<<

PINSTECH/RIAD-122 .

SURFACE WATER/GROUNDWATER RELATIONSHIP IN CHAJ DOAB

RADIATION & ISOTOPE APPLICATIONS DIVISION Pakistan Institute of Nuclear Science & Technology P. O. Nilore Islamabad. JULY, 1990 PINSTECH/RIAD-122

SURFACE WATER/GROUNDWATER RELATIONSHIP , IN CHAJ DOAB

S. D. HUSSAIN M. I. SAJJAD W.AKRAM M. AHMAD M. RAFIQ J. A. TARIQ

RADIATION & ISOTOPE APPLICATIONS DIVISION Pakistan Institate of Nuclear Science & Technology P. O. Nilore Islamabad. JULY, 1990 PIMSTKCH/RIAD-122

SURFACE WATER/GROUNDWATER RELATIONSHIP IN CHAJ DOAB

S.D.HOSSAIN

M.I.SAJJAD

W.AKRAM

M.AHMAD

M.RAFIQ

J.A.TARIQ

RADIATION & ISOTOPE APPLICATIONS DIVISION

PAKISTAN INSTITOTE OF NUCLEAR SCIENCE & TECHNOLOGY

P.O. NILORE, ISLAMABAD

JULY-1990 CONTENTS

ABSTRACT INTRODUCTION 1 DESCRIPTION OF THE AREA UNDER INVESTIGATION 2 2.1 General 2 2.2 Physiography 2 2.3 Geology 3 2.4 Climate 4 SAMPLING PLAN 5 ANALYSIS 6 ISOTOPIC CHARACTERISATION OF DIFFERENT HATERS 8 5.1 Rainfall 8 5.2 Surface Hater: Rivers and Canals 9 5.3 Groundwater 11 INTERRELATION OF DIFFERENT WATERS 12 6.1 Surface Water/Shallow Groundwater 12 6.2 Shallow Water/Deep Water 14 6.3 Surface Water/Deep Water 15 PROCESS OF SALINIZATION OF GROUNDWATER 16 CONCLUSIONS 17 ACKNOWLEDGEMENTREFERENCES S 1189 ABSTRACT

In order to understand the relationship between surface water and groundwater in Chaj Doab, isotopic and chenical studies were undertaken. The data show that north-eantern part of the doab is mainly recharged by raini;. In the rest o* the doab, surface water and groundwater are generally well connected and the recharge is mostly from the rivers either directly or through irrigation channels. Salinization of groundwater is mainly due to dissolution of salts from the r.oil sediments. 1. INTRODUCTION

Pakistan is located on a great land Bass north of the tropic of cancer between the latitudes of 24* and 37°N and longitudes of 61"and 75*B. Landscape varies from flat alluvial plain to mountainous / subBountainous territories. The cliaate is generally tropical /subtropical. SuBBer temperature reaches 50 C at some places while Biniaua winter temperatures are several degrees below freezing point at sose other places. Precipitation is scanty, average annual rainfall in the Indus Basin is less than 375 BB whereas subaountainous tracts in the north and north-east of the Indus Basin receive 750-1000 BB rainfall annually . In general, Pakistan is seai-arid/arid. Evaporation is high due to the prevailing high teaperatures and low humidity. Precipitation-wise, Pakistan is water-deficient.

Agriculture plays an important role in the economic growth of Pakistan. This, in turn, depends on the intricate canal irrigation system which has been in operation mostly in some parts of the Indus Plains for over a hundred years. Seepage from the unlined irrigation channels has raised the water table considerably resulting in the waterlogging and salinity problems

In order to understand the relationship between surface water and groundwater in the interfluvial area between the rivers Jhelum and Chenab (Chaj Ooab), isotopic and hydrochemical methods were applied. The environmental isotopes like Deuterium ( H or D ), Oxygen-18 ( iB0 ), Carbon-13 ( 19C), Tritium ( 9H or T ) and Carbon-14 ( C ) alongwith common chemical ionic concentrations have been measured in water samples collected froa different places. The description of the area under investigation, the work carried out and the results obtained are as follows:

1 2. DESCRIPTIOH OF THE AREA UHDKR INVESTIGATES

2.1 General

The interfluvial tract of land between the rivers Chenab and Jhelun is known as Chaj Doab and is shown in figure 1. It is a part of the Indus Basin and covers an area of about 1.4 million hectares including about 0.2 Billion hectares of piednont plain. The average elevation of the doab is about 203B above Bean sea level' . The gradient in the piedmont plain is ca. 2.3 meter/kn and ranges in the rest of the doab from about 60 cn/km in the north-east to 20 ca/ka in the south-west near the of the rivers Chenab and Jhelum. Two major unlined canals viz. Lower Jhelum Canal (LJC) and Upper Jhelum Canal (UJC) have been in use for irrigation purposes since 1901 and 1915 A.D. respectively. There has been an appreciable rise in water table in the area . Large tracts of irrigated land have been adversely affected by salinity and waterlogging. The reclamation of the soil does not keep abreast with the rate of deterioration with the result that productivity of agricultural lands is adversely affected.

2.2 Physiography

In the northern part of Chaj Doab, Pabbi Hills, a part of Himalayan Foothills, rise 120-150 a above the surrounding area. The outcrops of the bedrock exposed in the south-western part of the doab are called Kirana Hills and rise to about 305 a above the surrounding land. The transitional area between Pabbi Hills and alluvial plain is known as piedmont area and ranges in width from 5 to 24 ka with gradients varying from 2 to 9.5 a/km. Heander belt and present flood plains of the rivers Jhelum and Chenab are as

2 •uch wide as 8 km and are known as active flood plain (figure 2). The area located parallel to the rivers, about 32 kn wide and a few meter higher than the active flood plain is called the abandoned flood plain. The central part of the doab rises abruptly 1.5 to 8 n high above the abandoned flood plain and is known as bar upland

2.3 Geology

The dominant geologic unit in Chaj Doab is alluvium. The exploratory drilling carried out by Water and Power Development Authority (WAPDA) showed that the alluvium of Quaternary age has been deposited on semi-consolidated Tertiary rocks or on a basement of metamorphic and igneous rocks of Pre-Cambrian era The alluvium consists of uncosolidated fine to medium-grained sand and silt and minor amounts of gravel and clay. The alluvium is heterogeneous in character and individual strata have little lateral and vertical continuity. The sediments constituting the alluvium have been transported and deposited by the present and ancestral tributaries of the river Indus. The distribution of the Tertiary rocks is known only in the north-eastern Chaj Doab in Pabbi Hills area where rocks of Siwalik system are exposed.

Three of the geologic units are of subordinate regional significance: the Potwar loess, piedmont deposits, and aeolian deposits. The occurrence of the Potwar Loess is restricted to the northern flank of the Pabbi Hills. The Piedmont deposits are confined to a narrow belt, generally less than 24 km wide adjacent to the Himalayan Foothills and the Salt Range. The piedmont deposits consist of poorly sorted sand and gravel near the hills, grading into clayey sand and silt. The aeolian deposits are found in small local

3 areas in the lower reaches of the project area. However, their separation from alluvium is impracticable

The bedrock hills at Rirana represent the peaks of a burrieu rirtge which underlies the central part of Chaj Doab. The north-eastern flank of the ridge dips steeply beneath the alluvium and only a few kilometers away from the outcrops the alluvial material has a thickness of more than < 7 > 457 m . The blocking or damming effects of the bedrock outcrops on the regional movement of groundwater are negligible because of the large gaps between bedrock outcrops and the occurrence of sandy zones intercalated everywhere in the alluvium

2.4 Climate

The climate of Chaj Doab is sub-tropical continental influenced by large fluctuations in temperature and rainfall. It ranges from semi-humid in the north-east to semi-arid in the south-west with hot summers and cool winters. Average temperature during June/July is 34 °C while that in December/January is 12 °C

As the doab is located on the fringe of the monsoon belt, the monsoon rains mostly occur from mid July to mid September. The rains come from moisture laden winds arising from the Bay of Bengal. The winter rains are the result of movement of cyclonic winds which originate from the . It has also been observed that on most occasions western disturbances play an im* ~>rtant role in the production of heavy spells of rainfall during June to October . The average annual rainfall ranges from about 1000 mm in the north-east to about 230 mm in the south-west. About 65 to 70 % of the rainfall occurs during the monsoon

4 period

3. SAMPLING PLAN

Chaj Doab xs irrigated fron the canal system derived from the river Jhelum. Hotor-driven pumps/tube-wells supply ground water for irrigation purposes. The wells penetrate to depths of about 150 m. Hand pumps are generally installed to tap shallow water for domestic use. The depth of hand pumps ranges from 6 to 15 m in the plain area while that in the northern part of the doab ranges from 8 to 24 meters.

The sampling stations are spread over the entire area under investigation as shown in figure 3. Seven sets of samples were collected during the period November 1985 to October 1988. First five sets of water samples were collected from 46 hand pumps and 37 tube wells. After the examination of preliminary isotopic results, more sampling stations were added in the areas needing more consideration and the number of sampling stations became 86 and 49 for shallow and deep water respectively.

Bain samples were collected from station number 33 with the collaboration of Meteorological Department.

Sampling of stagnant water was avoided. Temperature, pH and electrical conductivity (KC) measurements were made in situ.

Samples were also collected for C analysis from different stations where tritium content was found less

s than 5 TO * after examining the preliminary isotopic results. The water sample measuring about 60 liter was made alkaline (pH more than 8) by adding carbon free sodium hydroxide (HaOH) solution and the carbon content was precipitated in the form of barium carbonate (BaCO ) by the 3 addition of barium chloride (BaCl ) solution 2 Schedule of sample collection is given in table 1.

4. ANALYSIS

Tritium concentration of the samples was measured after electrolytic enrichment. Packard TBI-CARB Model CD-300 Liquid Scintillation system was used for assaying the samples. The standard error of measurement is of the order of ± 2 TO.

Carbon-14 analysis was carried out by benzene synthesis and liquid scintillation counting method. Each sample of BaCO was treated with acid to evolve carbon dioxide (CO ) gas which was purified and reacted with hot

lithium (Li) metal to produce lithium carbide (Li2C2). Benzene (CX) was prepared by cyclyzation of acetylene <12 > (CH) produced by hydrolyzing lithium carbide (Li C ) The chemical reactions involved are:

BaC03 + 2 HC104 > C02 + Ba(C104)2 + H20

2 CO, + 8 Li lernp> 2 C + 4 Li 0 2 2

• IS TV ( tritium unit ) le ratio of one tritium atom to 10 hydrogen atoms.

6 2 C + 2 Li -^U Li C 2 2

Li C + 2 HO • CH + 2 LiOH 2 2 2 2 2

3 C H, caU > C H 2 2 <5

The carbon-14 activity in the benzene synthesized in this way was measured by using Packard TRI-CARB Model 2050 CA liquid scintillation analyzer. The carbon-14 activity (C) of the sample has been expressed as per cent modern carbon (pmc) defined as:

C = 100 x ( A / A . ) (Ref. 13) 9 9t

where A = net sample activity s

A. = 0.7459 x net standard activity....(Ref. 14)

Benzene prepared from National Bureau of Standards, U.S.A.(NBSJ.S.A.(NBS) 14*C-0xali c Acid Standard RM49 was used as standard sample.

The age, t (years BP), of water sample has been calculated by using the equation:

t = 8267 In ( Co / C ) (Ref. 13) where C = initial carbon-14 content of the sample.

The unadjusted age, turiad of the sample has been ( 15 ) calculated by taking C = 100 pmc The results of carbon-14 analysis are given in table 2.

Stable isotopes e.g. Oxygen-18 and deuterium contents of the samples were determined relative to SHOW (Standard Mean Ocean Water). Carbon-13 content of two sets of samples was measured relative to PBD . The results have been expressed in terms of delta (<3) which is defined as:

sampLe standard 6 - g x 1000 (%•) standard where R stands for isotopic ratio e.g. D / H, 0 / 0, C / C, etc.

Mass spectrometer, Varian Hat GD-150 (modified) and D/H Mass Spectrometer with automatic H* compensation were used for this purpose. The measurement accuracy for 6i80 and «513C is 0.15 %o while that for 6D is 1 X. .

Chemical analysis of water samples was carried out using various instrumental methods like atomic absorption spectrophotometry, flame photometry, 0V-VIS spectrophotometry and specific ion selective electrodes etc. to determine Na+ , K+ , Ca++ , Mg++ , Cl", C0~~ , HC0~ , NO" and SO concentrations.

Isotopic and chemical analyses of all the water samples have been carried out and the results presented in table 3 and 4. Hean values of the isotopic and chemical contents for each sampling station are given in tables 5-8.

5. ISOTOPIC CHARACTERIZATION OF DIFFERENT WATERS

5.1 Rainfall

Rain samples were collected for a period of four years from 1984 to 1988. Isotopic values show wide variation due to seasonal and amount effects. Especially the rains of low intensity in hot and dry months of April to June are more enriched than SHOW (i.e. 6 0 and <5D are positive). To establish rain indices of stable isotopes and local meteoric water line (LMWL), the samples (rain intensity <5mm) which were apparently highly affected by evaporation, were not ID considered. The weighted average values of 6 0 and <5D are -4.5 X© and -22 %• respectively. The regression line between 6D and <5 0 gives the LMWL and is represented by :

6D = (8 ± 0.4)61B0 + (14 ± 2) (Corr.Coef. = 0.97)

The individual rain events and LMWL are plotted in figure 4. LMWL has the same slope as that of the global meteoric water line (GMWL) but different deuterium excess The higher deuterium excess indicates the Mediterranean type of rains.

18 6 o value of rains occurring at nearby mountains in the north-east of the project area has been estimated by taking altitude effect into consideration. The average elevation of these mountains with respect to the 10 rain sampling station (<5 o = -4.5 %«) is about 600m. Using an average value of -0.25%«. per 100m for <5 0 gradient , the isotopic index of rains over these mountains comes out to be -6.0 %. . Tritium content of rains ranges from 9 TO to 48 TO with the weighted average of 20 TO.

5.2 Surface Water: Rivers & Canals

Both the rivers Chenab and Jhelum have been sampled at sampling station Nos. 10 and 14 respectively. The 0JC and LJC irrigating the project area have been sampled at sampling stations 49 and 50 respectively.

9 The iBotopic data of surface waters show strong IB variations. The «5 0 content of the river Jhelum ranges from -9.65 %• to -6.46 %• with weighted average of -7.95 %» and that of river Chenab ranges from -12 %o to -6.47 %• with weighted average of -10.04 %«. respectively. The deuterium content of the river Jhelum ranges from -64 %• to -37 %o with weighted average of -49 %« and that of the river Chenab from -76 %» to -32 %. with weighted average of -61 %• . The weighted average of deuterium excess (d) of the river Jhelum is 15 %• while that of the river Chenab is 18 %o . The range of tritium concentration of the river Jhelum is 24 to 47 TU with weighted average of 32 TO and that of the river Chenab is 24 to 58 TU with weighted average of 30 TO.

It is interesting to note that both the rivers show similar seasonal variations in stable isotopes (figure 5). However, isotopic variations of the river Jhelum have much less amplitude than that of the river Chenab. Thi* is due to damping effect and evaporation in Hangla lake which is located upstream the sampling point No.10. As evident from the data, the rivers are fed by more than one source. More depleted valueB are found during June - October, when snow melts and heavy rainfalls occur at high mountains.

As the canals LJC and UJC originate from the river Jhelum so these have similar isotopic values and variation as the parent river. The LJC has weighted average values of <5i80, SD, d and tritium contents of -8.07 %• , -48 X. , 16.6 %, and 35 TU respectively while the UJC has weighted average values of the same isotopic species as -7.96 %• , -48 %• , 15.8 %, and 35 TU respectively.

Carbon-14 contents of carbonate from the surface water was found to be 95.9 pmc (table 2).

10 5.3 Groundwater

The 6 0 values spread over a range of -9.6 %• to -3.1 X. in shallow waters (depth: 6-25») and -9.6 X> to -4.7 %o in deep waters (depth: 100-150m). 6D value ranges from -61 %. to -15 Xo and -64 %o to -30 %* in shallow and deep waters respectively. Tritium concentration ranges from 1 to 120 TO in shallow waters with the exception of sampling station 21 which has 243 TO, whereas deep water samples have 1 to 62 TO. Hater samples from most of the stations 13 13 were collected and analysed for C. 6 C values range from -10 X* to -1 Xo in shallow waters and -7.3 X. to -1.9 X« in deep waters. These values reflect strong seasonal variations at most of the locations. From the data it can be seen that the shallow waters are relativly more depleted than deep waters probably due to the biogenic activity. Carbon-14 contents of 10 samples were also measured which are 52.3 pmc to 82.1 pmc in shallow water and 30.9 pmc to 92.6 pmc in deep water samples. Radiocarbon activity of groundwater samples has been plotted against depth (figure 6). The C-14 concentrations appear to form no clear pattern and it is obvious from the figure that the carbon-14 contents vary strongly from point to point in the aquifer. Howeher, at two locations (Sampling Station 37 & 39) where samples from different depths were taken, a decrease in C-14 content witii depth is evident. The shallow groundwater has pH values in the range of 6.4 to 9.2 whereas the deep waters have the values in the range of 7.1 to 8.3 .

