Description of the Biology and an Assessment of the Fishery for Adult

Total Page:16

File Type:pdf, Size:1020Kb

Description of the Biology and an Assessment of the Fishery for Adult 94 NSW Dept of Primary Industries 3. COMMERCIAL FISHERIES Bruce Pease and Trudy Walford - NSW Dept of Primary Industries 3.1. Introduction In this report, the harvest of any life history stage of naturally occurring longfinned eels for commercial profit is considered to constitute a commercial fishery. The eels may be sold for direct consumption or may be sold to the aquaculture industry for further grow-out and value-adding. Any translocation of naturally occurring eels for further growth and later harvest for commercial profit is also considered to be a commercial activity. Harvest of a range of life-history stages for an increasing range of markets has lead to a complex set of commercial fisheries and related catch and effort reporting systems for river eels in NSW. Based on the following comments by Roughley (1955), who was Superintendant of NSW Fisheries from 1939 to 1952, it is apparent that there were no commercial eel fisheries in NSW prior to 1955: “In view of the fact that there is so little demand for eels in Australia they can be viewed only as being in the nature of pests, for they destroy large quantities of fish that are appreciated by the public and, when occurring in streams containing trout, they prey on these valuable sporting fish extensively. In North Gippsland farmers who endeavour to raise ducks are pestered by eels, which bite off the legs of the ducklings when swimming or drag them to the bottom to consume them. Although found in greatest abundance in fresh water, eels sometimes occur in considerable concentrations in the brackish water of estuaries, where they may interfere seriously with the operations of net fishermen.” The first reported commercial landings of eels in NSW appear in the annual Report of the Chief Secretary on Fisheries in New South Wales for the Year Ended 30th June, 1970 (Pease and Grinberg 1995). It is highly likely that commercial landings of eels occurred before this time but fishers recorded this information on monthly catch returns (reporting forms) under the heading of “Other species”. “Eels” were added to the list of species provided on the monthly catch returns for collecting catch data from coastal estuaries (Form 49) and inland fresh waters west of the Dividing Range (Form 51) in 1969/70. Therefore, a specific space was provided for recording eel catches separately from other species for the first time. Annual landings have been reported from tidal waters every year since then. Very low eel catches (probably bycatch in mesh nets, hoop nets and fish traps) have been reported intermittently from inland areas west of the Dividing Range since 1970. Based on the known distribution of freshwater eel species in Australia (Chapter 2.2), landings from these inland areas were probably shortfinned eels and will not be considered further in this report. Since 1970, most of the eel landings have been reported from tidal waters (estuaries) east of the Dividing Range and this fishery will be referred to as the “estuarine large yellow eel fishery”. NSW Fisheries Commissioners began closing non-tidal fresh waters east of the Range to commercial fishing in 1902 to protect trout (Fisheries Commissioners 1903). By 1970, all of these waters were closed to commercial fishing in order to protect trout as well as air-breathing animals, such as platypuses and freshwater turtles. Prior to 1983, eels were captured in estuarine waters using a range of methods including, mesh nets, lines and fish traps. An “eel trap” was specified in the Fisheries and Oyster Farms (General) Regulations 1983 for the first time and subsequently modified in the Fisheries Management (General) Regulation 1995 and now 2002 (see Appendix IV). Since 1983, commercial fishers have FRDC Project No. 98/127 Longfinned Eel Biology and Assessment, Edited by B.C. Pease NSW Dept of Primary Industries 95 only been allowed to target yellow eels in estuarine waters using the specified eel trap. The reported bycatch of eels by other methods of fishing is not significant. Within the Estuary General Fishery approximately 6% of the reported eel landings are retained in mesh nets and outside the Estuary General Fishery approximately 1% are retained in prawn trawl nets (NSW Fisheries 2001). With the expansion of lucrative new markets for live eels in Asia in the early 1990’s, a new fishery to harvest large yellow eels from freshwater impoundments (hereafter referred to as the “impoundment large yellow eel fishery”) commenced in 1992. Eel trapping in this fishery is allowed by two types of special permits. Type I permits are issued automatically to fishers who have been tendered by relevant authorities to harvest eels from large impoundments under their control. Type II permits allow fishers to harvest eels from farm dams and small, publicly-owned, off-stream storages. Both permit types must