IV. Merxmuellera Drakensbergensis and M. Stereophylla
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action -
083 Genus Torynesis Butler
14th edition (2015). Genus Torynesis Butler, 1899 Proceedings of the Zoological Society of London 1898: 903 (902-912). Type-species: Dira mintha Geyer, by monotypy. = Mintha van Son, 1955. Transvaal Museum Memoirs No. 8: 76 (1-166). Type-species: Dira mintha Geyer, by original designation. An Afrotropical genus containing five species, from South Africa and Lesotho. *Torynesis hawequas Dickson, 1973# Hawequas Widow Hawequas Widow (Torynesis hawequas) female, Franschoek Pass, Western Cape Province. Image courtesy Steve Woodhall. Torynesis hawequas Dickson, 1973. Entomologist’s Record and Journal of Variation 85: 284 (284-288). Torynesis hawequas Dickson, 1973. Dickson & Kroon, 1978. Torynesis hawequas Dickson, 1973. Pringle et al., 1994: 57. Torynesis hawequas. Male (Wingspan 47 mm). Left – upperside; right – underside. Franschhoek Pass, Western Cape Province, South Africa. 20 April 1975. I. Bampton. Images M.C.Williams ex Henning Collection. 1 Torynesis hawequas. Female (Wingspan 51 mm). Left – upperside; right – underside. Franschhoek Mountain, Western Cape Province, South Africa. 20 April 1975. I. Bampton. Images M.C.Williams ex Henning Collection. Type locality: South Africa: “Western Cape Province: Middenkrantz Berg, Fransch Hoek Mtns”. Diagnosis: Intermediate in size between Torynesis mintha and Torynesis magna. In males, especially, the postdiscal bar of the forewing upperside is lighter than in mintha, approaching that of magna and is broader than in the other two species. The ground-colour of the hindwing underside is deeper brown than in mintha. The black markings are heavier, and the silvery grey veining and markings have a purplish tone. In some specimens of hawequas the silvery grey markings are suppressed (Pringle et al., 1994). -
Viruses Virus Diseases Poaceae(Gramineae)
Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae . -
Biodiversity Plan V1.0 Free State Province Technical Report (FSDETEA/BPFS/2016 1.0)
Biodiversity Plan v1.0 Free State Province Technical Report (FSDETEA/BPFS/2016_1.0) DRAFT 1 JUNE 2016 Map: Collins, N.B. 2015. Free State Province Biodiversity Plan: CBA map. Report Title: Free State Province Biodiversity Plan: Technical Report v1.0 Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs. Internal Report. Date: $20 June 2016 ______________________________ Version: 1.0 Authors & contact details: Nacelle Collins Free State Department of Economic Development, Tourism and Environmental Affairs [email protected] 051 4004775 082 4499012 Physical address: 34 Bojonala Buidling Markgraaf street Bloemfontein 9300 Postal address: Private Bag X20801 Bloemfontein 9300 Citation: Report: Collins, N.B. 2016. Free State Province Biodiversity Plan: Technical Report v1.0. Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs. Internal Report. 1. Summary $what is a biodiversity plan This report contains the technical information that details the rationale and methods followed to produce the first terrestrial biodiversity plan for the Free State Province. Because of low confidence in the aquatic data that were available at the time of developing the plan, the aquatic component is not included herein and will be released as a separate report. The biodiversity plan was developed with cognisance of the requirements for the determination of bioregions and the preparation and publication of bioregional plans (DEAT, 2009). To this extent the two main products of this process are: • A map indicating the different terrestrial categories (Protected, Critical Biodiversity Areas, Ecological Support Areas, Other and Degraded) • Land-use guidelines for the above mentioned categories This plan represents the first attempt at collating all terrestrial biodiversity and ecological data into a single system from which it can be interrogated and assessed. -
REVIEW ARTICLE Fire, Grazing and the Evolution of New Zealand Grasses