Figures 7 and 8 show the contours of the electrical conductivity of shallow and deep groundwater. The average values of EC from all the saaples collected from each station have been used for drawing the maps. The range

11 of EC in shallow and deep waters is similar i.e. from 200 to >10,000 pS/cm. In the recharge areas along the rivers and in the upper reaches of the doab where precipitation is relatively high, the groundwater has low salt contents (EC less than 1000 pS/cm) and is of good quality.

6. INTERRELATION OF DIFFERENT WATERS In general Chaj Doab can be divided into three 18 areas (figures 9 and 10) on the basis of 6 0 values of shallow and deep waters. The first type of waters are enriched in stable isotopes (i.e. <5 0 > -6 %•). Almost all the samples from upper part of doab upto Upper Jhelum Canal (Area I) reflect such values. Second type of waters having is 6 0 values ranging from -8 %• to -6 %• is found in the middle part of the doab with the exception of some locations (Area II). Third type of waters is depleted in oxygen-18 (i.e. £ 0 values ranging from -10 %o to -8 %•) and are found in the confluence area and along the river Chenab in the lower part of the doab (Area III).

Average values of deuterium excess ,d, for areas I, II and III are 10.3 %• , 13.2 %o and 14.5 %• respectively

6.1 Surface Water/Shallow Groundwater

Host of the samples from Area-1 have <3 0 values from -6 X» to -5 %<> . Some of the points lie quite below the LMWL in the plo'c of <51B0 vs <5D (figure 11) indicating the presence of evaporated waters. Such type of waters do not 18 seem to originate from the rivers Jhelum and Chenab (<5 0 indices: -7.36 %« and -10 %« respectively) as this area is not irrigated and also the lateral flow of the rivers is not possible due to the steep hydraulic gradient from the north-east to the south-west of the doab. This area gets lot

12 of rainfall as compared to lower doab and also has various intermittent streams fed by mountain rains. As already mentioned the rain water coming from nearby mountains has 18 6 0 value of about -6 %o . Moreover, most of the samples have tritium content of 20 to 30 TD which is very close to the tritium content of rains. This Bhows that Area I is generally recharged by rains. Recharge seems to be quick in shallow zone. The sampling station 3 has tritium content of only 2 TD which seems to have been recharged before 1963.

Host of the points of Area II which lie on LHHL 18 and have <5 0 values from -8 %« to -7 %• , seem to be recharged from the river Jhelum either directly or through the canal system originating from the river Jhelum. Some of the samples from Area II lie below the LHWL. These show evaporation effect or mixing with enriched/evaporated waters. As the whole lower doab upto Upper Jhelum Canal is irrigated with water of the river Jhelum, possibly the area gets recharge from the river Jhelum and canals from the river Jhelum. At places which have clayey soils, the irrigation water gets longer to percolate and is evaporated. At many places groundwater seems to be recycled by pumping for irrigation giving rise to evaporation effect. Some of sampling points have 6 0 values around -6 %• indicating considerable contribution from local rains. 18 Plot of 6 0 versus <5D of shallow water samples (figure 11) shows that the samples from Area III having £ 0

values from -10 %« to -8 %e lie on local meteoric water line. These samples do not show any evaporation effect. Weighted average value of 6 0 of the river Chenab is -10.04 %. with a strong variation from -12 %o to -6.5 %o . However, 18 in flood season it is usually depleted (<5 0: ca. -10 %o) due to the contribution of snow melt and heavy rains at high

13 I 8 altitudes. Relatively depleted values of <5 0 of groundwater samples indicate that contribution to this area from the river Jhelum (weighted average value of <5 0: -8 %•) is not significant. So the area III seems to be recharged mainly from the river Chenab.

Tritium content of water samples in the Areas II and III, exhibits a lot of variation. The samples having tritium concentrations of 1 or 2 TU represent the waters at least 50 years old. Samples from stations 3, 15, 26, 37, 39 & 43 were analyzed for Carbon-14 content. The unadjusted C-ages of the samples range from 1630 to 5360 years BP for shallow water (table 2).

The 6 0 values of water samples from station numbers 6, 7, 8, 9, 20, 24, 26, 30, 40, 41, 46, 47 and 48 show strong seasonal variation but tritium contents are similar to those of surface waters. This indicates that these locations have quick recharge from the surface. The < 3 > presence of sand and gravel deposits at these locations also points to the possibility of quick recharge from the surface.

Hater having tritium content more than 50 TU is 20-25 yeai-B old or major component of this age is involved. Sample from station 21 shows tritium content of about 250 TO which indicates that almost all the water was recharged during sixties when maximum tritium appeared in precipitation in the .

6.2 Shallow Waters / Deep Waters

IB Spatial distributions of & 0 values (figures 9,10) show that in most of the Chaj Doab area, 6 0 values of deep waters are similar to those of the corresponding

14 shallow waters. Also the plots of <5 0 versus <5D for shallow and deep waters (figures 11,12) show similar trend. These two evidences indicate that shalllow and deep waters are well connected. This is also supported by the lithological conditions of the area. The alluvium consists of sand, silt and minor amounts of gravel and clay deposited largely by constantly shifting rivers. In accordance with their modes of deposition, the alluvial deposits are heterogeneous, and individual strata have limited horizontal and vertical continuity. There are some locations i.e. sampling stations 8, 9, 20, 35, 41, 42, 48, 56, 75, and 82 where deep and IB shallow waters have considerable differences in <5 0 and <5D values. These differences may be due to the various pockets of waters in lenticular deposits of clay.

6.3 Surface Waters/Deep Waters

In general the surface water/deep water relatio­ nship is similar to that of the surface water/shallow water. Plots of 6 0 versus <5D for deep and shallow water samples (figures 11, 12) show the same pattern. Regression analysis of data of deep evaporated waters gives the same equation as in the shallow water system. So Area I ^eems to be recharged <7> by rains as the shallow water moves to the deeper zone In this case, tritium values are lower than those in the shallow waters due to time elapsed to reach such depths.

In the <5iB0 vs <5D plot (figure 12), most of the points are clustered about the river Jhelum index and the samples from locations 11, 12, 13, 15, 36 and 76 show evaporated water originating from the same cluster. So, it seems that the deeper zone of Area II is recharged by the river Jhelum or canals of the river Jhelum.

15 In Area III most of the points have & 0 values similar to those of the river Chenab. Hence this area seems to have major contribution from the river Chenab due to its flooding and direct recharge in deeper zone.

Tritium content in deep waters is low as compared to that in shallow waters. Maximum value of tritium content is 62 TD which shows the presence of mostly young water recharged during the last 20-25 years, while other waters having tritium 1-4 TO are old waters. Carbon-14 analysis of samples from stations 26, 37 and 43 yield unadjusted age of water in the range 3000 to 5400 years BP (table 2) . Tritium values 5-50 TO show the fresh waters or mixture of fresh water with native water. Deep water samples like the shallow water samples at location nos. 4, 30, 40 and 46 have considerable variation in & 0 but tritium values are similar to those of surface waters. So, the deeper zone at these locations gets quick recharge from the surface through the shallow zone. This idea is also supported by the geological information indicating that the strata at these locations consist of sand and gravel from the surface to the deep zone

7. PROCESS OF SALINIZATION OF GROUNDWATER

Electrical conductivity of the groundwater in Chaj Doab area ranges from a few hundred to more than 10,000 pS/cm- This wide variation is due to heterogenity of the alluvium and irrigation practices. Different types of soils having different types of chemical composition have been deposited. EC contours of shallow and deep waters are depicted in figures 7 and 8 respectively. Both these figures show almost the same pattern which indicates that salinization processes are similar in shallow and deep

16 zones.

The infiltrating river water is of calcium bi-carbonate type which, upon entering groundwater circulation, becomes gradually more mineralized and is converted to sodium bi-carbonate type within a few kilometers away from the rivers. This relative increase in sodium at the expense of calcium appears to be the result of groundwater interaction with the clay sediments of alluvial 18 *- deposits. Considering the plot of 6 0 versus CI (figures 13 to 14), no correlation between salt contents and <5 0 is found. One can conclude that increase in salt content of water samples due to the dissolution of salts from the soil sediments dominates rather than that by the evaporation process. However, salinity rise due to evaporation is also there at some locations.

Salt contents are also increasing by the application of fertilizers. Especially the nitrate contents < 3 > which were upto 3 ppm in the pre-irrigation period are now several hundred ppm at many places. In the absence of any known geological deposits of nitrates and major industry on large scale discharging nitrogenous compounds, the nitrate pollution is mots I likely due to agricultural practices e.g. the use of chemical fertilizers and agricultural wastes

In the lower-middle parts of the doab, salts are accummulated in the centre due to lateral movement of water from both the rivers towards the centre because the gradient along the axis of the doab is not so steep.

8. CONCLUSIONS

From the isotopic and hydrochemical studies in

17 Chaj Doab, the following conclusions can be drawn:

i) In general, the shallow and deep waters are well connected. However, in some zones isolated pockets of water are found.

ii) The upper part of the doab upto Upper Jhelum Canal is mainly recharged by local rains and the runoff from the adjoining hills. In the middle part the major contribution to the recharge is from the river JHelum either directly or through the irrigation channels, while the confluence area is mainly fed by the river Chenab.

iii) Unadjusted C-ages of the groundwater are from modern to a few thousands of years. For a meaningful interpretation of C data the values of & C and C activity for soil CO and soil carbonates need be determined for the area under investigation.

iv) Salinization is mainly due to dissolution of soil salts- Application of fertilizers is also increasing the salt contents of groundwaters.

ACKNOWLEDGEMENTS

The authors are grateful to International Atomic Energy Agency, Vienna for providing partial financial support in the form of scientific supplies under IAEA Research Contract No. 4255/RB. Sincere thanks are due to Mr.Y.Yurtsever for the guidance he provided on technical matters. All the expenses on field sampling and isotopic and chemical analyses were met by PINSTECH. The keen interest taken by Director PINSTECH and P.A.B.C. authorities is thankfully acknowledged. The co-operation extended by Meteorological Department for sampling rain and the

18 Irrigation Depa-tment for sampling river water * s acknowledged with gratitude. Thanks are due t Mr.Q.M.Hussain for his help in the partial execution of the project. The ef forte put in by the laboratory staff (Muhammad Arshad, Muhammad Islam Pasha, Mumtaz Khan, Somar Gul, Nasir Ali Zaidi and Imtiaz Ahmad) for carrying out sample assays are appreciated.

REFERENCES

1. "Atlas of Pakistan" (1985), Survey of Pakistan, Rawalpindi. 2. Ahmad, N., (1974) "Waterlogging and Salinity Problems in Pakistan", I.D.F.C.R.Council, Lahore. 3. I.A.E.A., (1980) "Arid-Zone Hydrology: Investigations with Isotope Techniques". 4. I.A.E.A.,(1976) "Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology". 5. Gilani, h\ A. S. and Hamid, A., (1960) "Quality of Groundwater, Chaj Doab", Basic Data Release No.2, WASID, WAPDA. 6. Ahmad, N., (1974) "Groundwater Resources of Pakistan", Rippon Printing Press, Lahore. 7. Greenman, D. W.,Swarzenski, W.V. and Bennett,G.D.(1967) "Groundwater Hydrology of the ", Bulletin 6, HASID, HAPDA. 8. Kidwai, Z. 0., (1962) "The Geology of Rechna and Chaj Doab", Bulletin 5, WASID, WAPDA. 9. "Hydrological Data of Chaj Doab, Vol. 1" (1980), Water and Power Development Authority, Lahore. 10. Awan, N. M. (1981) "Surface Water Hydrology, Vol. 1" National Book Foundation, Islamabad. 11. Isotope Hydrology Lab., I.A.E.A., Vienna, (1967) 12. Tamers,M.A.(1975),"Chemical Yield Optimization of the Benzene Synthesis for Radiocarbon Dating", IJARI,Vol.26, pp. 676-682.

19 13. Mook, H. G. (1980) " "C in Hydrological Studies" In: Handbook of Environmental Isotope Geochemistry, Vol. 1, ( Fritz, P. and Fontes, J. Ch., eds.), Elsevier, Amsterdam, 1980, pp. 49-71. 14. Stuiver, H. (1983) "International Agreements and the Dse of New Oxalic Acid Standard", Radiocarbon Vol.25, No.2, pp. 793-795. 15. I.A.E.A. (1983) "Guidebook on Nuclear Techniques in Hydrology". 16. Craig, H. (1957) "Isotopic Standards for Carbon and Oxygen and Correction Factors for Mass Spectronetric Analysis of Carbon Dioxide", Geochim. Cosmochim. Acta, Vol.12, pp. 133-149. 17. Craig, H. (1961) " Isotopic Variations in Meteoric Waters", Science, Vol. 133, pp. 1702. 10. Kakar,Y.P.(1981) "Nitrate Pollution of Groundwater in South-Western ,India",In: Quality of Groundwater, Proc. Intl. Symp.Noordf/iJkerhout, The Netherlands, 23-27 March 1981, (ft. van Duijvenbooden, P.Glasbergen and H.van Lelyveld, eds.), Elsevier,Amsterdam, 1981, pp. 125 - 129.

20 Table 1. DATES OP SAMPLE COLLECTIOH

S.No. Date 1. 22 - 30 November, 1985 2. 18 - 26 February, 1986 3. 18 - 26 June, 1986 4. 12 - 20 November, 1986 5. 15 - 23 April, 1987 6. 06 - 14 April, 1988 7. 13 - 23 October, 1988

N.B. Sampling for Carbon-14 aeacureaent was carried out on 10-16 June, 1987. Saaple froa river Jhelua was collected on 30 June, 1987.

