Oklahoma Treehoppers (Homoptera, Membracidae) CLIFFORD J

Total Page:16

File Type:pdf, Size:1020Kb

Oklahoma Treehoppers (Homoptera, Membracidae) CLIFFORD J PROC. OF THE OKLA. ACAD. OF SCI. FOR 1964 Oklahoma Treehoppers (Homoptera, Membracidae) CLIFFORD J. DENNIS, Wisconsin State University, Whitewater Treehoppers are mostly active, rather abundant and often bizarre insects. They inhabit a variety of trees, principally oaks, and herbaceous vegetation. As would be expected in Oklahoma, the tree-inhabiting forms largely are found in the more wooded eastern sections, while those that frequent herbs or both herbs and trees are found rather widely distributed. Until recently Oklahoma treehoppers have been neglected. References occur in certain of my previous papers (Dennis, 1960, 1962, 1963, 1964a. 1964b) . This paper includes keys for the determination of Oklahoma species as well as county distribution records and host plants when known. Speci­ mens collected at both "black" and "white" light traps previously have been reported (Dennis, 1964a). This work was supported in part by Frontiers of Science Foundation of Oklahoma. Special thanks are due James Harlow, Executive Vice President of this organization. The following people loaned material for study or participated in collecting: George Byers of the University of Kansas, W. A. Drew and James Shaddy of Oklahoma State University, Dan Shorter and LeRoy Rader of Northwestern State College, Thomas Gray and Foster Mayer of Southwestern State College, E. Phil Rouse of the University of Arkansas and two of my sons, Al and Roy Dennis. Rich­ ard Froeschner of the U.S. National Museum prOVided collection records. To all of these I wish to express my grateful appreciation. KEy TO SUBFAMILIES- 1. a) Scutellum distinctly visible ____ .1. Centrotinae b) Scutellum concealed by pronotum ________..2 2. a) Tibiae of first two pairs of legs foliaceous, tibiae of third pair of b) ~~a~~fl:..-·l;P··str,;'pi~··:::::=::::=::::=::::~:~:=::::=::::::::::~::=:==:::::::~:~:~:..~_~~~~~~; S. a) Hind tarsi shorter than others _____ m. Hoplophorinae b) Hind tarsi at least as long as others _____ IV. Smillinae I. SUBFAMILY CENTKoTINAE Jltcrocettt"'-' coryae (Fitch) is the only species of this subfamily known from Oklahoma. -All determination. have been mad. by me. BIOLOGICAL SCIENCES 51 II. SUBFAMILY MEMBRACINAE Key to species Pronotum with two prominent yellow spots behind hom _. ................._ _ _ .Bt&CMnopa binotata (Say) Pronoturn lacking prominent yellow spots __ _.. ............................__ _ Campylmach.4a latiJ)68 (Say) lll. SUBFAMILY HOPLOPHORINAE Both the homed and unhorned forms of Platycotia vUtata (Fabricius) represent this subfamily in the fauna of Oklahoma. IV. SUBFAMILY SMILIINAE Key to tribes 1. a) Elytra entirely free and uncovered by pronotum Ceresini b) Most or all of clavus and often part of corium covered by pro- notum _ _ 2 2. a) Hind wing with terminal cell usually sessile, its base truncated, rarely with terminal cell an elongate triangle with a short petiole... ............................................................................................................. Telamonini b) Hind wing with terminal cell a petiolate, equal-sided triangle 3 3. a) Base of corium with two longitudinal veins contiguous at their bases _ Polyglyptlni b) Base of corium with three longitudinal veins, usually contiguous at their bases SmUilni TamE CERESINI Caldwell (1949) revised this tribe using male genitalia as a basis of revision. Dennis (1952) further modified generic assignments. Since keys based on male genitalia are of no use when one has a female to identify, this key to Oklahoma species does not use genital characters. It can be used for both sexes. 