “true brightness” – brightness as seen from 10 parsecs (32.6 light years) away Distance Measurement 1 astronomical unit = distance between Earth and Sun = 150 million kilometres or 93 million miles 1 light year ≈ 6 trillion miles / 9.5 trillion km Parsec = parallax second of arc – distance that a star “jumps” one second of a degree of arc in the sky as a result of the earth’s revolution around the sun.
    [Show full text]
  • Final Exam, AST 203, Spring 2009 Monday, May 18, 9:00AM-12:00PM
    Final Exam, AST 203, Spring 2009 Monday, May 18, 9:00AM-12:00PM General grading rules for calculational problems (in both Sections A and C): 4 points off for each arithmetic or algebraic error. 2 points off per problem for excess significant figures in a final result (i.e., more than 2 sig figs). In computational problems in this exam, there is no requirement to write in full sentences. Explanations should be clear, even if they use a minimum of English; if the context is unambiguous, no points off for undefined symbols. However, take off 2 points per problem if a student gives absolutely no context for their calculation (this should be relatively rare). Not giving units or not giving results in the units asked for, is 2 points off. Giving the correct number with incorrect units is 4 points off. In problem 1b (and depending how they do it, 3b), the answer depends on the previous parts; in these cases, you should give full credit for consistent results. Take an additional 3 points off in cases in which the answer is absurd (e.g., the Milky Way has a mass much less than a solar mass, the speed is thousands of times the speed of light, etc.), without any comment that something is not quite right. In many of the problems, there is an easy way and a hard way to do it; full credit for doing problems the hard way (and getting the right answer). The exam is worth a total of 300 points. Do all problems. Section A: Analytic Questions (100 points) 1.
    [Show full text]
  • A Astronomical Terminology
    A Astronomical Terminology A:1 Introduction When we discover a new type of astronomical entity on an optical image of the sky or in a radio-astronomical record, we refer to it as a new object. It need not be a star. It might be a galaxy, a planet, or perhaps a cloud of interstellar matter. The word “object” is convenient because it allows us to discuss the entity before its true character is established. Astronomy seeks to provide an accurate description of all natural objects beyond the Earth’s atmosphere. From time to time the brightness of an object may change, or its color might become altered, or else it might go through some other kind of transition. We then talk about the occurrence of an event. Astrophysics attempts to explain the sequence of events that mark the evolution of astronomical objects. A great variety of different objects populate the Universe. Three of these concern us most immediately in everyday life: the Sun that lights our atmosphere during the day and establishes the moderate temperatures needed for the existence of life, the Earth that forms our habitat, and the Moon that occasionally lights the night sky. Fainter, but far more numerous, are the stars that we can only see after the Sun has set. The objects nearest to us in space comprise the Solar System. They form a grav- itationally bound group orbiting a common center of mass. The Sun is the one star that we can study in great detail and at close range. Ultimately it may reveal pre- cisely what nuclear processes take place in its center and just how a star derives its energy.
    [Show full text]
  • Solar Constant
    Extraterrestrial Life: Lecture #6 Liquid water is important because: What are the requirements for the Earth (or another planet) • solvent for organic molecules to be habitable? • allows transport of chemicals within cells • involved in many biologically important • liquid water on surface chemical reactions • atmosphere • plate tectonics / volcanism Other solvents (ammonia, methane etc) exist in liquid • magnetic field form on planets but are much less promising for life • … Normal atmospheric pressure: liquid water requires: 0o C (273K) < T < 100o C (373K) …require planets with surface temperatures in this range ! Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 What determines the Earth’s surface temperature? Solar constant The flux of energy is the amount of energy that passes fraction of 2 incident radiation through unit area (1 m ) in one second is reflected Measured in units of watts / m2 incident Solar Solar flux declines with distance as 1 / d2: radiation L flux = remainder is 2 absorbed by 4"d the Earth and then reradiated …where d is the Sun - planet distance and L is the total If the Earth is not heating up or cooling down, the total luminosity of the Sun (watts) of incoming and outgoing radiation must balance ! Are there other sources of energy for a planet? Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Solar constant The fraction of the incident flux that is reflected is called Solar luminosity is 3.9 x 1026 watts the albedo of the planet: 0 < A < 1 The fraction that is absorbed is
    [Show full text]
  • Solar-Type Activity in Main-Sequence Stars.Pdf
    ASTRONOMY AND ASTROPHYSICS LIBRARY Series Editors: G. B¨orner, Garching, Germany A. Burkert, M¨unchen, Germany W. B. Burton, Charlottesville, VA, USA and Leiden, The Netherlands M.A. Dopita, Canberra, Australia A. Eckart, K¨oln, Germany T. Encrenaz, Meudon, France M. Harwit, Washington, DC, USA R. Kippenhahn, G¨ottingen, Germany B. Leibundgut, Garching, Germany J. Lequeux, Paris, France A. Maeder, Sauverny, Switzerland V. Trimble, College Park, MD, and Irvine, CA, USA R. E. Gershberg Solar-Type Activity in Main-Sequence Stars Translated by S. Knyazeva With 69 Figures and 17 Tables 123 Professor Roald E. Gershberg Crimean Astrophysical Observatory Crimea Nauchny 98409, Ukraine Dr. Svetlana Knyazeva Department of International Programmes Siberian Branch of RAS 17, Prosp. Akademika Lavrentieva Novosibirsk 630090, Russia Cover picture: Flare on AD Leo of 18 May 1965. (Gershberg and Chugainov, 1966) Library of Congress Control Number: 2005926088 ISSN 0941-7834 ISBN-10 3-540-21244-2 Springer Berlin Heidelberg New York ISBN-13 978-3-540-21244-7 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on mi- crofilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer Berlin Heidelberg 2005 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc.
    [Show full text]
  • Astronomy and Astrophysics
    A Problem book in Astronomy and Astrophysics Compilation of problems from International Olympiad in Astronomy and Astrophysics (2007-2012) Edited by: Aniket Sule on behalf of IOAA international board July 23, 2013 ii Copyright ©2007-2012 International Olympiad on Astronomy and Astrophysics (IOAA). All rights reserved. This compilation can be redistributed or translated freely for educational purpose in a non-commercial manner, with customary acknowledgement of IOAA. Original Problems by: academic committees of IOAAs held at: – Thailand (2007) – Indonesia (2008) – Iran (2009) – China (2010) – Poland (2011) – Brazil (2012) Compiled and Edited by: Aniket Sule Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research V. N. Purav Road, Mankhurd, Mumbai, 400088, INDIA Contact: [email protected] Thank you! Editor would like to thank International Board of International Olympiad on Astronomy and Astrophysics (IOAA) and particularly, president of the board, Prof. Chatief Kunjaya, and general secretary, Prof. Gregorz Stachowaski, for entrusting this task to him. We acknowledge the hard work done by respec- tive year’s problem setters drawn from the host countries in designing the problems and fact that all the host countries of IOAA graciously agreed to permit use of the problems, for this book. All the members of the interna- tional board IOAA are thanked for their support and suggestions. All IOAA participants are thanked for their ingenious solutions for the problems some of which you will see in this book. iv Thank you! A Note about Problems You will find a code in bracket after each problem e.g. (I07 - T20 - C). The first number simply gives the year in which this problem was posed I07 means IOAA2007.
    [Show full text]