TABL E 2 : RESULTS OF CARBON--14 MEASUREMENT

Mean 6 C Station/ Teap. PH unad. Source ( C) TO

3/1 25 7.3 2 -6.75 82.1 1631 4/2 24 7.5 4 -6.83 32.6 9266 14/3 24 7.7 33 -7.10 95.9 15/1 27 7.5 3 -10 77.5 2107 26/1 28 7.4 -6.89 69.4 3020 37/1 27 7.3 -8.03 78 2057 37/2 28 7.6 -6.71 66.1 3423 39/1 27 7.3 -4.26 81.4 1701 39/2 27 7.7 -4.26 30.9 9709 43/1 27 7.5 2 -6.9 52.3 5358 44/2 26 7.3 3 -9.1 92.6 636

N.B. Source l:Hand puap; Source 2:Tube well; Source 3:River. <5t :<51 3 C of total dissolved inorganic carbon TABLE 3 . CHAJ DOAB 1SOTOPIC DATA (NOVKMBKR 1985 TO OCTOBBR 1988)

Station Source Date Tenp. Depth KC Tritium 6**0 6D d 6»C ( C) (•) (MS/CB) (TO) (X.) (X«) (X.) (X.) 2 19 20 460 27 -6.30 -43 7.4 -6.5 3 28 20 420 23 -6.74 -44 9.9 -5.2 4 25 20 470 31 -6.87 -45 10.0 5 26 20 520 26 -6.06 -40 8.5 6 25 20 500 27 -6.96 -43 12.7 7 25 20 500 36 -6.77 -44 10.2 2 1 25- 137 480 0 -7.22 -46 11.8 2 2 18 137 450 7 -6.76 -43 11.1 -1.3 2 3 30 137 640 5 -6.60 -45 7.8 -4.2 2 1 3 25 9 2600 20 -5.24 -35 6.9 -3.2 2 1 4 22 9 2730 23 -5.22 -30 11.8 2 1 5 21 9 2650 18 -5.01 -31 9.1 2 1 6 23 9 3100 23 -5.55 -34 10.4 2 1 7 24 9 2800 14 -5.10 -36 4.8 3 1 1 20 20 1000 1 -6.84 -47 7.7 3 1 2 21 20 820 5 -5.81 -38 8.5 -5.2 3 1 3 25 20 850 1 -6.02 -38 10.2 -4.6 3 1 4 21 20 790 3 -5.85 -39 7.8 3 1 5 20 20 780 0 -5.74 -40 5.9 3 1 6 24 20 840 3 -6.04 -37 11.3 3 1 7 24 20 850 3 -5.91 -32 .15.3 3 2 1 20 91 500 2 -5.40 -34 9.2 1 1 24 18 900 24 -4.55 -30 6.4. 1 2 22 18 1000 31 -4.33 -28 6.6 ' 1 3 26 18 1250 26 -3.81 -26 4.5 -6.7 1 4 24 18 1150 29 -4.62 -18 19.0 1 5 22 18 1000 22 -4.91 -33 6.3 1 6 23 18 1150 21 -4.64 -27 10.1 1 7 27 18 1000 22 -4.28 -21 13.2 2 1 23 122 470 20 -4.98 -34 5.8 2 2 20 122 440 23 -3.69 -29 0.5 -2.1 2 3 25 122 510 22 -4.93 -31 8.4 -2.6 2 4 24 122 450 30 -4.89 -27 12.1 2 6 24 122 450 17 -5.02 -27 13.2 5 2 25 8 580 36 -5.28 -36 6.2 -8.6 5 3 27 8 480 2 -5.63 -34 11.0 -4.1 5 5 26 8 450 1 -5.56 -30 14.5 5 6 26 8 450 5 -5.79 -30 16.3 5 7 26 8 450 0 -5.55 -36 8.4 Station Source Date Temp. Depth EC Tritium 6**0 6D d 6"C ( C) <») (/iS/c«) (TO) (X.) (X.) (X.) (X.) 5 2 2 19 107 450 2 -5.45 -35 8.6 -4.5 5 2 3 28 107 620 1 -5.71 -38 7.7 -2.9 5 2 4 24 107 580 2 -5.02 -25 15.2 5 2 5 24 107 620 0 -5.86 -32 14.9 5 2 6 25 107 580 4 -5.24 -38 3.9 5 2 7 25 107 570 1 -5.81 -33 13.5 6 1 21 8 740 25 -5.16 -30 11.3 6 2 21 8 750 18 -4.08 -29 3.6 -3.3 6 3 29 8 900 16 -4.52 -33 3.2 0.1 6 4 25 8 950 26 -6.64 -27 26.1 6 5 26 8 950 21 -4.76 -27 11.1 6 6 25 8 940 15 -4.45 -21 14.6 6 7 24 8 880 18 -4.94 -32 7.5 6 2 1 19 37 760 10 -5.20 -35 6.6 6 2 2 14 37 750 32 -4.82 -36 2.6 -5.1 6 2 3 26 37 1100 22 -5.26 -33 9.1 -3.7 6 2 4 22 37 920 46 -5.40 -32 11.2 6 2 5 26 37 960 22 -5.34 -33 9.7 6 2 6 24 37 980 20 -5.53 -30 14.2 6 2 7 25 37 950 20 -5.02 -31 9.2 7 1 23 9 510 33 -5.75 -37 9.0 7 2 21 9 1200 35 -3.89 -26 5.1 -0.1 7 3 26 9 660 30 -5.66 -37 8.3 -2 7 4 24 9 590 60 -6.73 -34 19.8 7 5 23 9 580 35 -5.20 -33 8.6 7 6 24 9 640 24 -6.15 -34 15.2 7 7 24 9 640 32 -5.34 -33 . 9-7

7 2 1 21 91 <550 39 -5.39 -37 6.1 7 2 3 25 91 720 33 -5.54 -35 9.3 -3.9 7 2 5 23 91 630 37 -5.75 -32 14.0 7 2 6 24 91 620 32 -5.94 -36 11.5 7 2 7 24 91 640 8 -5.46 -34 9.7

8 1 23 12 1300 5 -5.79 -38 8.3 8 2 21 12 1500 26 -4.81 -33 5.5 -4.9 8 3 26 12 1500 17 -5 67 -3& 6.4 -5.8 8 4 24 12 1200 26 -2.46 -9 10.7 8 5 24 12 1550 15 -3.77 -28 2.2 8 6 25 12 1650 9 -5.40 -35 8.2 8 7 25 12 1300 29 -5.46 -38 5.7 8 2 2 15 27 520 4 -6.09 -38 10.7 -6.1 8 2 3 26 27 930 17 -5.26 -30 12.1 -2.6 8 2 4 27 27 590 4 -6.57 -41 11.6 8 2 5 25 27 680 0 -6.63 -45 8.0 8 2 7 26 27 610 1 -8.43 -39 12.4 Station Source Date Te»p. Depth EC Tritiua 6**0 «5D d 6i9C C C) (•) OS/ca) (TO) (X.) (X.) (X.) (X.) 9 3 26 11 2800 20 -3.78 -29 1.2 -4.8 9 4 25 11 2450 28 -3.71 -29 0.7 9 5 24 11 1900 21 -5.59 -39 5.7 9 6 24 11 1850 16 -5.74 -36 9.9 9 7 24 11 1950 17 -5.54 -34 10.3 9 2 2 22 91 490 6 -6.30 -45 5.4 -6.2 9 2 3 28 91 560 4 -6.87 -44 11.0 -2.6 9 2 4 23 91 480 1 -6.53 -42 10.2 9 2 5 27 91 530 5 -6.51 -37 15.1 9 2 6 25 91 520 3 -7.07 -39 17.6 9 2 7 26 91 520 2 -6.68 -42 11.4 10 3 1 19 235 44 -10.13 -60 21.0 10 3 2 17 235 30 -6.53 -38 14.2 -4.4 10 3 3 23 125 26 -10.77 -65 21.2 -3.1 10 3 4 18 175 27 -6.47 -32 19.8 10 3 5 23 180 28 -7.55 -44 16.4 10 3 6 19 220 26 -7.91 -48 15.3 10 3 7 25 240 26 -10.14 -65 16.1 11 1 25 10 630 36 -7.20 -44 13.6 11 2 22 10 540 50 -6.70 -41 12.6 -6.4 11 3 25 10 630 39 -6.87 -43 12.0 -4.5 11 4 25 10 580 62 -6.93 -44 11.4 11 5 23 10 580 47 -7.05 -47 9.4 11 6 24 10 560 23 -6.71 -41 12.7 11 7 26 10 580 25 -7.47 -43 16.8 11 2 1 22 46 910 46 -6.40 -42 9.2 11 2 2 23 46 930 39 -6.60 -41 11.8 -5.2 11 2 3 27 46 1000 49 -6.54 -40 12.3 -3 11 2 4 24 46 880 87 -6.54 -38 14.3 11 2 5 24 46 950 67 -6.31 -41 9.5 11 2 6 25 46 1050 44 -6.53 -40 12.2 11 2 T 25 46 1000 44 -6.22 -35 14.8 12 1 23 12 1000 35 -5,76 -41 5.1 12 2 21 12 850 59 -6.19 -38 11.5 -7.8 12 3 23 12 1000 37 -6.02 -35 13.2 -2.2 12 4 23 12 950 63 -5.81 -33 13.5 12 5 22 12 950 61 -6.18 -37 12.4 12 6 23 12 950 37 -6.81 -41 13.5 12 2 1 23 79 1350 24 -6.09 -41 7.7 12 2 3 27 79 1700 19 -5.28 -33 9.2 -4.1 12 2 4 25 79 1600 20 -5.90 -35 12.2 12 2 6 25 79 1450 12 -6.00 -35 13.0 12 2 7 24 79 130C 12 -6.03 -38 10.2 Station Source Date Temp. Depth EC Tritiua 6**0 6D d 6"C ( O (B) (MS/CB) (TO) (X.) (X.) (X.) (Xo)

13 1 4 24 8 1250 37 -6.64 -40 13.1 13 1 5 24 8 1200 42 -6.41 -38 13.3 13 1 6 24 8 1200 30 -6.92 -43 12.4 13 1 7 25 8 1350 41 -7.08 -42 14.6 13 2 1 25 152 490 1 -6.58 -42 10.6 13 2 3 27 152 540 1 -6.27 -48 2.2 -2.2 13 2 4 26 152 520 0 -6.45 -38 13.6 13 2 6 26 152 520 1 -6.51 -38 14.1 14 3 1 19 180 32 -7.80 -50 12.4 14 3 2 13 190 42 -7.69 -50 11.5 14 3 3 22 150 28 -8.94 -49 22.5 -3.2 14 3 4 21 210 42 -7.33 -37 21.6 14 3 5 22 220 36 -7.59 -42 18.7 14 3 6 20 190 27 -7.29 -40 18.3 14 3 7 23 195 24 -9.65 -64 13.2

15 1 25 f 1100 1 -6.28 -38 12.2 15 2 23 1\ 1000 7 -4.93 -35 4.4 -6.4 15 3 25 7 1350 7 -4.87 -29 10.0 -3.5 15 4 25 7 1200 5 -6.08 -36 12.C 15 5 26 7 1050 1 -6.24 -41 8.9 15 6 27 7 1150 2 -7.02 -43 13.2 15 7 25 7 1200 1 -5.75 -40 6.0 15 2 1 24 91 880 0 -7.22 -45 12.8 15 2 2 24 91 1150 3 -5.21 -36 5.7 -7.6 15 2 3 29 91 1150 3 -6.66 -42 11.3 -2 15 2 4 27 91 1050 2 -6.15 -38 '.11.2 15 2 6 27 91 1150 6 -6.50 -40 12.0 15 2 7 27 91 1100 1 -6.26 -39 11.1 16 1 25 6 750 22 -7.06 -44 12.5 16 2 22 6 600 28 -6.58 -41 11.6 -8.6 16 3 24 6 680 22 -6.65 -43 10.2 -3.5 16 4 24 6 640 38 -7.34 -45 13.7 16 5 23 6 750 22 -6.43 -37 14.4 16 2 1 25 49 640 • 8 -7.53 -45 15.2 16 2 2 22 49 650 36 -7.52 -43 17.2 -8.3 16 2 3 26 49 800 26 -7.18 -46 11.4 -2.6 16 2 4 25 49 740 32 -7.18 -43 14.4 16 2 5 24 49 640 35 -7.00 -46 10.0 17 1 21 12 950 30 -6.07 -40 8.6 17 2 19 12 900 32 -5.56 -38 6.5 -1.7 17 3 26 12 1400 24 -6.32 -38 12.6 17 4 24 12 1100 40 -6.42 -40 11.4 17 5 26 12 1450 63 -5.85 -32 14.8 Station Source Date Temp. Depth EC Tritium 6tm0 <5D d 61SC (*C) (m) (KS/cm) (TU) IX.) IB 1 1 25 9 900 24 -6.30 -42 8.4 18 1 2 24 9 700 12 -6.52 -38 14.2 -2.7 18 1 3 25 9 770 17 -6.50 -40 12.0 18 1 5 25 9 810 20 -6.19 -37 12.5 18 2 1 24 27 500 10 -7.73 -48 13.8 18 2 3 26 27 700 13 -7.20 -40 17.6 -2.5 18 2 4 25 27 510 6 -7.42 -46 13.4 18 2 5 25 27 600 8 -7.35 -45 13.8 19 1 1 24 9 1250 25 -6.33 -42 8.6 19 1 2 19 9 950 37 -5.46 -40 3.7 -9.7 19 1L 3 30 9 1350 27 -6.09 -39 9.7 -4.4 19 ]L 4 25 9 1050 29 -5.78 -33 13.2 19 1L 5 25 9 1150 31 -6.08 -35 13.6 20 L 1 21 9 1500 26 -5.67 -40 5.4 20 L 2 21 9 950 23 -7.49 -50 9.9 -8.7 20 I 3 25 9 1700 27 -5.79 -38 8.3 -8.4 20 1 4 24 9 1150 14 -6.55 -38 14.4 20 1 5 27 9 1200 16 -7.57 -46 14.6 20 2 4 25 136 680 21 -8.89 -61 10.1 20 4» 5 27 136 650 9 -8.86 -57 13.9 21 1 1 25 6 780 229 -6.39 -42 9.1 21 1 2 23 6 750 235 -7.17 -40 17.4 -3.9 21 1 3 28 6 750 265 -6.75 -43 11.0 -2.9 22 1L 1 23 9 380 35 -8.10 -48 16.8 22 1L 2 20 9 420 38 -8.28 -50 16.2 • -1.5 22 L 3 26 9 490 34 -7.63 -46 15.0 -2.9 22 L 4 24 9 440 43 -7.77 -48 14.2 22 L 5 24 9 500 33 -3.58 -48 20.6 22 1 6 23 9 490 28 -7.82 -40 22.6 22 1 7 25 9 400 26 -7.48 -52 7.8 22 2 1 23 137 320 66 -8.31 -50 16.5 22 2 5 23 137 285 58 -8.30 -46 20.4 23 1 22 9 1000 47 -6.99 -46 9.9 23 2 22 9 1050 37 -7.06 -44 12.5 -1.2 23 3 24 9 1150 46 -6.79 -42 12.3 -2.8 23 4 24 9 1100 52 -7.03 -45 11.2 23 24 9 1100 61 -6.55 -39 13.4 23 2 1 24 107 2950 24 -7.74 -50 11.9 23 2 2 24 107 1850 25 -6.73 -44 9.8 -1.7 23 2 3 Z5 107 980 23 -7.84 -47 15.7 -5.5 23 2 4 24 107 b?.'' 42 -7.70 -46 15.6 23 2 5 25 107 3300 27 -8.03 -52 12.2 Station Source Date Tenp. Depth EC Tritium 6"0 <5D d 6"C <*C) (•) (piS/cn) (TO) (X.) (X.) (X„) (X.) 24 1 25 7 550 30 -8.45 -50 17.6 24 2 21 7 420 29 -7.82 -49 13.6 -4.3 24 3 24 7 600 28 -7.27 -46 12.2 -2.6 24 4 23 7 570 50 -7.25 -45 13.0 24 5 24 7 550 51 -6.95 -43 12.6 24 2 1 24 46 440 34 -8.21 -51 14.7 24 2 2 23 46 450 47 -7.52 -46 14.2 -5.2 24 2 3 25 46 420 19 -7.98 -50 13.8 -1.2 24 2 4 25 46 470 52 -7.81 -46 16.5 24 2 5 25 46 490 71 -7.95 -47 16.6 25 1 1 23 9 620 104 -7.10 -45 11.8 25 1 2 23 9 640 68 -6.71 -41 12.7 -5.2 25 ] 3 26 9 700 59 -7.58 -43 17.6 -3.2 25 1[ 4 25 9 660 20 -5.42 -41 2.4 25 ]L 5 25 9 680 134 -7.75 -51 11.0 26 1I 1 26 8 1750 9 -7.70 -58 3.6 26 1L 2 26 8 1600 6 -8.25 -54 12.0 -7.8 26 :L 3 27 8 1950 4 -8.20 -52 13.6 -10 26 L 4 26 8 1700 5 -8.09 -52 12.7 26 L 5 27 8 1400 3 -8.40 -51 16.2 26 L 6 26 8 1750 3 -8.50 -55 13.0 26 1 7 26 8 1600 1 -9.69 -54 23.5

26 2 1 28 107 1150 15 -7.71 -56 5.7 26 2 2 29 107 1120 4 -8.49 -55 12.9 -5.6 26 2 3 29 107 1200 12 -8.07 -54 10.6 -6.9 26 2 4 28 107 1150 15 -7.73 -53 8.8 26 2 5 29 107 1200 12 -8.29 -56 10.3 26 2 6 28 107 1200 11 -8.45 -50 17.6 26 2 7 28 107 1200 10 -8.22 -53 12.8 27 1 1 22 9 550 53 -7.82 -48 14.6 27 1 2 20 9 580 46 -7.20 -44 13.6 -3.4 27 1 3 25 9 960 94 -6.58 -44 8.6 -2.1 27 1 4 25 9 680 46 -7.64 -46 15.1 27 2 1 24 61 950 36 -7.62 -44 17.0 27 2 2 23 61 1050 23 -7.80 -48 14.4 -7.1 27 2 3 25 61 530 43 -7.77 -46 16.2 -2.6 27 2 4 26 61 2050 37 -7.64 -46 15.1 27 i. 5 25 61 1000 47 -7.43 -36 23.4 28 1 24 8 2300 66 -6.57 -39 13.6 28 2 21 8 1720 65 -6.10 -36 12.8 -1.5 28 3 26 8 2200 42 -6.41 -41 10.3 -6.9 28 4 25 8 1700 58 -5.97 -36 11.3 28 5 24 8 15:- 0 61 -6.72 -37 16.8