AvailableMcGlone on-lineet al.: Evolution at: http://www.newzealandecology.org/nzje/ of New Zealand grasses 1 REVIEW ARTICLE Fire, grazing and the evolution of New Zealand grasses Matt S. McGlone1*, George L. W. Perry2,3, Gary J. Houliston1 and Henry E. Connor4 1Landcare Research, PO Box 69040, Lincoln 7640, New Zealand 2School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand 4Department of Geography, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand *Author for correspondence (Email: [email protected]) Published online: 7 November 2013 Abstract: Less than 4% of the non-bamboo grasses worldwide abscise old leaves, whereas some 18% of New Zealand native grasses do so. Retention of dead or senescing leaves within grass canopies reduces biomass production and encourages fire but also protects against mammalian herbivory. Recently it has been argued that elevated rates of leaf abscission in New Zealand’s native grasses are an evolutionary response to the absence of indigenous herbivorous mammals. That is, grass lineages migrating to New Zealand may have increased biomass production through leaf-shedding without suffering the penalty of increased herbivory. We show here for the Danthonioideae grasses, to which the majority (c. 74%) of New Zealand leaf-abscising species belong, that leaf abscission outside of New Zealand is almost exclusively a feature of taxa of montane and alpine environments. We suggest that the reduced frequency of fire in wet, upland areas is the key factor as montane/alpine regions also experience heavy mammalian grazing. -
Effect of Fire on Flowering of Hyparrhenia Hirta (L.) Stapf (C4)
Vol. 8(14), pp. 1225-1228, 18 April, 2013 DOI: 10.5897/AJAR2013.7033 African Journal of Agricultural ISSN 1991-637X ©2013 Academic Journals Research http://www.academicjournals.org/AJAR Full Length Research Paper Effect of fire on flowering of Hyparrhenia hirta (L.) Stapf (C4), Merxmuellera disticha (Nees) Conert (C3) and Themeda triandra Forsskal (C4) on the Signal Hill, Cape Town, South Africa M. H. Ligavha-Mbelengwa and R. B. Bhat* Department of Botany, University of Venda, Thohoyandou, Limpopo 0950, South Africa. Accepted 18 March, 2013 Flowering in Merxmuellera disticha was more strongly stimulated by fire in summer. Flowering tillers produced between 9 and 11 months after fire were significantly more abundant than those produced 21 to 24 months thereafter. Growth in terms of size of individuals was considered insignificant for analysis. Neighbored Hyparrhenia hirta showed, to a certain degree, an out-of-season growth, production and reproduction, whilst M. disticha and Themeda triandra on the same plots did not. The xylem water potential of H. hirta [-10.9(±0.29)], M. disticha [-14.6(±0.80)] and T. triandra [-13.8(±0.29)] on one stand differed significantly from one another (p < 0.0001), and that of H. hirta [-19.7(±0.81] and M. disticha [-34.5(±1.26)] on the other stand also differed significantly from each other (p < 0.0001). One way analysis of variance (ANOVA) thereof produced the following (F-ratio = 13.893; degrees of freedom = 29, p < 0.0001), and for H. hirta versus M. disticha, (F-ratio = 97.605; degrees of freedom = 23, p < 0.0001). -
Supporting Information
Supporting Information Christin et al. 10.1073/pnas.1216777110 SI Materials and Methods blades were then embedded in resin (JB-4; Polysciences), Phylogenetic Inference. A previously published 545-taxa dataset of following the manufacturer’s instructions. Five-micrometer the grasses based on the plastid markers rbcL, ndhF,andtrnK-matK thick cross-sections of the embedded leaf fragments were cut (1) was expanded and used for phylogenetic inference. For species with a microtome and stained with saturated cresyl violet sampled for anatomical cross-sections but not included in the acetate (CVA). Some samples were fixed in formalin-pro- published dataset, the markers ndhF and/or trnK-matK were either pionic acid-alcohol (FPA), embedded in paraffin, sectioned at retrieved from GenBank when available or were newly sequenced 10 μm, and stained with a safranin O-orange G series (11) as from extracted genomic DNA with the method and primers de- described in (12). All slides were made permanent and are scribed previously (1, 2). These new sequences were aligned to the available on request. dataset, excluding the regions that were too variable as described previously (1). The final dataset totaled 604 taxa and was used for Anatomical Measurements. All C3 grasses possess a double BS, with “ phylogenetic inference as implemented in the software Bayesian the outer layer derived from ground meristem to form a paren- ” Evolutionary Analysis by Sampling Trees (BEAST) (3). chyma sheath, and the internal layer derived from the vascular “ ” The phylogenetic tree was inferred under a general time-re- procambium to form a mestome sheath (13). Many C4 grasses versible substitution model with a gamma-shape parameter and also possess these two BS layers, with one of them specialized in “ ” a proportion of invariants (GTR+G+I). -