1. a) Base of corium with three longitudinal veins beginning near the base; pronotum not much elevated in front __..2 b) Base of corium with two longitudinal veins contiguous at their bases; pronotum much elevated in front 3 2. a) Elytra with five apical cells, veins usually dark ___ .. ..............................................._ __ ,AcutaliB tartarea (Say) b) Elytra with four apical cells, veins usually very indistinct .. _.._ __.._ .Micmtalia calva (Say) 3. a) b) ~~~~~ ~~~p~h~=r:~~~... ::::::::::::::~::::::::::::::::~::::~::::~:~:::::::~::::~==:~::: 4. a) Front of metopidium nearly vertical, its ridged sides meeting ahead of the middle of the pronotum _ TOTtwtilua .t&ermu (Fabrlch18) b) Pronotum not as above ___ _..__ .5 5. a) Metopidium seen from the front regularly narrowing to the peak; posterior median carina of pronotum not reddilh; femora often black . .....8tWtocephala '"tea (Walker) b) Metopidlum seen from the front noticeably broadened above the head; posterior median carina of pronotum otten reddish; femora not black _. ._ __._.__BpWVtUU Im"ItUl (Bay) 52 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1964 8. a) Suprahumeral horns minute .._._..__..TorltstilU8 curvata (Caldwell) b) Suprahumeral horns not minute __.._ .._ _._ __..7 7. a) Pronotum brown with 11ght transverse bands _____ 8 b) Pronotum green without transverse bands __ _______..9 8. a) Pronotum very hairy, with two dark brown transverse bands; elytra clouded __..___ _................................ 8tictocep1w.la diceros (Say) b) Pronotum scantily haired, with sides ferruginous and lacking defi- nite dark bands; elytra hyaline or nearly 80 ____. ___ _ 8tictocephala. albe8cens (Van Duzee) 9. a) Venter black; pronotum of male often strongly marked with black ......................._ 8tictocephaZa basalis (Walker) b) Not as above _ ____ 10 10. a) Metopidium densely haired __ 8pi88i8tilua borealis (Fairmalre) b) Metopidium at most scantily haired ____ 11 11. a) Larger, females 9-11 Mm. long, males 8.0-9.1 mm. long _ 12 b) Smaller, females 7.3-8.3 mm. long, males 7.2-7.4 Mm. long 13 12. a) Pronotum with metopidium concave ...8tictocephala. tau-rina (Fitch) b) Pronotum with metopidium convex or straight __ .. .......................____ 8tictocephala bubalus (Fabricius) 13. a) More robust; suprahumeral horns longer, somewhat recurved and elevated; 8-9 mm long _ 8tictocephala constans (Walker) b) More slender; suprahumeral horns shorter, only slightly recurved and elevated; 6-7 mm long 8tictocephala palmeri (Van Duzee) TRIBE 'rELAMONINI Key to genera 1. a) Pronotum with dorsal hom or crest _ 2 b) Pronotum without dorsal hom or crest; either low and rounded or high, compressed foliaceous ____ 6 2. a) Pronotum with hom on anterior part situated above or in front of the humeral angles _ _ _ 3 b) Pronotum with a crest, most of which is situated behind the hu- meral angles _______. 3. a) Pronotum with hom extending anteriorly _ Thelia b) Pronotum with hom erect, compressed __ GlossOftotus •. a) Pronotum with crest quadrangular, slightly sinuate or rounded above, variable but not definltely stepped, pyramidal or lobed . ..................................--_ _._._ ___ _.......... TeZamona b) Pronotum with crest neither quadrangular nor slightly sinuate nor rounded above but definitely stepped, pyramidal, or lobed _._ _._5 5. a) Pronotum with crest having dorsum definitely stepped, anterior lobe high and rounded, posterior lobe lower and quadrangular_ .. _ ---.- --.- -..-.--- - ..-.--.----- __. ._.__._._ Heliria b) Pronotum with crest pyramidal; posteriorly may be slnuate, with a allght step on the posterior slope, or with sinuation or step absent ._.__ Palotlica 8. a) Pronotum low and rounding in frontal aspect CarynotG b) Pronotum high. compressed and foliaceous .