be renewed annually and stipulate a number of terms and conditions (Appendix V). In 1995, a small fishery to harvest glass eels/elvers for aquaculture (hereafter referred to as the “glass eel fishery) also commenced. This has remained a very small-scale experimental fishery controlled by another type of permit. The current terms and conditions of this permit are listed in Appendix (VI). There was also an initial quota of 100 kg for the maximum annual harvest of glass eels. In 1999, this quota was increased to 300 kg per year in an effort to add capacity and stimulate eel aquaculture in NSW. Under the Fisheries and Oyster Farms Act of 1935, a single commercial fishing license allowed fishers to trap eels in most of the tidal waters in NSW and provided eligibility to obtain a permit to trap eels in freshwater farm dams and impoundments. The new Fisheries Management Act of 1994 provided a framework to restrict access, thus turning the estuarine eel trap fishery into a restricted or limited entry fishery. Each fisher must possess one of a limited number of eel trapping endorsements, as well as a commercial fishing license and an Estuary General Fishery endorsement. In 2002, a new fishery management strategy (NSW Fisheries 2003) was implemented for the Estuary General Fishery. This strategy imposes a system of rolling performance trigger points on the annual catch of eels from each estuary in NSW. If the trigger points are activated, a review of the eel fishery must be conducted and an appropriate action plan must be developed in order to maintain sustainable harvest levels. Prior to 1997 there was no minimum legal size limit for eels. A minimum legal size limit of 30 cm was implemented for the commercial and recreational eel fisheries in 1997 to provide consistency with size limits for river eels in Victoria and Queensland. The 30 cm limit was originally based on the marketable size of shortfinned eels in Victoria, where the commercial river eel catch consists primarily of shortfins (Hall et al. 1990). Historically, an unknown (probably small) proportion of the trapped eels under the minimum marketable size (approximately 500 grams for longfins) were translocated (often illegally) to small privately owned impoundments for grow-out and subsequent re-harvest. Since the minimum size limit was implemented, a significant legal aquaculture market has developed for eels larger than the minimum legal size but smaller than the minimum acceptable market size. This “small yellow eel fishery” is a sub-component of the estuarine large yellow eel fishery. Submission of monthly and in some cases daily catch returns summarizing fishing catch and effort is a mandatory requirement of all permit, restricted and share managed fisheries in NSW. An array of catch return forms have been designed to capture catch and effort data in the estuarine commercial fisheries since 1970 (Pease and Grinberg 1995; Tanner and Liggins 1999). A separate daily logbook for recording catch and effort in the farm dam and impoundment fishery was implemented in 1995 and has recently (2001) been revised as a monthly catch return form (Appendix VII). Separate recording systems for estuarine and freshwater impoundment catches has Longfinned Eel Biology and Assessment, Edited by B.C. Pease FRDC Project No. 98/127 96 NSW Dept of Primary Industries led to confusion and some double reporting. Data for separate catch and effort recording systems are stored in separate databases and some databases are held in different locations, depending on whether the data are considered to be aquaculture or commercial fisheries information collected from fishers holding permits or restricted fishery endorsements. The use of ambiguous and confusing common names for eel species on catch and effort return forms prior to 1997 has also made it difficult to accurately interpret commercial catch statistics for this group of fish species. Spaces for identifying recorded landings were provided on the monthly return forms for estuarine catch and effort as follows: 1) 1970 to 1990 - “eels”, 2) 1990 to 1992 - “eel, short finned” and “eel, other (specify)”, 3) 1992 to 1997 – “eel, short finned or river”, “eel, southern conger” and “eel, other (specify)”, and 4) 1997 to present – “eel, shortfin river” and “eel, longfin river” (Appendix VIII). The available choices prior to 1997 were obviously confusing when it is considered that conger eel is another popular common name for longfinned river eels, as well as eels belonging to the genus Conger. It is doubtful that fishers accurately specified longfinned eels by correctly writing the name on forms prior to 1997. The commercial fishery for longfinned eels in NSW (173 tonnes in 1999/00 (Tanner and Liggins 2001)) is the largest fishery for this species in Australia (Kailola 1993). Commercial landings in 2000 were only 42 and 25 tonnes from Queensland (data provided by Queensland Department of Primary Industries) and Victoria (Department of Natural Resources and Environment 2002), respectively.