Report on the Terrestrial Ecology (Flora and Fauna)
Kudusberg WEF REPORT ON THE TERRESTRIAL ECOLOGY (FLORA AND FAUNA) Basic Assessment report for the proposed development of the 325 MW Kudusberg Wind Energy Facility located west of the R354 Between Matjiesfontein and Sutherland in the Northern and Western Cape Report prepared for: Report prepared by: CSIR – Environmental Management Services Ekotrust cc (CK90/05465/23) P O Box 17001 7 St George Street, Lionviham Congella, Durban, 4013 Somerset West 7130 South Africa South Africa OCTOBER 2018 Ekotrust CC - 2018 1 CONTENTS EXECUTIVE SUMMARY .................................................................................................................... i SPECIALISTS DECLARATION ........................................................................................................... iv TERMS OF REFERENCE ................................................................................................................... v LIMITATIONS, ASSUMPTIONS & UNCERTAINTIES ........................................................................ vi ACRONYMS ................................................................................................................................... vii ABBREVIATIONS ........................................................................................................................... vii GLOSSARY .................................................................................................................................... viii LIST OF FIGURES ........................................................................................................................... -
A Checklist of Lesotho Grasses
Guidelines for Using the Checklist The genera and species are arranged in alphabetical order. Accepted genus and species names are in bold print, for example, Agrostis barbuligera. Synonyms are in italics, for example, Agrostis natalensis. Not all synonyms for a species are listed. Naturalised taxa are preceded by an asterisk, for example, Pennisetum *clandestinum. These are species that were intro- duced from outside Lesotho but now occur in the wild as part of the natural flora. Single letters after the species names, on the right-hand side of the column, indicate the distribution of species within Lesotho as reflected by the ROML and MASE collections. This indicates that a species has definitely been recorded in Lesotho. L—Lowlands F—Foothills M—Mountains S—Senqu Valley Double letters after species names, on the right-hand side of the column, indicate the distribution of species along the border with South Africa as reflected in the literature. This indicates that a species could occur in Lesotho, but has not yet been recorded. KN—KwaZulu-Natal FS—Free State EC—Eastern Cape Literature references are abbreviated as follows: G—Gibbs Russell et al. (1990) J—Jacot Guillarmod (1971) SCH—Schmitz (1984) V—Van Oudtshoorn (1999) For example, G:103 refers to page 103 in the Gibbs Russell et al. (1990) publication, Grasses of southern Africa. The seven-digit number to the right of the genus names is the numbering system followed at Kew Herbarium (K) and used in Arnold & De Wet (1993) and Leistner (2000). N M F L M Free State S Kwa-Zulu Natal Key L Lowlands Zone Maize (Mabalane) F Foothills Zone Sorghum M Mountain Zone Wheat (Maloti) S Senqu Valley Zone Peas Cattle Beans Scale 1 : 1 500 000 Sheep and goats 20 40 60 km Eastern Cape Zones of Lesotho based on agricultural practices. -
Second State Of