__-ArcMaiG BIOLOGICAL SCIENCES Thelia Tehlia bimaculata (Fabricius) is the sole representative of this genus in Oklahoma. Key to species of Glo8aonott.., Pronotum with horn constricted near base in lateral aspect, obscure- ly marked acuminatU8 (Fabricius) Pronotum with horn broadest at base in lateral aspect, with a pale median narrow stripe down posterior face of horn and dorsal carina to apex tumeulatU8 (Emmons) Key to species of Telanuma 1. a) Pronotum of female wholly bright green; pronotum of male yellow with entire front brown, an oblique brown band from top of poste- rior margin of crest to lower edge, apex brown unicolor Fitch b) Pronotum not as above _ 2 2. a) Pronotum with crest very large, usually quadrangular, may over- hang the metopidium __ 3 b) Pronotum with crest smaller, usually rounding, if somewhat quad- rangular placed well back on pronotum . 3. a) Pronotum with crest vertical in front, % to %. the length of the pronotum, color a uniform, pale testaceous with a creamy stripe on posterior face of crest _ extrema Ball b) Pronotum not as above _ ampelopatdta (Harris) 4. a) Pronotum with crest almost three times as wide 88 high or very low, long and rounding from the metopidium with a definite angle 6 b) Pronotum at most twice as wide as high 6 5. a) Pronotum with posterior angle of crest prominent in female, obso- lete or rounded in male, color dirty yellow with a greenish cast . ....................................................._ _............................................................................. reclioota Fitch b) Pronotum with crest very low, posterior angle obsolete or round- ing, color pale mottled with brown or black _ weatcotU Goding 6. a) Pronotum red, maculate with white decorata Ball b) Pronotum not as above 7 7. a) Pronotum of female pale green or brown, male often dusky, both sexes with a coppery sheen, irrorate with white .. ................._ _............................................................................................ 'monticola (Fabricius) b) Pronotum not as above _ 8 8. a) Larger, female 10.5-12.0 rom long; male 10.0-10.6 mm long . ..........._ _ _.....................................................................................
Recommended publications
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Beitrag Zur Kenntnis Der Neotropischen Membraciden Gattung Tylopelta Fowler, 1894 531-540 ©Zoologisches Museum Hamburg, 531
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg Jahr/Year: 1969 Band/Volume: 4 Autor(en)/Author(s): Strümpel Hans Artikel/Article: Beitrag zur Kenntnis der neotropischen Membraciden Gattung Tylopelta Fowler, 1894 531-540 ©Zoologisches Museum Hamburg, www.zobodat.at 531 Ent. Mitt. Zool. Mus. Hamburg Bd. 4 (1974), S. 531—540 Beitrag zur Kenntnis der neotropischen Membraciden Gattung Tylopelta F ow ler, 1894 Von H ans S trümpel x) (Mit 13 Abbildungen im Text)2) In der vorliegenden Arbeit werden einige Anmerkungen zu Arten der Gattung Tylopelta (Homoptera, Membracidae) hinsichtlich der Wertigkeit diagnostischer Merkmale gemacht. Das zur Untersuchung herangezogene Material stammt aus den Sammlungen des Zoologischen Instituts und Zoologischen Museums Hamburg, der California Academy of Science, San Francisco, The American Museum of Natural History, New York, und dem Moravske Museum Brno. Als F owler 1894 die Gattung Tylopelta aufstellte, charakterisierte er sie wie folgt: „Genus Tropidoscytae (Tropidoscyta S tal , 1869, ist jetzt Sy­ nonym für Erechtia W alker , 1858 — Anmk. d. Verf.) affine, sed pronoto maxime inaequali et gibbero areisque tegminum (discoidalibus tribus, api- calibus quique) minus oblongis“, und er fügte hinzu: „Allied to Tropi­ doscyta, but distinguished by the extremly uneven outline of the prono- tum, which is level or almost level in the last-mentioned genus, but in the present genus is deeply and broadly excised in the middle and again before the apex; besides the central and two side carinae there is only one short and broad carina above the eyes; the tegmina have the areas less oblong.“ Diese Charakterisierung bezog sich auf eine einzige Art und zwar auf Tropidoscyta gibbera S tal (Generotypus).