Recommended publications
  • From Marine Fishes Off New Caledonia, with a Key to Species of Cucullanus from Anguilliformes
    Parasite 25, 51 (2018) Ó F. Moravec and J.-L. Justine, published by EDP Sciences, 2018 https://doi.org/10.1051/parasite/2018050 urn:lsid:zoobank.org:pub:FC92E481-4FF7-4DD8-B7C9-9F192F373D2E Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Three new species of Cucullanus (Nematoda: Cucullanidae) from marine fishes off New Caledonia, with a key to species of Cucullanus from Anguilliformes František Moravec1 and Jean-Lou Justine2,* 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 Cˇ eské Budeˇjovice, Czech Republic 2 Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 51, 57 rue Cuvier, 75005 Paris, France Received 16 July 2018, Accepted 8 August 2018, Published online 20 September 2018 Abstract – Based on light and scanning electron microscopical studies of nematode specimens from the digestive tract of some rarely collected anguilliform and perciform fishes off New Caledonia, three new species of Cucullanus Müller, 1777 (Cucullanidae) are described: C. austropacificus n. sp. from the longfin African conger Conger cinereus (Congridae), C. gymnothoracis n. sp. from the lipspot moray Gymnothorax chilospilus (Muraenidae), and C. incog- nitus n. sp. from the seabream Dentex fourmanoiri (Sparidae). Cucullanus austropacificus n. sp. is characterized by the presence of cervical alae, ventral sucker, alate spicules 1.30–1.65 mm long, conspicuous outgrowths of the ante- rior and posterior cloacal lips and by elongate-oval eggs measuring 89–108 · 48–57 lm; C. gymnothoracis n. sp. is similar to the foregoing species, but differs from it in the absence of cervical alae and the posterior cloacal outgrowth, in the shape and size of the anterior cloacal outgrowth and somewhat shorter spicules 1.12 mm long; C.
    [Show full text]
  • Conger Oceanicus
    Conger Eel − Conger oceanicus Overall Vulnerability Rank = High Biological Sensitivity = Moderate Climate Exposure = Very High Data Quality = 62% of scores ≥ 2 Expert Data Expert Scores Plots Conger oceanicus Scores Quality (Portion by Category) Low Moderate Stock Status 2.4 0.5 High Other Stressors 2.5 1.2 Very High Population Growth Rate 2.1 0.8 Spawning Cycle 2.9 2.4 Complexity in Reproduction 2.4 1.9 Early Life History Requirements 2.5 1.8 Sensitivity to Ocean Acidification 1.2 1.3 Prey Specialization 1.6 2.1 Habitat Specialization 2.4 3.0 Sensitivity attributes Sensitivity to Temperature 1.6 2.8 Adult Mobility 1.5 1.8 Dispersal & Early Life History 1.3 2.8 Sensitivity Score Moderate Sea Surface Temperature 4.0 3.0 Variability in Sea Surface Temperature 1.0 3.0 Salinity 2.4 3.0 Variability Salinity 1.2 3.0 Air Temperature 4.0 3.0 Variability Air Temperature 1.0 3.0 Precipitation 1.3 3.0 Variability in Precipitation 1.4 3.0 Ocean Acidification 4.0 2.0 Exposure variables Variability in Ocean Acidification 1.0 2.2 Currents 2.2 1.0 Sea Level Rise 2.4 1.5 Exposure Score Very High Overall Vulnerability Rank High Conger Eel (Anguilla oceanica) Overall Climate Vulnerability Rank: High (93% certainty from bootstrap analysis). Climate Exposure: Very High. Three exposure factors contributed to this score: Ocean Surface Temperature (4.0), Ocean Acidification (4.0) and Air Temperature (4.0). Conger Eel are semelparous: spawning in the ocean, developing in marine and estuarine habitats, then feeding growing, and maturing in marine and estuarine habitats.