Second State of the Environment 2002 Report Lesotho Lesotho Second State of the Environment Report 2002 Authors: Chaba Mokuku, Tsepo Lepono, Motlatsi Mokhothu Thabo Khasipe and Tsepo Mokuku Reviewer: Motebang Emmanuel Pomela Published by National Environment Secretariat Ministry of Tourism, Environment & Culture Government of Lesotho P.O. Box 10993, Maseru 100, Lesotho ISBN 99911-632-6-0 This document should be cited as Lesotho Second State of the Environment Report for 2002. Copyright © 2004 National Environment Secretariat. All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the publisher. Design and production by Pheko Mathibeli, graphic designer, media practitioner & chartered public relations practitioner Set in Century Gothic, Premium True Type and Optima Lesotho, 2002 3 Contents List of Tables 8 Industrial Structure: Sectoral Composition 34 List of Figures 9 Industrial Structure: Growth Rates 36 List of Plates 10 Population Growth 37 Acknowledgements 11 Rural to Urban Migration 37 Foreword 12 Incidence of Poverty 38 Executive Summary 14 Inappropriate Technologies 38 State and impacts: trends 38 Introduction 24 Human Development Trends 38 Poverty and Income Distribution 44 Socio-Economic and Cultural Environment. 26 Agriculture and Food Security 45 People, Economy and Development Ensuring Long and Healthy Lives 46 Socio-Economic Dimension 26 Ensuring -
SUPPLEMENTARY MATERIAL African Journal of Range & Forage Science, 2021 Biogeog
SUPPLEMENTARY MATERIAL https://doi.org/10.2989/10220119.2021.1918247 African Journal of Range & Forage Science, 2021 Biogeographical patterns of grasses (Poaceae) indigenous to South Africa, Lesotho and Eswatini Marike Trytsman, Francuois L Muller, Craig D Morris and Abraham E van Wyk Supplementary material 4. Grass species endemic/near-endemic to southern Africa (South Africa, Lesotho and Eswatini) (based on Fish et al. 2015) as recorded in each grasschorion. IOCB: Indian Ocean Coastal Belt Central Arid Region Fynbos Grassland IOCB Savanna Succulent Karoo 1 Agrostis eriantha Agrostis bergiana Agrostis barbuligera Anthephora argentea Agrostis barbuligera Agrostis bergiana 2 Anthephora argentea Agrostis eriantha Agrostis bergiana Aristida diffusa Agrostis bergiana Aristida dasydesmis 3 Aristida canescens Agrostis polypogonoides Agrostis eriantha Aristida transvaalensis Agrostis eriantha Aristida diffusa 4 Aristida dasydesmis Agrostis schlechteri Agrostis subulifolia Brachypodium flexum Anthephora argentea Aristida engleri 5 Aristida diffusa Anthoxanthum dregeanum Anthoxanthum dregeanum Bromus firmior Aristida canescens Aristida parvula 6 Aristida engleri Anthoxanthum tongo Aristida canescens Capeochloa cincta Aristida dasydesmis Brachypodium bolusii 7 Aristida parvula Aristida canescens Aristida diffusa Cymbopogon prolixus Aristida diffusa Brachypodium flexum 8 Aristida spectabilis Aristida diffusa Aristida effusa Cynodon bradleyi Aristida effusa Capeochloa arundinacea 9 Brachypodium bolusii Brachypodium flexum Aristida monticola Cynodon -
Community-Level Effects of Fragmentation of the Afromontane Grassland in the Escarpment Region Of
University of Pretoria etd – Kamffer, D (2004) Community-level effects of fragmentation of the afromontane grassland in the escarpment region of Mpumalanga, South Africa by DEWALD KAMFFER Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE in the Faculty of Natural, Agricultural and Information Sciences University of Pretoria PRETORIA Supervisor: Prof. J.W.H. Ferguson Co-Supervisor: Prof. A.S. Van Jaarsveld University of Pretoria etd – Kamffer, D (2004) ABSTRACT Habitat fragmentation of the afromontane grassland of the escarpment region of Mpumalanga, South Africa by DEWALD KAMFFER Supervisor: Prof. J.W.H. Ferguson Co-supervisor: Prof. A.S. Van Jaarsveld (Department of Zoology and Entomology) University of Pretoria Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE Large scale afforestation, resulting habitat destruction and fragmentation of the afromontane grassland in the Drakensberg escarpment of Mpumalanga, South Africa, has lead to the necessity of describing the flora and fauna aspects of the remaining grassland fragments, allowing forestry companies to mitigate the effects of afforestation on the biodiversity of these fragments and for initiating a management program for the remaining grassland. This study aims, firstly, to determine if any marked human-induced disturbance to the plant communities in the grassland fragments has occurred. I do this by comparing the plant communities of eighteen fragments with those of six control plots outside of the plantations with no marked disturbance to the grassland, by determining whether the plant assemblages in the fragments can be assigned to any of the natural and intact plant communities that Matthews (1993) described from a large-scale survey of undisturbed mountain areas and by ascertaining the presence of any known intruder plant species within the fragments.