28 2 1 26 137 6700 6 -7.68 -47 14.4 28 2 2 25 137 6000 3 -7.53 -46 14.2 -5.8 28 2 5 27 137 6900 2 -7.43 -46 13.4 Station Source Date Temp. Depth KC Tritiun 6**0 <5D d 6"C (*C) (m) (MS/cm) (TU) (%.) (X.) (%.) (X-) 29 1 24 8 1500 10 -9.06 -62 10.5 29 2 23 8 1380 24 -6.86 -43 11.9 -8.5 29 3 27 8 1650 19 -7.21 -42 15.7 -6 29 4 25 8 1550 7 -9.82 -62 16.6 29 5 26 8 1700 5 -9.80 -61 17.4 29 6 25 8 1650 4 -9.30 -61 13.4 29 7 25 8 1300 5 -9.33 -60 14.6

29 2 1 22 91 700 4 -9.40 -66 9.2 29 • 2 2 18 91 1020 2 -9.69 -63 14.5 -4.3 29 2 3 31 91 1400 1 -8.80 -59 11.4 -4.4 29 2 4 26 91 1200 3 -9.56 -65 11.5 29 2 6 26 91 1350 2 -9.97 -66 13.8 29 2 7 24 91 1200 2 -9.78 -64 14.2

30 1 24 6 880 27 -7.37 -50 9.0 30 2 23 6 750 23 -6.69 -43 10.5 -6.2 30 3 25 6 900 21 -7.27 -48 10.2 -5.5 30 4 23 6 800 22 -7.68 -48 13.4 30 5 26 6 410 24 -6.24 -34 15.9 30 6 24 6 850 20 -8.35 -47 19.8 30 7 26 6 810 20 -7.91 -51 12.3

30 2 1 26 91 640 24 -6.97 -49 6.8 30 2 2 22 91 510 15 -8.81 -57 13.5 -3.5 30 2 3 26 91 600 13 -8.86 -57 13.9 -6.9 30 2 4 29 91 580 17 -9.24 -57 16.9 30 2 5 27 91 t'-20 16 -9.12 -54 19.0 30 2 7 26 91 590 11 -8.75 -55 15.0

31 1 1 24 7 750 40 -7.69 -45 16.5 31 1 2 23 7 630 42 -7.68 -41 20.4 -9.5 31 1 3 26 7 680 25 -7.26 -47 11.1 -1.9 31 1 4 29 7 640 33 -7.22 -43 14.8 31 1 5 26 7 660 36 -6.90 -45 10.2

31 2 2 23 24 890 65 -7.41 -42 17.3 -2.7 31 2 3 26 24 910 35 -7.30 -45 13.4 -1.8 31 2 4 24 24 820 60 -7.02 -43 13.2 31 2 5 25 24 950 56 -7.15 -42 15.2

32 1 1 20 7 2900 59 -6.95 -42 13.6 32 1 2 17 7 3100 51 -6.45 -41 10.6 -1.2 32 1 3 32 7 5500 19 -7.04 -45 11.3 32 1 4 23 7 4100 50 -6.48 -42 9.8

33 1 3 28 9 1590 31 -7.32 -46 12.6 -9.1 33 1 4 22 9 1640 72 -7.01 -33 23.1 33 1 5 24 9 1550 44 -7.78 -45 17.2

33 2 1 18 1050 60 -7.99 -45 18.9 33 2 2 18 280 52 -7.64 -46 15.1 33 2 3 27 1650 32 -7.57 -45 15.6 -5.9 33 2 4 23 300 59 -7.61 -48 12.9 33 2 5 25 460 45 -7.46 -44 15.7 Station Source Date Temp. Depth KC Tritiun 6**0 6U d «5tsC ( C) OiS/c«) (TU) (Xo) (X,) (Xo) (*o)

34 1 1 23 R 1100 58 -7.07 -47 9.6 34 1 2 22 6 1000 61 -6.95 -40 15.6 -10 34 1 3 26 5 950 41 -7.62 -44 17.0 34 \ 4 25 6 770 60 -7.88 -46 17.0 34 1 5 25 6 810 43 -7.81 -40 22.5

34 2 I 24 91 720 20 -7.87 -42 21 .0 34 2 3 27 91 760 16 -7.44 -46 13.5 -2.7 34 2 4 25 91 680 40 -7.37 -45 14.0

35 1 1 22 0 2100 20 -5.66 -37 8.3 35 1 2 25 0 2250 18 -5.72 -36 9.8 -7.3 35 1 3 29 8 2400 17 -5.74 -36 9.9 -5 35 1 4 25 8 2300 18 -5.63 -30 15.0 35 1 5 27 8 2550 13 -5.67 -38 7.4

35 2 1 24 91 700 23 -7.95 -50 13.6 35 2 2 24 91 800 22 -7.20 -47 10.6 -8.3 35 2 n 27 91 940 16 -7.67 -47 14.4 -2.5 35 2 5 26 91 920 25 -8.07 -52 12.6

36 1 19 12 1250 139 -7.07 -44 1Z.6 36 2 19 12 1200 111 -6.99 -42 13.9 -1.5 36 3 27 12 9500 108 -7.05 -42 14.4 -2.6 36 4 23 12 4200 126 -6.90 -43 12.2 36 5 25 12 1450 114 -7.35 -42 16.8 36 2 1 28 91 >10000 5 -6.34 -39 11.7 36 2 2 27 91 >10000 6 -5.92 -36 11.4 -4.6 36 2 3 28 91 >10000 4 -6.36 -37 13.9 -2.1 36 2 4 27 91 >10000 7 -6.38 -36 15.0

37 1 24 6 1700 15 -9.13 -56 17.0 37 2 22 6 1700 4 -9.41 -60 15.3 -3.4 37 3 26 6 1850 5 -9.29 -58 16.3 -8.2 37 4 24 6 1780 4 -9.74 -63 14.9 37 5 25 6 1900 9 -9.43 -52 23.4 37 6 24 6 1950 2 -9.07 -58 14.6 37 7 25 6 2300 12 -8.22 -53 12.8 37 2 2 21 27 2050 4 -9.53 -60 16.2 -1.9 37 2 3 32 27 2500 3 -9.46 -81 14.7 -2 37 2 4 24 27 2120 4 -9.57 -60 16.6 37 2 5 27 27 2360 3 -9.69 -59 18.5 37 2 6 29 27 2200 5 -10.15 -63 18.2 37 2 7 25 27 1900 2 -9.62 -63 14.0 38 1 5 26 10 980 6 -9.28 -55 19.2 38 1 6 25 10 920 4 -9.48 -61 14.8 38 1 7 25 10 900 5 -9.25 -63 11.0 Station Source Date Tenp. Depth KC Tritlu« 6tB0 6D d 61SC (*C) (•) (PS/en) (TU) (X«) (X-) (X.) (X.)

4 39 1 1 26 11 1350 5 -7.67 -44 17.4 39 1 2 24 js 760 5 -7.59 -51 9.7 -4.1 39 1 3 27 if 1490 2 -7.57 -46 14.6 -2.4 39 1 4 26 if 1320 3 -7.14 -45 12.1 39 1 5 26 il 1250 4 -7.63 -38 23.0 39 2 1 17 76 890 8 -7.54 -47 13.3 39 2 2 18 76 890 3 -6.77 -41 13.2 -3.3 39 2 3 28 76 1050 2 -7.79 -47 15.3 -5.5 39 2 4 22 76 720 5 -6.69 -45 8.5 39 2 5 27 76 850 1 -7.97 -50 13.8

40 1 25 7 1600 17 -6.04 -35 13.3 40 2 21 7 900 30 -6.50 -35 17.0 -3 40 3 25 7 1000 19 -7.84 -41 21.7 -3.3 40 4 26 7 1150 24 -6.93 -43 12.4 40 5 26 7 1200 20 -6.33 -41 9.6

40 2 1 25 91 1300 11 -7.93 -51 12.4 40 2 2 23 91 1100 27 -7.76 -45 17.1 -4.1 40 2 3 27 91 1600 7 -6.85 -47 7.8 -3.2 40 2 4 27 91 1500 9 -7.96 -47 16.7 40 2 5 27 91 1550 12 -7.78 -48 14.2

41 1 26 9 1550 68 -6.80 -42 12.4 41 2 24 9 1750 19 -4.49 -29 6.9 -10 41 3 26 9 1800 23 -4.81 -33 5.5 -2.1 I 41 4 27 9 1650 35 -5.01 -30 10.1 41 5 27 9 1650 22 -5.17 -32 9 4 41 6 26 9 1750 16 -4.66 -26 11.3 | 41 1 • 7 27 9 1700 19 -4.61 -26 10.9 ! 41 2 2 20 61 220 31 -6.72 -42 11.8 -6.8 1 41 2 3 30 61 240 26 -7.95 -48 15.6 -1.7 j 41 2 4 26 61 206 41 -7.81 -52 10.5

42 1 23 9 750 50 -8.15 -50 15.2 42 2 23 9 820 67 -7.86 -48 14.9 -7.2 42 3 28 9 1000 56 -7.84 -47 15.7 -4.2 42 4 25 9 940 71 -7.91 -44 19.3 42 5 24 9 940 59 -6.57 -49 3.6 i 42 6 24 9 1000 38 -7.44 -47 12.5 is 2 1 25 91 . 550 10 -9.44 -61 14.5 ; 442 2 2 24 91 580 14 -9.44 -58 17.5 -4.8 42 2 4 26 91 780 13 -8.73 -56 13.8 Station Source Date Temp. Depth BC Trltlu* «5 0 6D d *"c ("O (MS/CB) (TU) [X.) (X.) (X.)

M \ 2 1 \ -18 -7 43 3 29 9 920 2 -10.05 -62 18.4 -11 43 4 ?7 9 840 0 -6.93 -53 18.4 43 5 26 9 060 2 -9.82 -62 16.6 43 6 26 9 950 1 -9.39 -62 13.1 43 7 27 9 960 2 -9.90 -59 20.2

43 2 J 24 91 1150 4 -9.73 -54 23.8 43 C 2 25 91 1200 6 -9.55 -60 16.4 -7.3 43 2 4 26 91 1200 1 -8.67 -53 16.4 43 2 7 27 91 890 7 -9.20 -62 11.6

44 1 25 6 2f'0 6 -8.87 -51 20.0 44 2 2? 6 7 00 7 -8.02 -49 15.2 -7.6 44 3 26 6 700 14 -7.71 -47 14.7 -4.2 44 r. 25 6 510 0 -9.45 -46 29.6 44 6 26 6 510 4 -8.19 -45 20.5 44 7 26 6 510 1 -8.37 -54 13.0

44 2 1 24 24 700 4 -7.98 -48 15.6 44 2 2 23 24 650 1 -8.53 -52 16.2 -1.8 44 2 3 28 24 850 4 -7.82 -49 13.6 -2.3 44 2 4 26 24 480 2 -8.17 -39 26.4 44 2 6 25 24 800 1 -7.57 -47 13.6 44 2 7 25 24 890 4 -7.67 -48 13.4

45 1 1 26 12 17 00 55 -6.83 -43 11.6 45 1 2 20 12 1600 47 -6.00 -39 9.0 -8.2 45 1 3 29 12 1750 50 -6.75 -39 15.0 -1.6 45 1I 4 20 12 17 50 72 -6.75 -41 13.0 45 1L 5 20 12 17 00 69 -6.60 -40 12.8

46 I 1 25 9 500 65 -7.62 -47 14.0 46 2 25 9 590 5 -9.02 -54 18.2 -4.3 46 L 3 27 9 820 11 -9.66 -61 16.3 -4.1 46 1 4 28 9 770 15 -9.38 -60 15.0 46 1 5 26 9 780 17 -9.29 -61 • 13.3 46 1 6 26 9 800 12 -9.89 -66 13.1 46 1 7 27 9 820 15 -9.66 -61 16.3

46 2 1 24 91 1450 21 -8.91 -60 11.3 46 2 2 26 91 600 14 -9.48 -59 16.8 -4.4 46 2 4 26 91 860 22 -7.62 -57 4.0 46 2 5 26 91 1450 16 -9.20 -58 15.6

47 1 25 8 990 10 -9.16 -56 17.3 47 2 22 0 900 11 -7.19 -54 3.5 47 3 29 8 1050 11 -8.64 -36 33.1 -4.4 47 4 27 8 1050 13 -8.59 -53 15.7 47 5 25 8 1050 17 -7.95 -33 30.6 47 3 26 n 1300 9 -8.93 -58 13.4 47 7 26 8 1300 11 -8.50 -57 11.0

47 7. 1 25 34 1450 40 -8.29 -52 14.3 47 7. 2 24 34 1400 5 -8.22 -49 16.8 Station Source Date Te«p. Depth KC T ritiuB 6im0 6D d 6,SC CO (•) O'S/cm) (TU) (X.) (X.) (X.) (X.)

48 1 25 9 500 37 -683 -45 9.6 48 2 25 9 540 30 -7.25 -46 12.0 48 3 28 9 540 32 -7.96 -36 27.7 -6.8 46 4 27 9 570 50 -6.93 -47 8.4 48 5 26 9 500 45 -8.96 -59 12.7 48 6 26 9 530 34 -8.47 -54 13.8 48 7 27 9 610 26 -7.79 -50 12.3 48 2 1 24 91 500 21 -9.17 -58 15.4 48 2 2 22 91 540 18 -8.82 -58 12.6 48 2 3 • 28 91 600 26 -8.85 -57 13.8 -5.8 48 2 5 26 91 630 32 -8.70 -61 8.6

49 4 1 18 170 31 -7.72 -45 16.8 49 4 2 12 185 35 -7.20 -43 14.6 49 4 3 20 140 28 -8.76 -49 21. 1 -4.3 49 4 4 19 185 43 -6.80 -44 10.4 49 4 5 17 185 39 -7.73 -45 16.8 49 4 6 14 155 26 -7.51 -40 20.1 49 4 7 20 165 21 -9.87 -68 11.0

50 4 1 19 250 34 -7.87 -49 14.0 50 4 2 14 200 38 -7.50 -45 15.0 50 4 3 22 150 30 -8.94 -51 20.5 -2.4 50 4 4 21 215 40 -7.33 -40 18.6 50 4 5 18 175 39 -7.46 -41 18.7 50 4 6 19 170 26 -7.40 -43 16.2

51 5 3 37 >10000 11 4.37 -28 7.0 -1.4 51 5 4 24 >10000 13 -6.00 -35 13.0 51 5 5 30 >10000 11 -5.98 -34 13.8 51 5 6 29 9800 8 -4.39 -29 6.1 51 5 7 26 9100 12 -5.87 -34 13.0

52 2 6 26 91 750 12 -6 59 -39 13 7 52 2 7 24 91 700 9 -5 88 -37 10 0

53 27 24 2650 30 •5.67 -36 9.4 53 2 6 26 73 460 26 -5.84 -32 14.7 53 2 7 26 73 450 17 -5.21 -31 10.7

54 1 6 25 11 450 29 -5.56 -33 11.5 I 54 1L 7 24 11 460 20 -4.83 -25 13.6 ; 1 55 1L 6 24 23 650 22 -5.66 -34 11.3 i 65 11 7 24 23 580 18 -6.00 -39 9.0 58 L 6 26 33 BBO 17 -3.43 -17 10.4 56 I 7 28 33 910 15 -3.69 -29 0.5 Statjon Source Dnt.fi Temp. Dc|>».li KC Tr-itlu n .51B0 60 (1 (/'iJ/cm) ±THL_._ (X.) {X.) (X») 57 1 23 .25 450 2 4 6.18 -26 23.4 57 1 7 20 25 400 17 -5.06 -26 14.5

50 1 24 660 1 6.18 -39 10.4 58 I 7 24 0 700 20 -5.61 -41 3.9

59 1 fi 23 570 30 -5.97 -28 19.8 59 1 7 24 o -> GOO 22 -4.89 -24 15.1

60 I »; 23 12 650 21 -6.09 -35 13.7 60 1 7 24 12 500 26 -6.28 -40 10.2

60 2 7 25 17 040 9 -5.86 -34 12.9

61 1 fi 25 25 400 32 -3.95 -19 12.6 61 1 7 23 ft i- 360 22 -2.36 -10 8.9

62 10 1G50 29 -6.38 -37 14.0 62 25 JO 1000 19 -5.68 -33 12.4

63 610 03 -6.95 -39 16.6

64 1 6 24 12 50O 40 -6.05 -33 15.4 64 .1 7 25 12 620 26 -5.36 -31 11.9

65 1 6 24 24 950 16 -5.05 -36 4.4 65 I 7 27 24 1000 16 -5.73 -33 12.8

66 1 6 23 1 1 1200 72 -6.80 -36 18.4 66 1 7 24 11 1250 48 -5.61 -35 9.9

66 . 2 6 26 67 610 4 -6.57 -32 20.6 6G 2 7 26 67 620 2 -5.59 -32 12.7

67 I 6 25 12 450 28 -5.34 -29 13.7 67 1 7 26 12 450 22 -5.08 -35 5.6

68 6 22 15 220 26 -7.42 -40 19.4 68 7 23 15 190 22 -8.20 -48 17. P 69 6 24 30 2100 12 -3.34 -22 4.7 69 7 25 30 2100 13 -3.27 -23 3.2 70 1 6 23 14 420 102 -7.73 -45 16.8 70 1 7 26 14 450 03 -7.94 -48 15.5