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Selective Allergy to Conger Fish Due to Parvalbumin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    Practitioner's Corner 390 Reducing Conditions Selective Allergy to Conger Fish due to Parvalbumin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 75 Argiz L1, Vega F1, Castillo M2, Pineda F2, Blanco C1,3 50 37 1Department of Allergy, Hospital Universitario de La Princesa, 25 Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain 20 2Application Laboratory, Diater Laboratories, Madrid, Spain 15 3RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain Molecular Weight 10 Nonreducing Conditions J Investig Allergol Clin Immunol 2019; Vol. 29(5): 390-391 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 doi: 10.18176/jiaci.0412 75 50 Key words: Conger fish. Selective allergy. Parvalbumin. Fish allergy. 37 Food allergy. 25 20 Palabras clave: Congrio. Parvalbúmina. Alergia selectiva. Alergia a pescado. Alergia alimentaria. 15 Molecular Weight 10 Figure. IgE-immunodetection performed with the patient’s serum and the following extracts: Lane 1, Eel; 2, Eel skin; 3, Conger head; 4, Conger Fish is one of the most frequent causes of food allergy, body; 5, Conger bone; 6, Conger eye; 7, Conger skin; 8, Salmon; 9, affecting up to 0.3% of the world’s population [1]. Most Anisakis; 10, Tuna; 11, Cod; 12, Carp; 13, Sole; 14, Hake; 15, Sardine; fish-allergic patients show marked clinically relevant cross- 16, Cooked conger. reactivity, while a minority of patients experience selective allergy to specific fish species, with good tolerance to other fish families [2]. Immunoblotting with the patient's serum and the above- We report the case of a 32-year-old woman with mild mentioned extracts (Figure) showed that IgE recognized rhinoconjunctivitis due to pollens and animal dander.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • FISHES (C) Val Kells–November, 2019
    VAL KELLS Marine Science Illustration 4257 Ballards Mill Road - Free Union - VA - 22940 www.valkellsillustration.com [email protected] STOCK ILLUSTRATION LIST FRESHWATER and SALTWATER FISHES (c) Val Kells–November, 2019 Eastern Atlantic and Gulf of Mexico: brackish and saltwater fishes Subject to change. New illustrations added weekly. Atlantic hagfish, Myxine glutinosa Sea lamprey, Petromyzon marinus Deepwater chimaera, Hydrolagus affinis Atlantic spearnose chimaera, Rhinochimaera atlantica Nurse shark, Ginglymostoma cirratum Whale shark, Rhincodon typus Sand tiger, Carcharias taurus Ragged-tooth shark, Odontaspis ferox Crocodile Shark, Pseudocarcharias kamoharai Thresher shark, Alopias vulpinus Bigeye thresher, Alopias superciliosus Basking shark, Cetorhinus maximus White shark, Carcharodon carcharias Shortfin mako, Isurus oxyrinchus Longfin mako, Isurus paucus Porbeagle, Lamna nasus Freckled Shark, Scyliorhinus haeckelii Marbled catshark, Galeus arae Chain dogfish, Scyliorhinus retifer Smooth dogfish, Mustelus canis Smalleye Smoothhound, Mustelus higmani Dwarf Smoothhound, Mustelus minicanis Florida smoothhound, Mustelus norrisi Gulf Smoothhound, Mustelus sinusmexicanus Blacknose shark, Carcharhinus acronotus Bignose shark, Carcharhinus altimus Narrowtooth Shark, Carcharhinus brachyurus Spinner shark, Carcharhinus brevipinna Silky shark, Carcharhinus faiformis Finetooth shark, Carcharhinus isodon Galapagos Shark, Carcharhinus galapagensis Bull shark, Carcharinus leucus Blacktip shark, Carcharhinus limbatus Oceanic whitetip shark,
    [Show full text]