    [Show full text]
  • Social Behaviour and Life History of Membracine Treehoppers
    Journal of Natural History, 2006; 40(32–34): 1887–1907 Social behaviour and life history of membracine treehoppers CHUNG-PING LIN Department of Entomology, Cornell University, Ithaca, NY, USA and Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan (Accepted 28 September 2006) Abstract Social behaviour in the form of parental care is widespread among insects but the evolutionary histories of these traits are poorly known due to the lack of detailed life history data and reliable phylogenies. Treehoppers (Hemiptera: Membracidae) provide some of the best studied examples of parental care in insects in which maternal care involving egg guarding occurs frequently. The Membracinae exhibit the entire range of social behaviour found in the treehoppers, ranging from asocial solitary individuals, nymphal or adult aggregations, to highly developed maternal care with parent–offspring communication. Within the subfamily, subsocial behaviour occurs in at least four of the five tribes. The Aconophorini and Hoplophorionini are uniformly subsocial, but the Membracini is a mixture of subsocial and gregarious species. The Hypsoprorini contains both solitary and gregarious species. Accessory secretions are used by many treehoppers to cover egg masses inserted into plant tissue while oviposition on plant surfaces is restricted to a few species. Presumed aposematic colouration of nymphs and teneral adults appears to be restricted to gregarious and subsocial taxa. Ant mutualism is widespread among membracine treehoppers and may play an important role in the evolutionary development of subsocial behaviour. The life history information provides a basis for comparative analyses of maternal care evolution and its correlation with ant mutualism in membracine treehoppers.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    236 Proceedings of Indiana Academy of Science AN ANNOTATED LIST OF THE MEMBRACIDAE OF INDIANA (HOMOPTERA) Howard 0. Deay and George E. Gould, Purdue University 1 The members of the family Membracidae are commonly called tree- hoppers. One of their number, the buffalo treehopper (Ceresa bubalus), is widely known as a pest of apples. However, this species has doubtless been confused in the past with Ceresa borealis and C. taurina. C. basalis and Stictocephala inermis also injure apple trees by ovipositing in the one and two year old twigs. E?ichenopa binotata has been observed to injure butternut in the same manner. C. bubalus is suspected of being a mechanical carrier of the causative organism of the Dutch elm disease. No formal list of the species of Membracidae occurring in Indiana exists. In fact there are but few references in the literature to their occurrence in the state and none that deal with local distribution. Baldwin (l) 2 in 1914 recorded the buffalo treehopper in Indiana. Van Duzee (4) records two additional species from the state in his well known catalogue of the Hemiptera. Funkhouser (3), in his catalogue of the Membracidae of the world, records 23 species from the state in addition to the three mentioned above. Ball (2), in 1932, records four species from Indiana, two of which had been previously reported by Funkhouser, Thus a total of 28 species of Membracidae have been re- ported in the literature as occurring in Indiana. The writers in the present paper add 29 species to the list making a total of 57 species, representing four subfamilies and 21 genera which are known to occur in the state.