71 1 6 23 ?[) 570 40 -6.36 -39 11.9 71 1 7 23 20 5G0 41 -6.73 -40 13.8

72 1 R 26 8 1150 J 4 -8.Z5 -50 16.0 72 \ 7 25 0 1000 26 -8.54 -52 16.3

73 I fi 26 0 1050 1 -0.67 -52 17.4 73 1 7 26 0 1900 1 -7.91 -52 11.3 Station Sf»ur»:o !>.-i to Temp. H'M'Ui KC TrM. inn ^"o *l) .1 *•"<: ( •:) (m) (/'!•./«•) (TU) (Xo) (X.) (X.) (X„) 74 1 »; 24 M Hill 21 -7.03 -50 12.6 74 1 7 2 G 6 nun 23 -7.54 -47 13.3

75 1 7 25 135') 23 5.22 -27 14.8

75 2 7 ,:v v nit 39 -6.71 -41 12.7

76 J 7 26 130(1 34 -6.05 -41 13.8

77 1 n 25 o 1400 32 -5.90 -31 16.8 77 1 7 25 8 1900 24 -6.23 -36 13.8

77 2 7 26 21 1 200 39 -6.78 -42 12.2

78 1 6 29 6 551) 24 -6.54 -37 15.3 78 1 7 26 6 660 29 -6.85 -42 12.8

78 2 fi 26 620 17 -0.53 -55 13.2 78 2 7 20 5io y 0.93 -56 15.4

79 1 6 2? o >1000O 2 -6.77 -39 15.2 79 I 7 27 6 >lont)0 1 -6.67 -41 12.4

GO 8(10 30 -7.97 -42 21.8

81 J 6 7.4 R nr.o 30 -7.90 46 17.0 81 I 7 25 0 930 33 -6.06 -42 12.9

82 1 r, 25 1!' 1900 10 -6. 13 -40 9.0 82 1 7 26 iy 17 00 20 -5.42 -32 11.4

82 2 6 27 ni. 2350 25 -9.02 -57 15.2 82 2 7 27 9 1 2200 21 -0.57 -57 11.6

83 1 7 25 P, 6100 17 -6.76 -41 13.1

84 1 6 25 8 5000 36 -6.71 -43 10.7 84 1 7 26 8 5200 29 - 6.02 -42 12.6

85 1 R 29 26 1.000 06 -7 .02 -42 14.2 85 1 7 27 26 900 65 -7 . 45 -47 12.6

86 24 9 330 20 -7.75 -46 16.0 86 25 9 440 75 -7.77 -50 12.2 87 25 2500 10 -6.05 -41 13.0 87 26 900 11 -5.85 -37 9.8

80 1 6 24 !1 2350 1 -8.17 -52 13.4 88 1 7 26 9 10 on 2 -0.46 -52 15.7 Station Sourtio Dnt.o Temp. DopMi KC Tritium 0 *D d 6"K

(m) (CS/OID) (TU) <%„) (X.) (Xt)

09 1 7 2.8 r, 350 1 -8.72 -48 21.8

89 /, 7 25 :u 07 0 3 -8.20 -53 12.6

30 1 2 5 8 2 1 (Mi 7 -0.03 57 15.2 9H 1 7 28 8 2UMI 8 -8.81 -58 12.5

91. .1 0 28 8 1 i.'in 3 -0.21 -62 11.7 31 1 7 27 8 1200 6 -8. R4 -59 10. 1

91 7 27 1500 12 8.78 -59 11. 1

92 1 7 27 (-' I 100 10 -8. 17 -53 12.4

92 2 7 27 880 13 -9.0C -53 19.5

N.B. JSourc? ': Hari

Da to I Nov., 1985; Dai.o 2: Feb., 1986; Da1.« 3: June, 1986 Date 4 Hov.,198G; Dat-.r; 5: Apr 11,1987; Date 6: April, 1988 Date 7 Oct. , .1988 TABLE 4: CHA.J DOAB CHEMICAL DATA (NOVFMBRH 1985 TO OCTOBEB 1988)

Station Source Date Pll KC ti.n K Cn Hg CI TIC N03 SU4 (/•S/'.:m) . Ppm) (ppm)( ppm)(ppm)( PPm)(ppm) (ppm) (ppm)

1 1 7.4 4 850 11 2 2 31 17 30 486 1 2 7.5P 460 46 2 21 17 5 319 1 3 7.20 420 27 1 17 11 6 221 1 4 7.55 47 0 40 5 56 14 9 284 19 5 1 r> 7.70 52 0 44 4 59 13 22 220 25 11 1 6 7. 5G 50 O 25 8 76 9 14 290 16 6 1 7 7.60 500 42 10 55 19 44 343 7 7

2 1. 7.86 4 (Hi .'.4 4 19 22 5 269 2 2 7.80 450 40 2 23 21 9 301 2 3 7.82 64 0 40 2 14 27 7 278

2 1 1 6.92 2050 320 187 32 55 210 708 2 1 2 7.62 420 16 30 17 13 8 271 2 1 3 7.3^ 2600 J 87 129 19 79 330 416 2 1 4 7.0/ 27 30 255 195 89 131 372 639 171 308 2 1 5 7 . 08 2650 227 210 92 92 395 570 157 328 2 1 f.; 7.21 3100 165 395 150 04 378 503 218 178 2 1 7 7.20 2300 1 27 302 106 50 250 570 31 214

3 1 1 7.32 1000 93 5 20 65 10 786 3 1 2 7 . 26 020 112 7 24 50 5 659 3 1 3 7.24 050 91 3 4 49 6 457 3 1 4 7.19 790 05 4 41 46 6 480 31 4 3 J i> 7.32 700 1 13 3 32 43 7 504 26 4 3 1 6 7.44 0^0 80 6 39 42 8 575 16 5 3 1 7 7.40 050 110 10 42 47 7 257 10 6

3 2 1 7.98 500 62 3 12 18 5 286

4 1 1 7.28 900 34 17 41 29 26 389 4 1 2 7.09 1000 37 37 7 0 25 58 385 4 1 3 7 .23 1250 37 46 f'O 22 70 365 4 1 4 6.97 11 50 60 39 14;' 32 72 400 Jl U 101 4 1 5 7.09 1000 64 46 125 23 68 388 1G8 93 4 1 6 7 .27 1150 45 39 210 22 50 448 85 45 4 1. 7 7.30 1000 95 02 117 37 35 475 24 45

4 2 1 7 . G6 470 31 1 24 10 13 323 4 2 2 7.61 440 30 3 26 14 13 319 4 2 3 7.68 1.700 40 2 12 12 12 228 4 2 4 7.44 450 41 4 91 15 12 239 3 8 4 2 6 7.73 450 32 7 89 9 12 281 3 9

5 1 6.72 1400 167 5 31 28 130 486 5 2 7.92 500 62 2 18 22 8 389 5 3 7.48 400 37 2 8 32 3 283 5 5 7.90 450 57 2 19 27 9 252 3 4 5 G 7.80 450 3 1 5 38 26 6 307 3 4 5 7 7.98 450 50 12 29 46 35 300 4 53 Station Source Date pH EC Ha K Ca Mg CI TIC H03 S04 (A'S/cm) (ppm) (ppra)(ppn)(ppn)(ppm)(ppB) (ppn) (ppn)

5 2 2 7.68 450 62 2 6 20 5 314 5 2 3 7.51 620 90 2 4 14 4 285 5 2 4 7.66 580 88 3 22 14 5 319 3 12 5 2 5 7.73 620 114 3 19 10 5 316 3 16 5 2 6 7.82 580 82 7 32 14 8 325 2 6 5 2 7 7.90 570 90 12 24 21 8 245 5 73

6 1 G.80 740 76 2 26 47 20 461 6 2 7.30 750 41 1 24 76 30 573 6 3 7.53 900 46 1 23 82 33 503 6 4 7.30 950 43 1 38 89 33 42 21 6 5 7.26 950 65 2 38 60 34 509 39 27 6 6 7.50 940 48 5 66 79 30 549 39 16 6 7 7.55 880 53 8 40 48 29 305 15 16

6 2 1 7.38 760 64 3 30 45 20 530 6 2 2 6.96 750 40 2 38 64 65 416 6 2 3 6.96 1100 43 1 23 54 62 292 6 2 4 7.60 920 44 1 27 88 57 66 50 6 2 5 7.64 960 62 1 32 51 56 350 65 44 6 2 6 7.49 980 56 7 170 48 57 381 52 38 6 2 7 7.53 950 41 9 73 43 46 341 16 24

7 1 7.22 510 40 2 28 15 10 368 7 2 7.25 1200 156 5 43 34 14 646 7 3 7.22 660 50 1 13 19 11 271 7 4 7.30 590 49 1 50 22 12 3 27 7 5 7.64 i;80 65 2 39 15 8 379 3 21 7 6 7.60 610 53 5 96 IB 10 338 19 24 7 7 7.47 640 54 9 58 26 12 267 3 16

7 ?. 1 6.83 650 89 2 27 21 10 463 7 2 2 7.59 680 102 2 24 31 15 486 7 2 3 7.13 720 53 2 16 20 14 274 7 2 4 7.61 590 90 2 19 21 2 43 7 2 5 7.62 630 66 2 57 17 12 360 6 30 7 2 6 7.71 620 40 6 64 13 13 365 5 21 7 2 7 7.61 640 57 10 60 24 12 289 4 20

8 1 P. 97 1300 224 5 29 24 87 542 8 2 7.22 1500 219 22 60 33 101 674 8 3 7.74 1500 231 6 29 26 70 579 8 4 7.48 1200 269 11 40 33 42 529 7 359 8 5 7.62 1350 297 5 39 16 49 600 8 110 8 6 7.50 1650 190 7 84 26 86 528 21 145 8 7 7.54 1300 176 13 83 39 109 532 6 120

8 -. 2 7.84 520 804 2 11 16 13 340 8 2 3 7.62 930 78 4 20 29 35 356 8 2 4 7.61 590 80 1 18 22 2 32 6 2 5 8.04 680 108 4 23 16 33 316 2 45 8 2 7 7.96 610 82 11 28 26 12 294 3 28 Station Source Date pH EC Na K Ca Mg CI TIC N03 S04 _^____ (A«S/cm) (ppm) (ppm) (ppm) (ppm) (ppro) (ppm) (ppm) (ppn) 9 1 6.58 1570 433 B 27 31 109 663 9 2 7.53 900 112 7 37 28 42 560 9 3 7.59 2800 428 5 25 43 187 598 9 4 7.67 2450 399 6 30 49 160 523 18 480 9 5 7.43 1900 286 45 59 35 131 560 43 297 9 6 7.42 1850 232 9 135 38 101 620 29 188 9 7 7.35 1950 127 18 101 50 108 549 7 210

9 2 1 6.69 1450 284 6 23 24 125 538 9 2 2 7.91 490 72 3 7 18 3 278 9 2 3 8.02 560 72 3 5 21 3 288 9 2 4 7.96 480 74 4 24 21 4 290 2 94 9 2 5 7.92 530 90 3 26 15 5 302 9 86 9 2 6 7.92 520 61 5 34 15 5 298 8 13 9 2 7 7.95 520 86 12 22 28 20 258 3 15

10 3 1 7.56 235 16 4 23 10 3 147 10 3 2 8.23 235 15 2 18 9 3 180 10 3 3 8.25 125 5 2 16 10 1 88 10 3 4 8.39 175 10 3 26 13 3 139 8 15 10 3 5 8.41 180 24 1 14 6 3 98 4 10 10 3 6 7.44 220 10 6 65 6 5 88 2 10 10 3 7 8.21 240 13 12 39 13 7 180 1 22 11 1 7.4:- 630 39 5 25 23 8 423 11 2 7.48 540 38 4 25 21 7 389 11 3 7.61 630 40 5 14 22 8 273 11 4 7.43 580 39 5 60 47 9 B 35 11 5 7.64 580 58 5 55 19 12 311 11 29 11 6 7.66 560 32 7 79 18 9 338 9 14 11 7 7.59 580 31 9 47 27 9 200 10 17

11 2 1 7.55 910 117 13 26 20 23 523 11 2 2 7.50 930 116 12 25 20 21 496 11 2 3 7.29 1000 127 14 12 21 26 415 11 2 4 7.24 880 129 17 49 34 3 67 11 2 5 7.53 950 145 14 41 22 22 509 4 68 11 2 6 7.66 1050 109 9 107 19 23 515 7 52 11 2 7 7.71 1000 100 16 45 24 28 339 5 36

12 1 7.08 1000 150 1 19 37 48 489 12 2 7.42 850 59 2 22 75 30 439 12 3 7.63 1000 144 1 13 55 33 405 12 4 7.59 950 154 4 40 47 20 457 6 172 12 5 7.52 950 80 3 33 92 23 433 9 163 12 R 7.71 950 106 5 30 47 16 470 13 78 12 7 7.95 1550 129 11 44 57 76 536 20 172 Station Source Date pH EC Na R Ca Mg CI TIC N03 S04 (nZ/cm) (ppm) (ppm)(ppD)(ppm)(ppn)(ppn) (ppn) (ppm) 12 2 1 7.57 1350 251 3 10 34 57 603 12 2 2 7.6b 700 70 2 14 65 26 433 12 2 3 7.77 1700 296 3 7 46 68 529 12 2 1 7.46 1600 275 4 48 40 69 509 5 306 12 /. 6 7.90 1450 208 8 37 28 53 445 7 126 12 2 7 8.42 1300 125 12 36 46 60 399 6 192

13 1 1 7.35 1700 196 12 41 37 101 565 13 1 2 7.32 17 50 221 11 52 44 105 548 13 1 3 7.50 2000 229 12 35 51 119 429 13 1 4 7.26 1250 109 8 84 46 60 7 321 13 1 5 7.53 1200 125 6 72 isa 47 430 6 300 13 1 6 7.26 1200 106 6 223 42 50 439 14 162 13 1 7 7.45 1350 107 15 97 43 34 235 7 231 13 2 1 0.35 4ao 81 2 3 12 9 268 13 2 3 7.96 540 96 2 3 12 8 236 13 2 4 8.01 520 85 2 12 17 10 2 44 13 2 6 7.80 520 70 4 22 7 17 254 3 24

14 3 1 7.82 180 8 1 14 8 2 137 14 3 1 7.93 190 9 2 15 11 4 145 14 3 3 8.35 150 9 1 13 8 3 129 14 3 4 8.11 210 11 2 25 15 5 131 2 15 14 3 5 8.26 220 14 2 30 6 5 125 3 11 14 3 6 8.16 190 6 4 59 5 3 123 3 8 14 3 7 7.98 195 4 10 39 10 5 201 1 12

15 1 7.05 1100 155 5 26 30 101 448 15 2 7.73 1000 186 5 33 28 130 458 15 3 7.27 1350 195 5 17 27 131 392 15 4 7.28 1200 187 6 66 29 109 418 8 117 15 5 7.43 1050 178 3 41 17 82 420 4 101 15 6 7.25 1150 142 6 97 20 71 424 17 78 15 7 7.55 1200 130 14 56 36 105 513 6 94 15 2 1 7.26 880 92 4 28 23 79 430 15 2 2 7.72 1150 184 5 29 22 125 260 15 2 3 7.53 1150 160 5 12 24 103 333 15 2 4 7.52 1050 148 6 31 21 102 306 6 72 15 2 5 7.76 1300 197 6 54 28 130 444 6 118 15 2 6 7.34 1150 131 6 95 19 82 391 16 51 15 2 7 7.49 1100 128 14 51 33 84 478 5 65