  • Table of Fishes of Sydney Harbour 2019
    Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale
    [Show full text]
  • AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED by AUF RECORDS OFFICER VIN RUSHWORTH Common Names
    AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED BY AUF RECORDS OFFICER VIN RUSHWORTH Common Names Common Name Pg. Common Name Pg. Albacore 37 Cod, Barramundi 39 Amberjack 8 Cod, Bearded 27 Amberjack, High-fin 9 Cod, Black 40 Angelfish Yellow-Mask 32 Cod, Blacksaddle Rock 40 Angelfish, Blue 32 Cod, Blackspotted 40 Angelfish, Imperial 32 Cod, Black-Tipped Rock 40 Angelfish, Six Banded 32 Cod, Break-Sea 39 Anglerfish, Spinycoat 3 Cod, Camouflage 40 Barracouta 13 Cod, Chinaman 41 Barracuda, Blackfin 44 Cod, Coral 39 Barracuda, Blue and Gold 44 Cod, Coral Rock 39 Barracuda, Chevron 44 Cod, Dusky 42 Barracuda, Great 44 Cod, Flowery 40 Barracuda, Pickhandle 44 Cod, Freckled Coral 39 Barramundi 20 Cod, Gold Spotted 39 Bass, Red 23 Cod, Highfin 40 Batfish, Black-tip 13 Cod, Long-finned Rock 41 Batfish, Hump-headed 13 Cod, Long-headed 41 Batfish, Long-finned 13 Cod, Maori 41 Batfish, Long-snout 13 Cod, Masked 41 Batfish, Short-finned 13 Cod, Ocellated 39 Bigeye, Lunar-tailed 33 Cod, Peacock Coral 39 Blackfish, Banded Rock 14 Cod, Potato 41 Blackfish, Rock 14 Cod, Pug-Nosed Wire-netting 40 Blackfish, Western Rock 14 Cod, Purple 40 Blanquillo, Blue 25 Cod, Rankin 40 Blue Devil, Eastern 31 Cod, Red 27 Blue Devil, Southern 31 Cod, Red Rock 37 Bluefish 13 Cod, Red Rock Western 38 Blue-lined Seabream 24 Cod, Red-flushed Rock 38 Boarfish, Giant 30 Cod, Speckledfin 40 Boarfish, Longsnout 30 Cod, Tomato Coral 39 Boarfish, Short 30 Cod, Twin-Spot 39 Boarfish, Yellow-spotted 30 Cod, White-lined Rock 38 Bonefish, Eastern 3 Coral Fish, New-moon
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Mauricio Rocha Visintin-2015.Pdf
    UNIVERSIDADE DO VALE DO ITAJAÍ MESTRADO EM CIÊNCIA E TECNOLOGIA AMBIENTAL MAURICIO ROCHA VISINTIN ANÁLISE DE RISCO APLICADA AOS PEIXES VULNERÁVEIS À PESCA DE ARRASTO-DUPLO NO SUDESTE E SUL DO BRASIL ITAJAÍ, 2015 MAURICIO ROCHA VISINTIN ANÁLISE DE RISCO APLICADA AOS PEIXES VULLNERÁVEIS À PESCA DE ARRASTO-DUPLO NO SUDESTE E SUL DO BRASIL Dissertação apresentada à Universidade do Vale do Itajaí, como parte dos requisitos para obtenção do grau de Mestre em Ciência e Tecnologia Ambiental ORIENTADOR: Dr. José Angel Alvarez Perez ITAJAÍ, 2015 Dedico este à minha família, que faz de tudo para auxiliar na realização dos meus sonhos. i “A pedra colocada em disciplina é o agente que te assegura firmeza na construção” (Emmanuel) ii AGRADECIMENTOS Ao meu pai e minha mãe, Claudemiro Visintin e Noemi Rocha Visintin, a dedicação e incondicional amor que fizeram com que eu chegasse até aqui. Indepentende das situações, boas e ruins, que já vivênciei, me apoiaram, me deram força, e me acolheram traduzindo genuinamente o significado de Pai e Mãe. À minha irmã Fernanda Rocha Visintin Alcatrão que é muito importante na minha vida, praticamente uma confidente e muito boa aconselhadora. Minhas adoráveis sobrinhas Rebeca e Raquel que tão novas já desempenham um papel importantíssimo na minha felicidade. Ao meu cunhado Kleber, uma pessoa de bom coração que faz minha irmã feliz, me fazendo feliz e que sempre foi um ótimo parceiro de surfe. Ao meu Orientador Dr. José Angel Alvarez Perez, que, mais uma vez, confiou no meu trabalho, me ofertando mais essa ótima experiência acadêmica e profissional. O profissional que és e sua maneira de agir me inspira.