    [Show full text]
  • Bibliography – Auchenorrhyncha
    Bibliography of Oklahoma Auchenorrhyncha Ahring, R. M. & D. E. Howell. 1968. A Suggested Method of Collecting Insects Associated with Forage Grass Seed Production. Journ. Econ. Entom. 61(4):975-981. Ball, E. D. & R. H. Beamer. 1940. A Revision of the Genus Athysanella and Some Related Genera (Homoptera – Cicadellidae). Univ. Kansas Sci. Bull. 41(22):5-82. Bartlett, C. R. and L. L. Deitz. 2000. Revision of the New World Delphacid Planthopper Genus Pissonotus (Hemiptera: Fulgoroidea). Thomas Say Publications in Entomology: Monographs. 234 pp. Beamer, R. H. 1947. Some New Species of Delphacodes (Continued) with Two Old Ones. Journ. Kansas Entom. Soc. 20(2):58-71. Blocker, H. D. 1967. Classification of the Western Hemisphere Balclutha (Homoptera: Cicadellidae). Proc. U. S. Nat. Mus. 122(3581):1-55. Blocker, H. D. & J. W. Johnson. 1990a. Classification of Athysanella (Gladionura) (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(1):9-45. Blocker, H. D. & J. W. Johnson. 1990b. Classification of Athysanella (Amphipyga) (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(1):101-132. Blocker, H. D. & J. W. Johnson. 1990c. Classification of Five Subgenera of Athysanella (Homoptera: Cicadellidae: Deltocephalinae). Journ. Kansas Entom. Soc. 63(2):304-315. Blocker, H. D. & R. Reed. 1976. Leafhopper Populations of a Tallgrass Prairie (Homoptera: Cicadellidae): Collecting Procedures and Population Estimates. Journ. Kansas Entom. Soc. 49(2):145-154. Breakey, E. P. 1932. A Review of the Nearctic Species of Macropsis (Homoptera, Cicadellidae). Ann. Entom. Soc. America 25(4):787-840. Cole, J. A. 2008. A New Cryptic Species of Cicada Resembling Tibicen dorsatus Revealed by Calling Song (Hemiptera: Auchenorrhyncha: Cicadidae).
    [Show full text]
  • Morphology-Based Phylogenetic Analysis of the Treehopper Tribe Smiliini (Hemiptera: Membracidae: Smiliinae), with Reinstatement of the Tribe Telamonini
    Zootaxa 3047: 1–42 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Morphology-based phylogenetic analysis of the treehopper tribe Smiliini (Hemiptera: Membracidae: Smiliinae), with reinstatement of the tribe Telamonini MATTHEW S. WALLACE Department of Biological Sciences, East Stroudsburg University of Pennsylvania, 200 Prospect Street, East Stroudsburg, PA 18301- 2999, 570-422-3720. E-mail: [email protected] Table of contents Abstract . 1 Introduction . 2 Material and methods . 5 Results and discussion . 9 Smiliini Stål 1866 s. Wallace . 16 Telamonini Goding 1892 s. Wallace, synonym reinstated . 20 Antianthe, Hemicardiacus, and Tropidarnis, Smiliinae, incertae sedis . 25 Geographic patterns of the Smiliini, Telamonini, and unplaced genera . 34 Host plant families . 34 Phylogeny, geographical patterns, and host plants: clues to a geographic origin? . 35 Concluding remarks. 36 Acknowledgments . 40 Literature cited . 40 Abstract Members of the Smiliini, the nominotypical tribe of the large New World subfamily Smiliinae, are predominately Nearctic in distribution. This tribe included 169 mostly tree-feeding species in 23 genera. A parsimony-based phylogenetic analysis of an original dataset comprising 89 traditional and newly discovered morphological characters for 69 species, including representatives of 22 of the 23 described genera of Smiliini and five other previously recognized tribes of the subfamily, resulted in a single most parsimonious tree with three major clades. The broad recent concept of Smiliini (including Tela- monini as a junior synonym) was not recovered as monophyletic by the analysis. Instead, the analysis supported narrower definitions of both Telamonini, here reinstated from synonymy, and Smiliini.