18 1 1 7.05 750 40 4 29 34 25 364 16 i 2 7.40 600 42 4 27 33 13 363 16 1 3 7.49 080 46 4 19 33 13 310 16 1 5 7.50 750 70 4 42 34 23 297 16 43 16 2 1 7.47 640 50 5 25 15 24 305 16 2 2 7.67 650 64 9 30 21 24 384 16 2 3 7.34 800 67 11 22 20 22 321 16 2 4 7.34 7 40 77 9 22 24 24 2 52 16 2 5 7.63 640 83 9 59 19 22 353 3 46 Station Source Date pH EC Ha R Ca Mg CI TIC N03 S04 (J'S/mn) (PP») (^pn)(PPic)(PPg>)(PP!n)(PPm) (ppm) (ppm)

17 1 1 7.05 950 98 1 36 20 100 453 17 1 2 7.26 900 107 2 40 24 79 445 17 ] 3 7 . 211 1400 137 2 30 32 104 357 17 1I 4 7 .20 1100 106 3 95 25 71 464 20 84 17 JL 5 7.22 1450 145 37 93 31 101 469 18 70

18 L 1 7.17 900 62 1 52 30 30 443 18 L 2 7.42 7 00 7 1 1 18 35 28 254 18 L 3 7.70 770 65 1 16 41 27 279 18 I 4 7.50 500 35 1 50 26 19 200 15 75 18 L 5 7.55 810 70 1 32 38 34 259 43 120

18 2 1 7.88 500 28 2 24 20 18 219 18 2 3 7.74 700 58 3 10 35 29 190 18 2 4 7.72 510 27 2 47 33 22 199 16 55 18 2 5 7.48 600 46 2 49 27 26 409 12 58

19 1 1 7.77 1250 183 3 7 48 89 577 19 1 2 7 .82 950 179 3 26 52 98 558 19 1 3 7.70 1350 109 3 7 55 88 490 19 1 4 7.62 1050 160 4 23 44 64 439 24 84 19 1 5 7.81 1150 179 3 19 44 68 511 14 72

20 1L 1 6.92 1500 158 11 46 50 85 540 20 L ?. 7.57 950 09 7 33 35 52 345 20 1L 3 7.33 1700 180 12 32 62 96 378 20 I 4 7.52 1150 102 7 62 55 61 295 220 205 20 L 5 7.27 1200 120 23 71 35 63 304 4 190

20 2 3 7.84 1500 116 10 32 46 104 320 20 2 4 7.58 680 37 7 69 23 14 230 2 64 20 2 5 7.50 650 50 5 61 20 14 226 4 64

21 1 1 7.82 780 136 1 5 18 37 374 21 1 2 7.95 750 147 3 4 19 30 419 21 1 3 7.82 750 149 2 5 15 22 370

22 1 1 7.84 380 0 1 22 17 5 276 22 1 2 7.92 420 22 7 27 26 3 325 22 1 3 7.64 490 18 2 23 32 6 612 22 1 4 7.66 440 10 2 49 28 4 2 13 22 1 5 7.69 500 25 2 49 25 5 290 3 14 22 1 6 7.95 490 13 b 69 25 5 312 2 6 22 1 7 7.40 400 80 11 47 35 6 250 2 15

22 2 1 7.96 320 19 2 7 10 6 189 22 2 5 8.32 285 31 3 17 15 5 145 2 14

23 1 1 7.56 1000 74 IB 40 42 7 0 394 23 1 2 7.32 1050 77 15 37 43 76 378 23 1 3 7.30 1150 103 20 31 46 82 323 23 1 4 7.39 1100 86 24 54 43 71 227 9 190 23 1 & 7.38 1100 110 19 55 40 60 212 13 196 Station Sources Date pH liC Ha K Ca tig Cl TIC N03 S04 (/jS/cm) (ppm) (ppm) (ppm) (ppm) (ppm)(ppro) (ppm) (ppm)

23 2 1 7.4 9 2950 312 8 46 47 760 259 23 2 2 7.69 1850 333 5 26 28 188 342 23 2 7.53 980 424 8 67 52 789 208 23 2 4 7.7 5 520 29 4 41 27 15 222 5 34 23 2 i. 7.45 J200 437 8 99 52 815 217 29 324 24 1 1 7.45 550 23 4 41 17 20 295 24 1 7.59 420 24 3 24 19 18 213 24 1 3 7.69 GOO 43 2 21 26 22 178 24 1 4 7.57 570 28 3 64 25 21 239 7 60 24 1 F, 7.37 550 44 2 44 18 15 234 7 42

24 2 ] 7.68 440 19 2 27. 17 10 236 24 2 /. 7.62 450 40 2 14 19 16 237 24 2 3 7.74 420 135 2 15 21 13 198 24 2 4 7.76 470 43 5 38 18 15 219 3 32 24 2 r, 7.45 490 53 2 20 13 15 213 4 50 25 1 1 8.12 620 136 1 3 7 10 413 25 1 /. 7.61 640 131 2 3 11 10 375 25 1 •3 t'.64 700 136 7. 3 27 11 360 25 1 4 0.J5 660 127 2 6 13 8 348 2 33 2* 1 5 8.27 680 140 1 4 11 12 354 3 48

26 1 1 7.67 17 50 193 127 18 25 76 496 26 1 2 7.70 1600 210 2 14 27 79 511 26 1 3 7.07 1950 733 159 21 31 87 435 26 1 4 7.78 1700 230 167 23 28 87 410 22 355 ?R 1 5 7.62 1400 201 31 9 44 64 344 12 263 26 1 6 8.02 1225 157 314 43 21 56 505 25 200 26 1 ft 7.51 1600 129 26 32 57 52 430 5 222

26 2 1 7.70 1150 189 4 9 28 31 512 26 2 2 7.89 1120 167 130 7 28 30 475 26 2 3 8.04 1200 188 5 7 32 31 415 26 2 4 7.72 1150 L97 5 20 30 33 470 3 160 26 2 5 7.56 1200 197 4 14 27 37 441 11 150 26 2 G 8.18 840 117 19 36 25 29 484 13 128 26 2 7 7.77 1200 120 13 21 47 32 250 4 148 27 1 7.55 550 25 3 37 29 10 407 27 2 7.52 580 37 4 27 38 12 397 27 3 8.09 960 128 2 25 36 71 359 27 4 7.53 680 59 131 51 29 15 288 3 43 27 5 7.52 G70 45 3 47 33 15 365 7 5f 27 2 1 7.46 950 106 2 31 26 90 362 27 2 2 7.49 1050 167 3 23 27 130 350 27 2 3 7.14 530 34 2 24 22 13 297 27 2 4 7.52 2050 301 19 59 49 449 257 21 141 27 2 5 7.31 1000 129 2 57 28 90 313 18 111 Station Source Datn Pll EC Mn K Ca Mg CI TIC N03 S04 (MS/cm) (PPm) (ppm)( ppm)( ppm)( ppm)(ppm) (PPm) (ppm)

28 1 1 7.40 2300 133 200 12 64 115 400 28 1 2 7.29 1720 121 201 27 62 92 381 28 1 3 7.29 2200 140 140 43 53 99 365 28 1 4 7.12 1700 105 189 67 51 83 404 90 365 28 1 5 7.34 1550 100 183 61 42 85 382 78 290

28 2 1 7.33 6700 780 34 149 156 1750 285 28 2 2 7.35 6000 782 36 184 184 1770 271 28 2 b 7.27 4830 690 39 234 174 2600 283 73 440

29 1 1 8.49 1500 27 0 2 6 5 40 646 29 ^ n 7.74 1380 240 3 10 48 43 675 29 1 3 7.76 1650 280 3 8 39 44 542 29 1 4 0.59 1550 405 2 4 9 46 511 4 269 29 1 5 8.64 1700 354 4 5 10 64 515 11 306 29 1 6 0.93 1155 240 12 7 3 43 472 15 150 29 1 7 8.62 1300 127 13 21 11 47 397 3 208

29 2 1 7.90 700 106 3 14 26 58 292 29 2 2 8.11 1020 104 4 13 29 60 293 29 2 3 0.36 1400 18 9 3 15 30 61 256 29 2 4 8.01 1200 192 3 18 30 62 278 3 309 29 2 6 0.31 945 122 9 47 25 46 265 8 190 29 2 7 8.14 1200 119 13 33 41 64 378 2 213

30 i. 1 7.50 080 7 2 4 25 27 8 399 30 1 2 7.61 7 50 7.1 5 21 26 15 377 30 1 3 7.81 900 56 6 31 40 24 360 30 1 4 7.34 800 37 6 45 37 12 274 19 81 30 1 5 7.49 410 27 5 38 11 9 217 11 20 30 1 6 7.68 850 51 6 105 27 8 461 9 49 30 1 7 7.48 810 41 11 67 45 10 240 3 39

30 2 1 7 .56 640 52 5 23 27 21 338 o 30 tL 2 7.63 510 40 4 24 20 10 285 30 2 3 7.96 600 44 5 17 25 11 224 30 2 4 7.63 500 42 5 50 24 12 210 3 71 30 2 5 7.72 620 54 5 41 20 13 200 1 85 30 L, 7 7.83 590 38 13 54 33 15 250 2 50

31 1 1 7.42 750 02 2 31 29 24 383 31 1 2 7.56 630 25 5 27 29 23 392 31 1 3 7.23 680 31 3 24 31 22 310 31 1 4 7.21 640 26 3 42 32 16 252 2 30 31 1 5 7.26 660 39 3 45 29 11 349 9 48

31 2 2 7.74 090 101 1 24 32 52 361 31 2 3 7.32 910 102 1 23 28 51 312 31 2 4 7.37 820 93 2 41 28 40 263 2 90 31 2 0 7.38 950 109 1 49 31 53 318 9 145'

32 1 7.28 2900 330 12 49 113 582 618 32 2 7.42 3100 400 8 38 88 648 661 32 3 7.05 5500 565 12 48 102 995 588 32 4 7.10 4100 804 99 32 5 7.49 6930 376 79 19 66 2424 1307 272 1170 Station Source Date pH KG Ha K Ca Mg CI TIC N03 S04 (/iS/cm) (ppm) (ppm)(ppm)(ppm)(ppm)(ppm) (ppm) (ppm 33 1 1 7.30 1300 135 31 43 25 216 348 33 1 2 7.26 D10 92 21 32 45 114 419 33 1 3 7.50 1590 189 43 34 26 203 281 33 1 4 7.15 1640 176 03 118 35 259 94 172 33 1 5 7.34 1550 232 80 98 17 248 324 50 154 33 2 1 7.77 1050 183 2 16 27 219 227 33 2 2 7.35 280 38 3 12 14 23 165 33 2 3 7.96 1650 245 6 18 30 304 224 33 2 4 8.06 350 49 2 25 38 33 2 35 33 2 5 8.09 460 66 3 18 14 45 180 4 45 34 1 1 7.50 1100 98 2 25 70 77 434 34 1 2 7.53 1000 96 2 21 79 62 441 34 1 3 7.54 950 59 2 21 66 52 395 34 1 4 7.33 770 04 1 32 32 15 417 2 59 34 1 b 7.47 010 01 2 26 50 18 422 5 65

34 2 1 7.59 720 77 6 24 22 78 257 34 2 3 7.55 760 62 3 21 22 30 251 34 L, 4 7.44 680 63 2 54 19 26 233 2 87

35 J 7.91 2100 338 39 9 18 260 675 35 2 8.03 2250 419 32 7 21 285 676 35 3 8.03 2400 454 44 9 24 297 798 35 4 7.75 2300 467 104 5 31 312 598 57 268 35 5 7.72 2550 412 62 9 31 315 599 97 308

35 7 1 7.55 700 119 2 27 19 47 316 35 2 2 7.66 000 104 2 19 21 53 300 35 2 3 7.66 940 120 2 17 23 53 289 35 2 4 7.51 1800 335 57 23 23 248 481 22 162 35 r! 5 7.49 920 120 3 37 22 54 273 13 140

36 1 7.91 1250 577 16 31 51 401 655 36 I 2 7.89 9200 648 16 41 46 389 669 O 36 V 7.91 9500 570 1G 42 54 416 606 36 L 4 7.91 4200 996 15 32 46 450 543 40 1180 36 L 5 7.32 1450 219 16 79 98 166 387 9 425

36 4I 1 7.21 >10000 2132 28 21 230 3150 399 36 t 2 2 7.15 >10000 2252 34 160 232 5530 383 37 1 1 7.46 1700 218 G 57 35 200 466 37 1 2 7.51 1700 267 6 35 31 215 407 37 1 3 7.68 1850 274 7 27 34 208 300 37 1 4 7.50 1780 301 6 64 30 222 286 9 350 37 1 5 7.42 1900 276 6 76 33 209 397 9 35b 37 1 6 7.77 1950 190 8 155 28 193 422 23 200 37 1 7 7.49 2300 125 16 127 56 222 457 7 24G Station Source Dote pll EC Ma R Ca Mg CI TIC N03 S04 (/-«S/cm) (pym) (Ppm) (ppm) (ppro) (ppm) (ppm) (ppm) (ppm)

37 2 2 7.57 2050 363 6 33 38 313 440 37 2 3 7.93 2500 362 6 32 34 280 403 37 2 4 7.34 2120 407 5 45 37 296 337 18 387 37 2 5 7.69 2360 366 8 50 36 255 407 16 380 37 2 6 8.18 2200 246 6 81 26 200 413 20 195 37 2 7 8.04 1900 122 14 46 37 260 562 4 223

38 1 1 7.47 1300 140 6 34 41 52 452 38 1 2 7.54 1150 141 5 34 45 58 467 38 1 3 7.80 1300 142 5 28 49 61 360 38 1 4 7.61 910 66 5 71 30 80 224 3 190 38 1 5 7.59 980 92 5 77 30 66 244 3 180 38 1 6 8.02 920 53 7 135 23 57 224 4 138 38 1 7 7.82 900 77 13 75 38 60 265 2 163

38 2 7 7.75 D40 65 10 62 36 55 277 8 119

39 1 1 7.44 1350 208 30 19 15 81 626 39 1 2 7.23 760 215 30 14 12 73 565 39 1 3 7.46 1490 263 43 10 17 86 560 39 1 4 7.34 1320 282 65. 22 9 89 544 7 106 39 1 5 7.38 1250 220 40 16 13 76 540 15 123

39 2! 1 8.00 890 149 15 19 11 67 418 39 /! 2 7.87 090 150 12 17 15 64 410 39 5J 3 7.87 1050 162 14 12 14 63 356 39 ;J 4 7.93 720 142 12 43 19 63 351 3 78 39 :I 5 7.63 850 144 8 38 6 40 350 12 82 40 :L 1 7.13 1600 320 3 38 34 202 678 40 L 2 7.33 900 118 2 30 25 80 389 40 L 3 7.29 1000 125 2 21 26 93 293 40 1 4 7.15 1150 135 2 67 25 122 371 45 71 40 1 5 7.19 1200 155 2 65 22 130 409 59 100 40 2 1 7.63 1300 216 4 15 12 100 608 40 2 2 7.70 1100 236 4 6 12 52 594 40 2 3 7.65 1600 291 4 8 17 162 446 40 2 4 7.44 1500 310 4 19 15 152 503 11 116 40 2 5 7.53 1550 205 4 17 14 159 485 17 130 41 1 1 7.30 1550 191 23 31 40 129 460 41 1L 2 6.88 1750 158 60 39 45 205 469 41 1L 3 6.95 1800 146 80 40 47 187 379 41 1L 4 6.90 1650 117 78 91 40 190 360 159 138 41 1L 5 7.11 1650 1G3 74 89 42 150 407 164 140 41 1L 6 7.30 1285 62 56 215 40 135 325 168 82 41 L 7 6.82 1700 117 51 120 53 170 525 22 116 41 2 2 7.39 220 15 2 14 10 5 124 41 2 3 7.44 240 9 3 21 9 5 107 41 2 4 8.04 20G 7 2 24 8 2 106 3 11 Station Source Date pll EC Ma K Ca Mg CI TIC N03 S04 (/US/cm) (ppm) (ppa)(ppn)(ppm)(ppn)(ppB) (ppa) (pp«) 42 1 1 7.34 750 76 6 .31 28 23 441 42 1 2 7.50 820 74 6 30 28 15 598 42 1 3 6.95 1000 79 5 IB 34 16 392 42 1 4 7.20 940 71 6 63 30 18 468 5 85 42 ] fj 7.15 940 87 6 71 36 15 481 21 90 42 1 6 7.66 700 57 18 149 30 11 409 9 109 42 J 7 7.95 660 55 12 52 39 25 247 2 90

