Computational Studies of Three Chemical Systems
Total Page:16
File Type:pdf, Size:1020Kb
Computational Studies of Three Chemical Systems _______________________________________ A Dissertation Presented to The Faculty of the Graduate School University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by Haunani Thomas Prof. Carol A. Deakyne, Dissertation Supervisor December 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled COMPUTATIONAL STUDIES OF THREE CHEMICAL SYSTEMS Presented by Haunani Thomas, a candidate for the degree of doctor of philosophy of Chemistry, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Carol Deakyne (Chair) Professor John Adams (Member) Professor Michael Greenlief (Member) Professor Giovanni Vignale (Outside Member) ACKNOWLEDGEMENTS I am forever indebted to my dissertation supervisor, Professor Carol Deakyne, for her guidance and support. She has been an excellent and patient mentor through the graduate school process, always mindful of the practical necessities of my progress, introducing me to the field of Chemistry, and allowing me to advance professionally through attendance and presentations at ACS meetings. I am fully aware that, in this respect, not all graduate students are as fortunate as I have been. I am also grateful to Professor John Adams for all his support and teaching throughout my graduate career. I am appreciative of my entire committee, Professor Deakyne, Professor Adams, Professor Michael Greenlief, and Professor Giovanni Vignale, for their sound advice, patience, and flexibility. I would also like to thank my experimental collaborators and their groups, Professor Joel Liebman of the University of Maryland, Baltimore County, Professor Michael Van Stip Donk of Wichita State University, and Professor Jerry Atwood of the University of Missouri – Columbia. I am thankful to my fellow graduate students, Jerry Brightwell, and the Department of Chemistry at the University of Missouri – Columbia for all their help throughout the years. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................... ii LIST OF TABLES…………………………………………………………………….v LIST OF FIGURES..................................... ...............................................................vii ABSTRACT .................................................................................................................. ix 1 A COMPUTATIONAL STUDY OF PHENYL-SUBSTITUTED PYROGALLOL[4]ARENE MACROCYCLES ............................................................ 1 1.1 INTRODUCTION ...................................................................................................... 1 1.1.1 EXPERIMENTAL BACKGROUND ........................................................................... 6 1.2 METHODS .............................................................................................................. 9 1.3 RESULTS AND DISCUSSION .................................................................................. 11 1.3.1 GAS-PHASE CALCULATIONS OF C-PHENYLPYROGALLOL[4]ARENE, R=PH ........ 11 1.3.2 GAS-PHASE CALCULATIONS OF PYROGALLOL[4]ARENE .................................. 24 1.3.3 MACROCYCLE-SOLVENT INTERACTIONS .......................................................... 33 1.3.4 GAS-PHASE CALCULATIONS OF C-PHENYLPYROGALLOL[4]ARENE WITH EXPLICIT SOLVENT ....................................................................................................... 46 1.3.5 TRANSITION STATES ......................................................................................... 48 1.4 CONCLUSIONS ...................................................................................................... 50 1.5 REFERENCES ........................................................................................................ 53 2 THE ADDITION OF H2O AND O2 TO LIGATED VANADYL CATIONS ...... 58 2.1 INTRODUCTION .................................................................................................... 58 2.2 METHODS ............................................................................................................ 64 2.3 RESULTS AND DISCUSSION .................................................................................. 65 2.3.1 MINIMA ............................................................................................................ 65 2.3.2 MULTI-REFERENCE CALCULATIONS .................................................................. 79 2.4 UNUSUAL STRUCTURES ....................................................................................... 82 2.4.1 H ON V ............................................................................................................. 82 2.5 CONCLUSION ....................................................................................................... 85 2.6 REFERENCES ........................................................................................................ 91 3 THE STRUCTURE AND ENERGETICS OF SINGLET, CLOSED-SHELL [B, C, F, H2]: SIMPLICITY RESULTING IN DIVERSITY ............................................ 94 3.1 INTRODUCTION .............................................................................................. 95 3.2 CALCULATIONAL DETAILS ......................................................................... 99 3.3 RESULTS AND ANALYSIS OF RESULTS ................................................... 101 3.3.1 MINIMA AND TRANSITION STATES IDENTIFIED ............................................... 101 3.4 ENERGETICS ...................................................................................................... 111 iii 3.4.1 MINIMA .......................................................................................................... 112 3.5 REACTION OF BORON WITH METHYL FLUORIDE ................................................ 127 3.6 REFERENCES ................................................................................................. 131 4 THE STRUCTURE AND ENERGETICS OF TRIPLET [B, C, F, H2] ............. 136 4.1 INTRODUCTION .................................................................................................. 136 4.2 COMPUTATIONAL DETAILS ................................................................................ 139 4.3 RESULTS AND ANALYSIS .................................................................................... 141 4.3.1 MINIMA AND TRANSITION STRUCTURES IDENTIFIED ....................................... 141 4.4 ENERGETICS ...................................................................................................... 155 4.4.1 MINIMA .......................................................................................................... 155 4.5 REFERENCES ...................................................................................................... 171 VITA .......................................................................................................................... 176 iv LIST OF TABLES Table 1.1 Gas-phase relative enthalpies and free energies of C- phenylpyrogallol[4]arenea ............................................................................................ 19 Table 1.2 Relative energies of cone diastereomers ................................................. 22 Table 1.3 MP2/B3LYP versus MP2/wB97XD//MP2 for C-phenylpyrogallola .......... 24 Table 1.4 Gas-phase relative energies of pyrogallol[4]arene ..................................... 29 Table 1.5 MP2//B3LYP versus MP2//wB97XDfor pyrogallol[4]arenea .................... 32 Table 1.6 IEF-PCM/B3LYPa solvent-phase relative energies of C- phenylpyrogallol[4]arene ............................................................................................. 37 Table 1.7SMD-PCM/B3LYPa solvent-phase relative energies of C- phenylpyrogallol[4]arene ............................................................................................. 37 Table 1.8 IEF-PCM/wB97XDa solvent-phase relative energies of C- phenylpyrogallol[4]arene ............................................................................................. 38 Table 1.9 SMD-PCM/wB97XDa solvent-phase relative energies of C- phenylpyrogallol[4]arene ............................................................................................. 38 Table 1.10 Relative instability of H oop pyrogallol with respect to pyrogallol ......... 39 Table 1.11 IEF-PCM/B3LYPa solvent-phase relative energies of pyrogallol[4]arene ...................................................................................................................................... 42 Table 1.12 SMD-PCM/B3LYPa solvent-phase relative energies of pyrogallol[4]arene ...................................................................................................................................... 42 Table 1.13 IEF-PCM/wB97XDa solvent-phase relative energies of pyrogallol[4]arene ...................................................................................................................................... 43 Table 1.14 IEF-PCM/wB97XDa solvent-phase relative energies of pyrogallol[4]arene ...................................................................................................................................... 43 a Table 1.15 ΔGsolvation of C-phenylpyrogallol[4]arene ............................................... 44 a Table 1.16 ΔGsolvation