    [Show full text]
  • Evolution of Cicadomorpha (Insecta, Hemiptera) 155-170 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2002 Band/Volume: 0004 Autor(en)/Author(s): Dietrich Christian O., Dietrich Christian O. Artikel/Article: Evolution of Cicadomorpha (Insecta, Hemiptera) 155-170 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Evolution of Cicadomorpha (Insecta, Hemiptera) C.H. DIETRICH Abstract Cicadomorpha (Cicadoidea, Cerco- and tribe. The origins of some family- poidea and Membracoidea) are one of the group taxa may also have coincided with dominant groups of plant-feeding insects, shifts in feeding or courtship strategies, or as evidenced by their extraordinary diver- the colonization of novel habitats (e.g., sity and ubiquity in habitats ranging from grasslands, deserts). The origins of genera tropical rainforest to tundra. Improve- and species, in many cases, can be attribu- ments on our knowledge of the phylogeny ted to shifts in habitat and host plant asso- of these insects, based on cladistic analysis ciation, as well as smaller scale biogeogra- of morphological and molecular data and phic vicariance. Many aspects of cicado- study of the fossil record, provide the morphan evolution remain poorly under- opportunity to examine the possible fac- stood. These include phenomena such as tors that led to their diversification. Fac- the coexistence of many closely related tors influencing early divergences among species on the same host plant and the major lineages apparently included shifts diversity of bizarre pronotal modifications in life history strategies, including a tran- found among Membracidae. Such questi- sition from subterranean or cryptic to ons are best addressed by further ecologi- arboreal nymphal stage, shifts in feeding cal and behavioral study, as well as phylo- strategy (xylem to phloem or parenchy- genetic analysis.
    [Show full text]
  • The Evolution of the Immune System: Conservation and Diversification
    Title The Evolution of the Immune System Conservation and Diversification Page left intentionally blank The Evolution of the Immune System Conservation and Diversification Davide Malagoli Department of Life Sciences Biology Building, University of Modena and Reggio Emilia, Modena, Italy AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2016 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek per- mission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Occurrence of Treehopper (Hemiptera: Membracidae) Bycatch on Purple Panel Traps and Lindgren Funnel Traps in Pennsylvania, with New State Records
    The Great Lakes Entomologist Volume 48 Numbers 3/4 -- Fall/Winter 2015 Numbers 3/4 -- Article 11 Fall/Winter 2015 October 2015 Occurrence of Treehopper (Hemiptera: Membracidae) Bycatch on Purple Panel Traps and Lindgren Funnel Traps in Pennsylvania, with New State Records Lawrence Barringer Pennsylvania Department of Agriculture, [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Barringer, Lawrence 2015. "Occurrence of Treehopper (Hemiptera: Membracidae) Bycatch on Purple Panel Traps and Lindgren Funnel Traps in Pennsylvania, with New State Records," The Great Lakes Entomologist, vol 48 (3) Available at: https://scholar.valpo.edu/tgle/vol48/iss3/11 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Barringer: Occurrence of Treehopper (Hemiptera: Membracidae) Bycatch on Pur 172 THE GREAT LAKES ENTOMOLOGIST Vol. 48, Nos. 3 - 4 Occurrence of Treehopper (Hemiptera: Membracidae) Bycatch on Purple Panel Traps and Lindgren Funnel Traps in Pennsylvania, with New State Records Lawrence E. Barringer1 Abstract Surveys for invasive insects in Pennsylvania conducted from 2009-2013 captured large numbers of native treehoppers (Hemiptera: Membracidae). These were collected using Lindgren funnel traps and purple prism traps totaling 1,434 specimens in eight tribes, 20 genera, and 57 species. As a result of this work Pennsylvania now has four new published species records: Heliria gibberata Ball 1925, Palonica pyramidata (Uhler 1877), Telamona projecta Butler 1877, and Telamona westcotti Goding 1893.
    [Show full text]
  • Phylogenetics and Phylogeography of the Oak Treehopper Platycotis Vittata Indicate Three Distinct North American Lineages and a Neotropical Origin
    Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 45 (2007) 750–756 www.elsevier.com/locate/ympev Short Communication Phylogenetics and phylogeography of the oak treehopper Platycotis vittata indicate three distinct North American lineages and a neotropical origin Chung-Ping Lin a,*, Michael S. Cast b, Thomas K. Wood b, Ming-Yu Chen a a Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, No. 181, Sec. 3, Taichung-Kan Road, Taichung 40704, Taiwan b Department of Entomology & Applied Ecology, University of Delaware, Newark, DE 19717, USA Received 14 February 2007; revised 19 May 2007; accepted 6 June 2007 Available online 16 June 2007 1. Introduction graphic range (Dozier, 1920; Cook, 1955; Wood, 1993b; Lin, 2006). This host-specialist treehopper utilizes over 30 Ecological differences including habitat, pollinators, and species of deciduous and evergreen oaks (Quercus, Faga- temporal separation between species and populations are ceae) and occurs in approximately 60% of the geographic important isolation barriers that can impede gene flows range of its hosts (Keese and Wood, 1991; McKamey among evolving lineages, and subsequently lead to popula- and Deitz, 1996). It is the only oak-inhabiting treehopper tion divergence or speciation (Coyne and Orr, 2004). Tem- with a broad U-shaped geographic range spanning both poral or allochronic speciation occurs when members of the eastern and western coasts of North America. The east- co-existing species or populations differ in breeding period ern and southern distribution of P. vittata is at or below that causes reproductive isolation as in the famous example 40° latitudes.