42 2 1 7.90 550 71 3 7 15 10 283 42 2 2 7.62 560 70 4 14 21 12 279 42 2 4 7.94 780 109 4 40 29 120 211 6 90

43 1 7.58 750 118 4 20 12 44 448 43 2 7.21 540 120 4 17 12 48 342 43 3 7.45 920 127 5 20 13 51 268 43 4 7.64 840 139 17 51 17 56 308 4 98 43 5 7.49 860 138 14 47 12 58 345 15 125 43 6 7.94 950 77 12 80 10 43 268 7 125 43 7 7.79 960 117 13 50 23 52 406 3 106

43 2 1 7.56 1150 181 4 23 22 169 323 43 2 2 7.62 1200 184 4 19 20 168 312 43 2 4 7.57 1200 189 10 28 28 163 207 8 158 43 2 7 8.06 890 126 11 23 18 40 350 2 56

44 1 7.72 290 19 2 15 6 7 187 44 2 6.99 700 50 3 30 16 53 286 44 3 7.40 700 42 3 27 16 64 205 44 4 7.63 500 43 14 109 18 9 289 4 14 44 5 7.59 510 93 3 24 8 16 280 6 18 44 6 0.00 357 38 8 59 5 11 242 3 20 44 7 7.90 510 74 8 33 16 12 280 1 65

44 2 1 7.54 700 62 5 34 21 68 309 44 2 2 6.93 650 125 2 2 3 35 399 44 2 3 7.58 850 67 5 20 24 56 254 44 2 4 7.68 480 64 3 22 11 9 246 3 13 44 2 6 7.75 560 44 9 93 20 55 237 3 58 44 2 7 7.60 890 92 13 44 40 75 357 2 19

45 1 1 8.40 1700 289 10 6 13 172 594 45 1 2 8.68 1600 329 8 5 13 180 588 45 1 3 8.56 1750 362 7 7 9 168 510 45 ] 4 8.50 1750 367 0 8 12 186 547 31 133 45 j 5 8.43 1700 332 6 6 6 200 474 36 150 45 1L 6 7.78 455 38 7 128 30 7 321 9 14 45 J L 7 7.50 600 28 10 36 45 8 157 1 15

46 jI 1 7.72 500 73 4 14 8 13 310 46 1L 2 7.81 590 133 4 15 8 20 367 46 L 3 7.42 820 137 4 8 9 35 313 46 L 4 7.75 770 126 5 27 8 37 312 3 76 46 I 5 7.56 780 139 4 19 6 38 349 4 88 46 L 6 8.17 800 65 1Z 47 5 27 264 4 61 46 I 7 8.02 820 124 12 31 12 31 265 2 76 Station Source Date pH EC Ha K Ca Mg CI TIC N03 S04 (/JS/cm) (ppin) (ppn)(ppn)(ppin)(ppiQ)(ppn) (ppa) (ppa) .

46 2 1 7.47 1450 224 6 33 14 125 425 46 2 2 7.80 800 140 3 8 11 47 359 46 2 4 7.81 860 132 4 24 13 51 332 4 69 46 2 5 7.58 1450 268 6 29 16 128 386 30 180 47 1 7.78 990 139 4 23 11 102 302 47 2 7.42 900 141 4 22 11 100 299 47 3 7.39 1050 146 5 23 11 112 283 47 4 7.46 1050 112 5 85 20 130 233 7 129 47 5 7.43 1C50 154 7 77 11 130 208 9 140 47 6 8.05 1300 93 17 155 21 119 233 7 130 47 7 7.90 1300 128 13 66 25 155 407 3 121

47 2 1 7.45 1450 167 7 33 28 190 288 47 2 2 7.29 1400 179 7 34 30 220 285 47 2 5 7.34 1330 264 8 97 29 285 286 40 231

48 1 7.38 500 24 4 24 15 9 315 48 2 7.12 540 30 4 24 20 10 356 48 3 7.24 540 22 4 23 17 7 239 46 4 7.32 570 25 4 23 18 10 140 3 27 48 5 7.39 350 28 4 87 16 10 220 8 30 48 6 8.27 530 8 5 111 12 8 219 5 34 48 7 7.65 610 39 13 62 42 13 212 2 26

48 2 1 7.86 500 75 4 13 13 9 273 48 2 o 7.81 540 103 4 13 15 9 278 48 2 3 7.36 600 97 6 16 18 12 232 48 2 5 7.38 630 75 5 40 14 13 275 10 48

49 4 1 7.26 170 12 1 13 6 2 127 49 4 2 7.90 185 12 2 16 10 4 135 49 4 3 6.42 140 6 1 12 8 2 92 49 4 4 7.80 185 11 2 28 18 4 143 2 13 49 4 5 7.84 185 27 4 28 4 3 120 3 10 49 4 6 7.44 155 6 4 57 4 4 119 4 9 49 4 7 7.30 165 4 10 41 8 6 190 1 11

50 4 1 7.11 250 15 2 23 10 6 138 50 . 4 2 8.07 200 15 2 22 12 5 140 50 4 3 7.80 150 10 1 15 9 5 95 50 4 4 3.09 215 10 4 26 11 4 122 2 15 50 4 5 8.07 175 21 2 41 4 4 129 3 11 50 4 6 8.22 170 5 5 57 3 4 142 4 8

51 5 3 8.03 >10000 2917 18 84 183 3800 400 51 5 4 8.42 >10000 2068 16 73 148 2950 408 95 965 51 5 5 7.94 >10000 431 20 79 141 2830 514 165 840 51 5 6 8.07 9800 724 342 120 114 2500 804 120 208 51 5 7 8.48 9100 527 25 66 55 2400 797 11 73

52 2 6 7.80 750 38 5 83 17 28 347 23 8 52 2 7 7.65 700 46 11 71 20 33 375 9 Station Source Date pil EC Na K Ca tig CI TIC N03 S04 (fS/cm) (ppm) (pps>)(pp»)(pp»)(pp»)(ppm) (pp») (ppn) 53 6.39 2650 142 12 298 43 266 376 450 146 53 2 G 7.02 460 41 4 63 10 6 272 10 4 53 2 7 7.87 450 39 11 60 19 7 357 5 5 54 6.74 450 13 77 10 14 261 55 1 6 7.19 650 26 6 94 12 16 360 19 6 55 1 7 6.98 580 44 10 64 16 22 289 10 9 56 1 6 7.41 880 12 7 142 29 40 470 14 10 56 1 7 7.42 910 26 10 92 45 35 427 8 20 56 2 6 7.45 550 16 7 108 18 9 33U 14 5 56 2 7 7.76 590 69 39 60 36 8 369 8 6 57 1 6 6.78 450 14 6 41 16 8 321 3 9 57 1 7 7.61 480 20 12 54 37 10 279 3 9 58 1 6 7.16 660 30 6 105 26 14 392 5 5 56 1 7 7.16 700 32 10 59 24 20 350 12 20 59 1 6 6.95 570 13 5 88 10 16 266 12 33 60 1 6 7.39 650 52 5 66 16 13 397 8 5

60 I\ 7 7.48 840 95 10 35 26 92 351 7 13 61 :L 6 6.90 400 20 4 76 10 6 255 3 5 61 1L 7 7.70 360 18 13 46 15 7 260 2 19 62 L 6 6.96 1650 178 12 66 78 140 531 93 87 62 L 7 7.59 1800 144 24 50 62 145 540 33 115 63 1 6 6.95 610 32 5 83 14 11 369 3 13 64 1 6 7.32 580 32 6 66 17 11 368 3 8 64 1 7 7.20 620 32 8 74 30 10 376 4 8 65 1 6 7.89 950 138 6 18 27 15 638 19 8 65 1 7 7.72 1000 116 11 14 44 25 382 10 6 66 1 6 7.03 1200 110 8 120 32 96 505 24 120 66 1 7 6.95 1250 90 9 76 28 84 360 8 16 66 2 6 7.54 G90 29 6 53 29 14 365 3 8 66 2 7 7.22 620 39 12 67 45 8 410 3 8 67 1 6 7.64 450 25 5 90 5 7 294 2 4 67 1 7 7.57 450 27 13 60 13 7 357 3 4 68 1 6 7.99 220 5 3 53 10 4 141 4 7 68 1 7 7.89 190 14 11 35 17 4 211 1 7 Station Source Date pH EC Na K Ca Hg CI TIC N03 S04 (/JS/em) (pp») (ppn)(ppn)(ppn)(ppB)(pp») (pp») (pp») 69 1 6 7. If, 2100 100 9 16 146 188 610 36 100 69 1 7 7.03 2100 114 63 34 162 288 624 13 167 70 1 6 7.87 420 50 7 46 14 5 250 2 13 70 1 7 7.83 450 64 8 32 18 36 374 2 16

71 1 6 7.61 570 18 6 54 24 6 351 10 26 71 1 7 8.00 560 12 12 53 36 7 275 6 22

72 1 6 7.40 1150 80 13 94 18 30 382 5 137 72 1 7 7.60 1000 106 30 42 30 32 333 7 160 73 1 6 7.87 1850 228 48 34 34 70 783 35 130 73 1 7 7.70 1900 134 82 28 49 90 477 13 166 74 1 R 7.63 810 50 6 Bl 20 25 325 3 120 74 1 7 7.46 880 64 13 77 26 34 257 3 109 75 1 7 7.85 1350 116 11 22 46 75 262 13 161 76 2 7 8.24 780 81 11 14 35 30 312 5 51 76 1L 7 8 1300 129 17 40 49 66 230 5 169 77 1L 6 7.83 980 82 156 102 22 64 496 24 150 77 J L 7 7.27 1900 116 140 80 42 121 407 8 221 77 :I 7 8.28 1200 112 12 14 42 69 264 13 134 78 L 6 8.06 550 29 4 74 12 11 195 14 50 78 1 7 7.89 680 30 14 68 28 22 215 8 90 78 2 6 7.93 620 31 4 114 12 11 299 5 53 78 2 7 7.50 510 26 13 49 30 11 189 2 46 79 1 6 7.76 >10000 886 42 172 206 3600 439 125 220 79 1 7 7.54 MOOOO 721 26 120 47 4200 575 18 277 80 1 6 8.10 560 20 5 46 30 20 312 9 19 81 1 6 8.18 602 97 12 39 16 24 360 10 36 81 1 7 8.17 930 99 12 11 30 50 374 3 78 82 1 6 7.71 1900 229 7 101 41 90 546 25 200 82 1 7 7.65 1700 126 14 47 45 140 497 6 213 82 2 6 7.68 2350 305 15 52 40 125 481 18 218 82 2 7 7.92 2200 137 13 35 50 80 585 4 272 83 1 7 7.17 6100 34 17 24 59 1400 565 12 275 84 1 6 7.El 5000 530 22 59 66 700 527 80 210 84 1 7 6.82 5200 G50 17 17 61 850 597 16 280 Station Source Date pH EC Ma K Ca rig CI TIC NG3 S04 (/

87 1 6 7. 89 1750 86 9 55 16 30 286 10 40 87 1 7 7. 89 900 127 11 33 26 61 367 8 70

88 1 6 7 57 1645 114 14 214 50 344 224 12 208 88 1 7 7 86 1600 112 11 52 49 140 475 4 42 89 1 7 7 99 350 39 10 16 13 10 178 1 21 89 2 7 8 .20 570 89 10 12 10 14 278 3 19

90 1 6 7 .81 1470 250 19 36 24 98 683 40 120 90 1 7 7 .61 2100 115 12 30 46 130 369 6 148

91 1 6 8 .13 1150 95 11 89 12 46 329 10 138 91 1 7 7 .78 1200 128 12 65 32 60 367 3 146

91 "t 7 7 .63 1500 142 15 49 36 110 407 3 164

92 1 7 7 .93 1100 124 14 68 23 113 407 3 99 92 2 7 7 .83 880 102 11 49 20 71 359 2 59

H.B, Source 1: Handpump; Source 2: Tube well; Source 3: Biver; Source 4: Canal; Source 5: Drain

Date 1: Nov.,1985; Date 2: Feb.,1986; Date 3: June,1986 Date 4: Hov.,1986; Date 5: April,1987; Date 6: April,1988 Date 7: Oct.,1988 TABLE 5 : CHAJ DOAD MEAN ISOTOFIC DATA (SHALLOW HATER)

Statiou Teiip. Depth EC Tritium 6*"0 6D d «5 C (*C) (a) (MS/CB) (TU) (X.) (X.) (%») (X.)

1 25 20 478 28 -6.62 -43 10.0 -5.05 2 23 9 2776 20 -5.22 -33 8.8 -3.2 3 22 20 847 2 -6.03 -39 9.2 -4.9 \ 24 18 1064 25 -4.45 -26 9.6 -6.7 5 26 8 482 9 -5.56 -33 11.5 -6.35 6 24 8 873 20 -4.94 -28 11.5 -1.6 7 24 9 689 36 -5.53 -33 11.2 -1.05 8 24 12 1429 18 -4.77 -31 7.2 -5.35 9 25 11 2190 20 -4.96 -33 6.7 -4.8 11 24 10 586 40 -6.99 -43 12.9 -5.45 12 23 12 950 49 -6.13 -38 11.0 -5 13 24 8 1250 38 -6.76 -41 13.1 15 25 7 1150 3 -5.88 -37 10.0 -4.95 16 24 6 684 26 -6.81 -42 12.5 -6.05 17 23 12 1160 38 -6.04 -38 10.3 -1.7 18 25 9 795 10 -6.38 -39 12.0 -2.7 19 25 9 1150 30 -5.95 -38 9.6 -7.05 20 24 9 1300 21 -6.61 -42 10.9 -8.55 21 25 6 760 243 -6.77 -42 12.2 -3.4 22 24 9 464 34 -7.95 -47 16.6 -2.2 23 23 9 1080 49 -6.88 -43 12.0 -2 24 23 7 S38 38 -7.55 -47 13.4 -3.45 25 24 9 660 77 -6.91 -46 9.3 -4.2 26 26 8 1679 4 -8.4 -54 13.2 -8.9 27 23 9 693 60 -7.31 -46 12.98 -2.75 28 24 8 1894 58 -6.35 -38 12.8 -4.2 29 25 8 1533 11 -8.77 -56 14.2 -7.25 30 24 6 771 22 -7.36 -46 12.9 -5.85 31 26 7 672 35 -7.35 -44 14.8 -5.7 32 23 7 3900 45 -6.73 -43 10.8 -1.2 33 25 9 1593 49 -7.37 -41 18.0 -9.1 34 24 6 926 53 -7.47 -43 16.8 -10 35 26 8 2320 17 -5.68 -35 10.4 -6.15 36 23 12 3520 120 -7.07 -43 13.6 -1.95 37 24 6 1883 7 -9.18 -57 16.4 -5.8 38 25 10 933 5 -9.34 -60 14.7 39 26 15 1234 4 -7.52 -45 15.2 -3.25 40 25 7 1170 22 -6.73 -39 14.8 -3.15 41 26 9 1693 29 -5.08 -31 9.6 -6.05 42 25 9 908 57 -7.63 -40 13.0 -5.7 43 25 9 831 2 -9.64 -60 17.1 -9 44 25 6 537 5 -8.44 -49 18.5 -5.9 45 26 12 1700 59 -6.59 -40 12.7 -4.9 46 26 9 726 20 -9.22 -59 14.8 -4.2 47 26 8 1091 12 -8.42 -49 10.4 -4.4 46 26 9 541 36 -7.74 -48 13.9 -6.8 53 27 24 2650 30 -5.67 -36 9.4 54 25 11 455 25 -5.2 -29 12.6 55 24 23 615 20 -5.83 -37 9.6 56 27 33 095 16 -3.56 -23 5.5 Station Temp. Depth EC Tritium 6 0 <5D d <5 C (°C) (a) CMS/cm) (TO) (Xo) (%,) (%») (%«)