    [Show full text]
  • Nagasaki University's Academic Output SITE
    NAOSITE: Nagasaki University's Academic Output SITE Record body size of the beach conger Conger japonicus (Anguilliformes: Title Congridae) in the East China Sea Yagi, Mitsuharu; Shimoda, Masako; Uchida, Jun; Shimizu, Kenichi; Author(s) Aoshima, Takashi; Kanehara, Hisao Citation Marine Biodiversity Records, 6, e110; 2013 Issue Date 2013-10-11 URL http://hdl.handle.net/10069/33898 Right © Marine Biological Association of the United Kingdom 2013 This document is downloaded at: 2017-12-22T05:20:34Z http://naosite.lb.nagasaki-u.ac.jp Marine Biodiversity Records, page 1 of 5. # Marine Biological Association of the United Kingdom, 2013 doi:10.1017/S1755267213000882; Vol. 6; e110; 2013 Published online Record body size of the beach conger Conger japonicus (Anguilliformes: Congridae) in the East China Sea mitsuharu yagi, masako shimoda, jun uchida, kenichi shimizu, takashi aoshima and hisao kanehara Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan A record body size, length of 1520 mm and weight of 12,600 g for the beach conger, Conger japonicus was recorded, which is approximately 120 mm and 2600 g larger than the previous international record. The specimen was female and obtained during an otter trawl survey on 4 April 2013 in the East China Sea (31852.16′N 127842.94′E) at a depth of approximately 140 m on the slope of the continental shelf. Morphometric measurements and meristic counts are reported in this paper. We also report profiles of water temperature, salinity, dissolved oxygen and chlorophyll-a taken immediately prior to the trawl, and species composition of concurrent catch with the otter trawling as environmental and biological characteristics of the habitat.
    [Show full text]
  • Amphibian Taxon Advisory Group Regional Collection Plan
    1 Table of Contents ATAG Definition and Scope ......................................................................................................... 4 Mission Statement ........................................................................................................................... 4 Addressing the Amphibian Crisis at a Global Level ....................................................................... 5 Metamorphosis of the ATAG Regional Collection Plan ................................................................. 6 Taxa Within ATAG Purview ........................................................................................................ 6 Priority Species and Regions ........................................................................................................... 7 Priority Conservations Activities..................................................................................................... 8 Institutional Capacity of AZA Communities .............................................................................. 8 Space Needed for Amphibians ........................................................................................................ 9 Species Selection Criteria ............................................................................................................ 13 The Global Prioritization Process .................................................................................................. 13 Selection Tool: Amphibian Ark’s Prioritization Tool for Ex situ Conservation ..........................
    [Show full text]