    [Show full text]
  • Phylogenetics and Phylogeography of the Oak Treehopper Platycotis Vittata Indicate Three Distinct North American Lineages and a Neotropical Origin
    ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2007) xxx–xxx www.elsevier.com/locate/ympev Short communication Phylogenetics and phylogeography of the oak treehopper Platycotis vittata indicate three distinct North American lineages and a neotropical origin Chung-Ping Lin a,*, Michael S. Cast b, Thomas K. Wood b, Ming-Yu Chen a a Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, No. 181, Sec. 3, Taichung-Kan Road, Taichung 40704, Taiwan b Department of Entomology & Applied Ecology, University of Delaware, Newark, DE 19717, USA Received 14 February 2007; revised 19 May 2007; accepted 6 June 2007 1. Introduction graphic range (Dozier, 1920; Cook, 1955; Wood, 1993b; Lin, 2006). This host-specialist treehopper utilizes over 30 Ecological differences including habitat, pollinators, and species of deciduous and evergreen oaks (Quercus, Faga- temporal separation between species and populations are ceae) and occurs in approximately 60% of the geographic important isolation barriers that can impede gene flows range of its hosts (Keese and Wood, 1991; McKamey among evolving lineages, and subsequently lead to popula- and Deitz, 1996). It is the only oak-inhabiting treehopper tion divergence or speciation (Coyne and Orr, 2004). Tem- with a broad U-shaped geographic range spanning both poral or allochronic speciation occurs when members of the eastern and western coasts of North America. The east- co-existing species or populations differ in breeding period ern and southern distribution of P. vittata is at or below that causes reproductive isolation as in the famous example 40° latitudes. The oak treehopper is bivoltine and exhibits of 13- and 17-year periodical cicadas, Magicicada (Cooley maternal care of eggs and nymphs (Wood, 1976; Wood et al., 2003).
    [Show full text]
  • The Art and Science of Describing Nature's Surrealists
    Zootaxa 4281 (1): 005–021 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4281.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:13F79A3B-B152-4055-817F-A98D919BEF85 The art and science of describing nature’s surrealists: Foreword from the Editors OLIVIA EVANGELISTA1,4, DANIELA MAEDA TAKIYA2 & CHRISTOPHER H. DIETRICH3 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga São Paulo SP 04263-000, Brazil 2Universidade Federal do Rio de Janeiro, Caixa Postal 68044, Rio de Janeiro RJ 21941-971, Brazil 3Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA. 4Corresponding author. E-mail: [email protected] This special issue of Zootaxa is published in honor of Dr. Albino Morimasa Sakakibara from the Universidade Federal do Paraná, Brazil, one of the most prolific living taxonomists of auchenorrhynchan Hemiptera. Dr. Sakakibara is the author of more than 100 scientific articles spanning the years 1968 to 2017. His works have encompassed various fields of biology including natural history, comparative morphology, phylogenetics, and taxonomy treating approximately 60 genera of treehoppers, leafhoppers, and spittlebugs. His outstanding record of contributions to our field also includes an extensive and successful history of graduate student training—twelve taxonomists currently working on several insect groups—along with thorough curation of the insect collection at his home institution, now constituting inarguably the most comprehensive holdings of Auchenorrhyncha in Brazil. In this editorial, we provide a brief overview of Dr.
    [Show full text]