57 25 25 465 21 -5.62 -26 19.0 58 24 8 680 11 -5.89 -40 7.1 59 24 22 585 29 -5.43 -26 17.4 60 24 12 575 24 -6.19 -38 11.5 61 24 25 380 27 -3.16 -15 10.3 62 25 18 1725 24 -6.03 -35 13.2 63 25 15 610 83 -6.95 -39 16.6 64 25 12 600 33 -5.71 -32 13.7 65 26 24 975 16 -5.39 -35 8.1 66 24 11 1225 60 -6.21 -36 13.7 67 26 12 450 25 -5.21 -32 9.7 68 23 15 200 24 -7.81 -44 18.5 69 25 30 2100 13 -3.31 -23 3.5 70 25 14 435 93 -7.84 -47 15.7 71 23 20 565 41 -6.55 -40 12.4 72 26 8 1075 20 -8.4 -51 16.2 73 26 8 1875 1 -8.29 -52 14.3 74 25 8 845 22 -7. 6£ -49 12.5 75 25 1350 23 -5.22 -27 14.8 76 26 1300 34 -6.85 -41 13.8 77 25 8 1650 28 -6.12 -34 15.0 78 28 6 615 27 -6.7 -40 13.6 79 27 6 >10000 2 -6.72 -40 13.8 80 25 8 800 30 -7.97 -42 21.8 81 25 8 895 32 -7.42 -44 15.4 82 26 IS 1800 19 -5.78 -36 10.2 83 25 8 6100 17 -6.76 -41 13.1 84 26 8 5100 33 -6.77 -43 11.2 85 28 26 950 76 -7.24 -45 12.9 86 25 9 385 27 -7.76 -48 14.1 87 26 8 170P 11 -6.35 -39 11.8 88 25 9 1975 2 -8.32 -52 14.6 89 28 6 350 1 -8.72 -48 21.8 90 26 8 2100 8 -8.92 -58 13.4 91 27 8 1175 5 -8.93 -61 10.4 92 27 6 1100 10 -8.17 -53 12.4 TABLE 6: CHAJ DOAB MEAN ISOTOPIC DATA (DEEP WATKR)

Station Tenp. Depth EC Tritium 6180 6D d 613C ( C) (m) (MS/cm) (TO) (%,) (%.) (X*) (%•) i 24 137 523 4 -6.86 -45 9.9 -2.75 4 23 122 464 22 -4.7 -30 7.6 -2.35 5 24 107 570 -5.52 -34 10.2 -3.7 6 22 37 917 25 -5.22 -33 8.8 -4.4 7 23 91 652 30 -5.62 -35 10.0 -3.9 3 24 27 666 5 -6.2 -39 10.6 -4.35 9 25 91 517 4 -6.66 -42 11.3 -4.4 11 24 46 960 54 -6.45 -40 11.6 -4.1 12 25 79 1480 17 -5.86 -36 10.9 -4.1 13 26 152 518 1 -6.45 -42 9.6 -2.2 15 26 91 1080 3 -6.33 -40 10.6 -4.8 16 24 49 694 27 -7.28 -45 13.2 -5.45 18 25 27 578 9 -7.43 -45 14.4 -2.5 20 26 136 665 15 -8.88 -59 12.0 22 23 137 303 62 -8.31 -48 18.5 23 24 107 1920 28 -7.61 -48 12.9 -3.6 24 24 46 454 45 -7.89 -48 15.1 -3.2 26 28 107 1174 11 -8.14 -54 11.1 -6.25 27 25 61 1116 37 -7.65 -44 17.2 -4.85 28 26 137 6533 4 -7.55 -46 14 4 -5.8 29 25 91 1145 2 -9.53 -64 12.2 -4.35 30 26 91 590 16 -8.63 -55 14.0 -5.2 31 25 24 893 54 -7.22 -43 14.8 -2.25 33 22 758 50 -7.65 -46 15.2 -5.9 34 25 91 720 25 -7.56 -44 16.5 -2.7 35 25 91 840 22 -7.72 -49 12.8 -5.4 36 28 91 >10000 6 -6.25 -37 13.0 -3.35 37 26 27 2188 4 -9.67 -61 16.4 -1.95 39 22 76 880 4 -7.35 -46 12.8 -4.4 40 26 91 1410 13 -7.66 -49 12.3 -3.65 41 25 61 222 33 -7.49 -47 12.9 -4.25 42 25 91 637 12 -9.2 -58 15.6 -4.8 43 26 91 1110 5 -9.29 -57 17.3 -7.3 44 25 24 728 3 -7.96 -47 1.6.7 -2.05 46 26 91 1140 18 -8.8 -59 11.4 -4.4 47 25 34 1425 23 -8.26 -51 15.1 48 25 91 568 24 -8.89 -59 12.1 -5.8 52 25 91 725 11 -6.24 -38 11.9 53 26 73 455 22 -5.53 -32 12.2 56 25 182 570 7 -6.2 -41 8.6 60 25 17 840 9 -5.86 -34 12.9 66 26 67 615 3 -6.08 -32 16.6 75 27 780 .'39 -6.71 -41 12.7 77 26 21 1200 39 -6.78 -42 12.2 78 26 565 13 -8.73 -56 13.8 82 27 91 2275 23 -8.8 -57 13.4 89 26 91 570 3 -8.2 -53 12.6 91 27 1500 12 -8.76 -59 11.1 92 27 880 13 -9.06 -53 19.5 TABLE 7: CHAJ DQAB MEAN CHEMICAL DATA (SHALLOW WATER)

Station pH EC Na K Ca Mg CI TIC N03 S04 (MS/cm) (ppm) (ppm) (ppm) (ppro) (ppm) (ppm) (ppm) (ppm) 1 7.53 47b 48 4 45 14 19 309 17 7 2 7.20 2776 165 218 72 73 278 521 143 264 3 7.31 847 96 4 29 47 7 543 21 5 4 7.18 1064 53 44 114 27 54 407 117 71 5 7.65 482 67 5 24 30 32 336 3 20 6 7.32 873 53 3 36 72 30 483 34 20 7 7.39 689 67 4 47 21 11 378 7 22 8 7.45 1429 230 10 53 28 81 571 10 183 9 7.37 1917 288 14 59 39 121 578 24 295 11 7.55 586 40 4 46 25 9 322 9 24 12 7.56 1036 117 4 29 59 36 461 12 150 13 7.38 1493 161 10 82 43 76 446 9 253 15 7.37 1150 168 6 48 27 106 435 9 95 16 7.38 695 50 4 30 35 17 334 16 43 18 7.48 752 62 1 34 34 27 282 28 96 19 7.74 1150 178 3 16 49 81 515 19 78 20 7.32 1300 138 12 51 50 62 365 110 196 21 7.86 760 144 2 5 17 30 388 22 7.74 446 26 4 41 27 5 324 2 13 23 7.39 1080 91 19 49 45 70 298 11 192 24 7.53 538 34 3 40 22 20 227 7 51 26 7.74 1604 193 110 22 32 72 447 16 260 27 7.64 688 57 27 36 31 24 358 5 49 28 7.29 1894 121 199 44 56 95 386 84 328 29 8.40 1462 274 6 12 18 42 512 7 226 30 7.56 771 52 5 47 28 13 335 13 47 31 7.34 672 45 3 34 32 17 313 6 35 32 7.27 4506 511 28 39 94 1162 794 272 1170 33 7.33 1398 174 52 64 32 190 302 70 164 34 7.47 926 82 2 25 55 45 418 4 61 35 7.89 2320 412 56 14 27 255 559 67 254 36 7.18 >10000 2192 31 91 231 4340 391 37 7.55 1883 239 8 79 37 197 378 12 271 38 7.69 1066 101 6 61 35 62 319 3 168 39 7.48 1150 192 33 33 22 74 484 7 117 40 7.22 1170 171 2 44 26 115 401 40 75 41 7.04 1626 136 60 89 45 162 402 126 121 42 7.33 830 71 8 59 34 16 401 9 94 43 7.59 831 119 10 41 14 44 312 7 106 44 7.60 510 51 5 41 12 22 248 3 28 45 8.26 1365 241 7 25 16 133 456 19 78 46 7.78 726 1 4 6 23 10 25 299 3 70 47 7.63 1091 lii2 8 65 19 119 289 6 125 48 7.48 520 23 6 49 17 10 243 4 29 53 6.39 2650 142 12 298 43 266 376 450 148 54 6.74 450 13 4 77 10 14 281 4 8 55 7.09 615 32 5 77 14 19 335 15 8 Station pH EC Na K Ca Mg CI TIC N03 S04 (MS/cm) (ppm) (ppm) (ppro) (ppm) (ppm) (ppm) (ppm) (ppm)

56 7.42 895 20 8 110 30 38 449 11 15 57 7.20 465 22 8 48 25 9 304 7 10 58 7.16 680 28 7 78 22 21 368 9 13 59 6.95 570 13 5 88 10 16 268 12 33 60 7.39 650 52 5 66 17 13 397 8 5 61 7.30 380 18 9 59 9 7 257 2 12 62 7.28 1725 160 18 59 70 143 536 63 101 63 6.95 610 32 5 83 14 11 369 3 13 64 7.26 600 31 7 70 23 11 371 4 8 65 7.81 975 127 9 15 33 20 487 15 7 66 6.99 1225 99 9 96 29 91 453 18 69 67 7.61 450 24 8 75 8 7 326 3 4 68 7.94 205 10 4 37 11 4 176 3 7 69 7.09 2100 108 36 26 154 235 612 25 134 70 7.85 435 52 6 39 15 18 301 2 12 71 7.81 565 14 8 53 29 7 313 8 24 72 7.50 1075 91 21 69 22 31 357 8 142 73 7.79 1875 182 61 32 44 79 569 24 134 74 7.55 845 49 10 78 23 30 291 3 115 75 7.85 1350 116 11 22 46 75 262 13 161 76 7.76 1300 129 17 40 49 66 230 5 169 77 7.55 1440 98 145 91 32 93 452 16 186 78 7.98 615 29 9 70 20 19 205 14 71 79 7.65 >10000 804 34 146 127 3900 507 72 249 80 8.10 560 28 5 46 30 20 312 9 19 81 8.18 766 97 11 24 23 22 364 6 55 82 7.68 1800 178 11 74 43 105 502 16 206 83 7.17 6100 34 17 24 59 1400 565 12 275 84 7.17 5100 590 26 42 71 775 562 48 245 85 9.17 950 117 11 12 9 17 364 7 24 86 8.37 385 20 68 21 18 10 226 3 20 87 7.89 1325 107 10 44 21 51 347 9 56 88 7.72 1623 112 13 132 46 242 350 8 125 89 7.99 350 39 9 16 10 10 176 1 21 90 7.71 1785 181 19 34 36 112 523 23 135 91 7.96 1175 107 12 68 22 53 348 7 142 92 7.93 1100 124 14 68 23 94 407 3 99 TABLE 8: CHAJDOAB MEAN CHEMICAL DATA (DEEP WATER)

Station PH EC Na K. Ca Hg CI TIC HC3 S04 (/tS/cm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 1 7.83 523 46 5 18 23 7 276 3 7.98 500 62 3 12 18 5 286 4 7.62 702 36 4 48 12 13 278 3 9 5 7.72 570 78 5 17 15 6 306 3 27 6 7.37 917 50 3 53 54 51 387 50 39 7 7.44 676 67 4 36 19 13 337 4 28 8 7.81 666 85 5 19 20 17 323 2 34 9 7.77 650 96 5 21 16 21 327 6 51 11 7 .50 960 125 14 42 22 24 461 5 59 12 7.81 nso 200 5 26 41 49 479 6 207 13 8.05 518 79 4 11 13 11 253 2 34 15 7 .52 1111 140 7 43 24 101 377 8 76 15 7.49 694 70 9 32 22 19 339 2 40 17 7.79 705 70 3 32 28 40 246 12 77 18 7.71 578 40 4 36 31 24 259 14 55 20 7.64 943 60 7 ' 47 25 48 269 3 64 22 8.14 303 25 3 12 17 6 162 2 14 23 7.58 1900 307 7 58 43 504 250 17 180 24 7.65 454 58 2 20 14 10 215 4 41 25 7.95 2630 329 4 20 33 497 464 26 7.84 1123 161 24 14 29 28 424 8 146 27 7.38 1116 147 6 41 34 142 314 19 127 28 7.32 5843 760 36 190 178 2015 280 73 440 29 8.14 1078 165 6 20 28 48 287 4 238 30 7.72 590 45 6 35 25 14 251 2 69 31 7.45 893 104 3 35 32 49 312 6 112 33 7.85 758 111 3 17 23 125 199 3 40 34 7.53 720 67 4 33 26 40 247 2 87 35 7.57 1032 160 13 25 22 78 307 14 152 36 7.15 > 10000' 1600 69 179 359 3170 373 118 915 37 7.89 2188 321 9 52 40 267 427 15 296 38 7.75 940 65 10 62 36 55 287 8 119 39 7.86 800 148 12 24 12 47 369 8 80 40 7.59 1410 268 4 13 14 118 502 14 123 41 7.82 222 9 2 18 8 4 112 3 11 42 7.82 637 83 4 22 23 37 250 6 90 43 7.70 . 1110 170 7 23 22 126 298 5 107 44 7.51 688 76 6 34 19 45 293 3 30 46 7.67 1140 191 5 24 13 87 374 14 124 47 7.36 1393 203 7 55 29 231 284 40 231 48 7.60 568 81 5 17 13 10 255 10 48 52 7.73 720 41 8 76 16 31 361 16 4 53 7.45 455 23 6 53 8 6 265 8 5 56 7.61 570 25 10 64 13 9 296 11 6 60 7.48 840 95 10 35 27 92 351 7 13 66 7.38 655 32 9 50 30 11 370 3 7 75 8.24 780 81 11 14 35 30 312 5 51 77 8.28 1200 112 12 14 42 69 264 13 134 78 7.76 565 18 7 72 14 11 256 4 50 82 7.80 2275 221 15 52 52 110 538 11 250 89 8.20 570 89 10 12 10 14 278 3 19 91 7.63 1500 142 15 49 36 110 407 3 164 92 7.83 880 102 11 49 20 71 359 2 59 25 N—

FIG. 1 MAP OF PAKISTAN SHOWING LOCATION OF CHAJ DOAB CO < o Q ") -4 I o

CL

o X

0.

CO ^ •^A/

RIVER JHELUM

®z* • «t »b i» ®*7 ©*« 4 &»» «5 o" O* ®»* J \»» •t» V<* ®.I * 1«J *,0 'o* •o ® ®j ® y»* ®* to & 7» •• ®" -**** ,i« t* ® ©' ^ ,»*®V *» *3 0 ® LEGEND © *» & © ?4£ O ONLY SHALLOW WATER SAMPLES ®»» •A'"^/ V ® B0TH SHALLOW a DEEP WATER SAMPLES ®* 9 ONLY DEEP WATER SAMPLES io AO £C Km A RIVER/CANAL WATER SAMPLES

FIG. 3 MAP SHOWING LOCATION OF SAMPLING STATIONS Q Q

FIG. 4 PLOT OF *180 VS ^D C CHAJ DOAB RAINS ) I

•13 -r T 1 1 1 1 1 1 ! 1 1 r 1 r 10/83 2/84 6/84 10/84 2/85 7/85 11/85 2/86 6/85 11/86 4/87 6/87 8/87 4/83 10/SB

Time (Month/Year) + LJC UJC

FIG. 5 SEASONAL VARIATION OF <5,o0 C RIVERS AND CANALS > r

D P t H

i N

M

40 60 60 10C C K ACTIVITY (PMC)

FIG. 6 VARIATION OF CARBON - 14- WITH DEPTH

• • y^32N LEGEND 1000 EC ' 1000 jiS/cm

FIG. 7 VARIATION OF EC IN SHALLOW GROUNDWATER cc. Ui < Q

O a: O 6 Ul D

O LU U- O 7.

< >

CO o u. FIG. 9 SPATIAL DISTRIBUTION OF *'°0 IN SHALLOW WATER FIG. 10 SPATIAL DISTRIBUTION OF <>180 IN DEEP WATER

• • • • Delta 0-18 (%.) AREA I + AREA II AREA

FIG. 11 PLOT OF £180 VS *D C MEAN ISOTOPIC DATA OF SHALLOW WATER ) t! Q Q a

Delta 0-1S (%.) D AREA + AREA II V AREA III

FIG. 12 PLOT OF 6;18,o0. VS -3D < MEAN ISOTCPIC DATA OF DEEP WATER )

• * 4- •0 _

/ - \

6 -I

a + 4-4- a a + t? + ^+ a 4-1 V ' V D 4-

17 a f D •« _ 4- + ° a V +4- 4-V° a ff + V a a V 4- • • 4- 4- a V4-

I -10 -8 -6 -4 Delta 0-13 (%.} D AREA I + AREA !! V ARFA 111

FIG. 13 PLOT OF &™0 VS C»~ C MEAN DATA OF SHALLOW WATER ) 8 -

7 - E G. a 6 - + +

5 - o -J a 4 - 7 + V O Z 3 - + + a + a DO V V V + + a a o

—r- -10 -8 -4 Detto 0-18 (%.) D AREA I + AREA II V AREA III

FIG. 14 PLOT OF <5*°,18, 0 VS CI C MEAN DATA OF DEEP WATER 5

• • • * • •