Developing and Exploring a Theory for the Lateral Erosion of Bedrock Channels for Use in Landscape Evolution Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Timescale Dependence in River Channel Migration Measurements
TIMESCALE DEPENDENCE IN RIVER CHANNEL MIGRATION MEASUREMENTS Abstract: Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because shortand long-term measurements are disproportionately affected by temporary rate variability, long-term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand- and gravel-bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement-scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (> 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long-term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. Introduction Fundamental concepts and motivations Measuring river meander migration rates from historical aerial images is useful for developing a predictive understanding of channel and floodplain evolution (Lauer & Parker, 2008; Crosato, 2009; Braudrick et al., 2009; Parker et al., 2011), bedrock incision and strath terrace formation (C. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya
Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Noah J. Finnegan and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: ___________________________________________________________ Bernard Hallet ___________________________________________________________ David R. Montgomery Reading Committee: ____________________________________________________________ Bernard Hallet ____________________________________________________________ David R. Montgomery ____________________________________________________________ Gerard Roe Date:________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred -
River Incision Into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation
River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation Kelin X. Whipple* Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Gregory S. Hancock Department of Geology, College of William and Mary, Williamsburg, Virginia 23187 Robert S. Anderson Department of Earth Sciences, University of California, Santa Cruz, California 95064 ABSTRACT long term (Howard et al., 1994). These conditions are commonly met in Improved formulation of bedrock erosion laws requires knowledge mountainous and tectonically active landscapes, and bedrock channels are of the actual processes operative at the bed. We present qualitative field known to dominate steeplands drainage networks (e.g., Wohl, 1993; Mont- evidence from a wide range of settings that the relative efficacy of the gomery et al., 1996; Hovius et al., 1997). As the three-dimensional structure various processes of fluvial erosion (e.g., plucking, abrasion, cavitation, of drainage networks sets much of the form of terrestrial landscapes, it is solution) is a strong function of substrate lithology, and that joint spac- clear that a deep appreciation of mountainous landscapes requires knowl- ing, fractures, and bedding planes exert the most direct control. The edge of the controls on bedrock channel morphology. Moreover, bedrock relative importance of the various processes and the nature of the in- channels play a critical role in the dynamic evolution of mountainous land- terplay between them are inferred from detailed observations of the scapes (Anderson, 1994; Anderson et al., 1994; Howard et al., 1994; Tucker morphology of erosional forms on channel bed and banks, and their and Slingerland, 1996; Sklar and Dietrich, 1998; Whipple and Tucker, spatial distributions. -
Experiments on Patterns of Alluvial Cover and Bedrock Erosion in a Meandering Channel Roberto Fernández1, Gary Parker1,2, Colin P
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-8 Manuscript under review for journal Earth Surf. Dynam. Discussion started: 27 February 2019 c Author(s) 2019. CC BY 4.0 License. Experiments on patterns of alluvial cover and bedrock erosion in a meandering channel Roberto Fernández1, Gary Parker1,2, Colin P. Stark3 1Ven Te Chow Hydrosystems Laboratory, Department of Civil and Environmental Engineering, University of Illinois at 5 Urbana-Champaign, Urbana, IL 61801, USA 2Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA Correspondence to: Roberto Fernández ([email protected]) Abstract. 10 In bedrock rivers, erosion by abrasion is driven by sediment particles that strike bare bedrock while traveling downstream with the flow. If the sediment particles settle and form an alluvial cover, this mode of erosion is impeded by the protection offered by the grains themselves. Channel erosion by abrasion is therefore related to the amount and pattern of alluvial cover, which are functions of sediment load and hydraulic conditions, and which in turn are functions of channel geometry, slope and sinuosity. This study presents the results of alluvial cover experiments conducted in a meandering channel flume of high fixed 15 sinuosity. Maps of quasi-instantaneous alluvial cover were generated from time-lapse imaging of flows under a range of below- capacity bedload conditions. These maps were used to infer patterns -
A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA
A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Sara A. Thurkettle May 2019 © 2019 Sara A. Thurkettle. All Rights Reserved. 2 This thesis titled A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA by SARA A. THURKETTLE has been approved for the Department of Geological Sciences and the College of Arts and Sciences by Gregory S. Springer Associate Professor of Geological Sciences Joseph Shields Interim Dean, College of Arts and Sciences 3 ABSTRACT THURKETTLE, SARA A., M.S., May 2019, Geological Sciences A Paleoflood Assessment of the Greenbrier River in Southeast, West Virginia, USA Director of Thesis: Gregory S. Springer Slackwater deposits and hydraulic modeling were used to extend the historical record of floods and determine the critical threshold of sediment entrainment in the Greenbrier River of southeastern West Virginia (SE WV). The southward flowing bedrock river incises Paleozoic sandstones, limestones, and shales. The river has experienced three catastrophic floods since 1985: the 1985, 1996, and 2016 floods, which caused extensive damage in communities alongside the river with the most recent flood destroying roughly 1,200 homes in the Greenbrier River watershed. This study better constrains the frequency of floods that have the potential to cause similar damage, which is a matter of urgent need. Paleostage indicators (PSIs) found in Greenbrier River Cave were used as proxies for extending the historical record and reconstructing recurrence intervals of floods. -
Determination of Temporal Changes in the Sinuosity and Braiding Characteristics of the Kizilirmak River, Turkey
Pol. J. Environ. Stud. Vol. 24, No. 5 (2015), 2095-2112 DOI: 10.15244/pjoes/58765 Original Research Determination of Temporal Changes in the Sinuosity and Braiding Characteristics of the Kizilirmak River, Turkey Derya Ozturk*, Faik Ahmet Sesli Department of Geomatics Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey Received: June 2, 2015 Accepted: July 6, 2015 Abstract In this study, the pattern of the approximately 1,300-km-long Kizilirmak River was recreated in a geo- graphic information system (GIS) environment using data obtained from Landsat TM/ETM+/OLI satellite images from 1987, 2000, and 2013. The temporal changes in the sinuosity and braiding characteristics of the river were determined for the periods 1987-2000 and 2000-13. The right and left shorelines of the Kizilirmak River and the shorelines of islands and bars within the river channel were extracted automatically from the satellite images by integrating the normalized difference water index (NDWI) and modified normalized dif- ference water index (MNDWI). The data required for measuring the sinuosity and braiding characteristics were obtained by evaluating the shorelines in the GIS environment. The braiding index (BI), braid-channel ratio (B), and braiding ratio (BR) were used to determine the braiding of the river, and the sinuosity index was used to determine the sinuosity of the river. The Kizilirmak River was divided into 21 analyzed sections based on the locations of dams. The sinuosity decreased in 15 sections in 1987-2000 and 2000-13. The BI, B, and BR values decreased in 11 sections in 1987-2000 and in 9 sections in 2000-13. -
Analyzing Rivers with Google Earth
Name____________________________________Per.______ Analyzing Rivers with Google Earth River systems exist all over the planet. You are going to examine several rivers and landforms created by rivers during this activity using Google Earth. While your iPad can view each location, you will need a laptop to use the ruler function. A B Figure 1: Meandering river terms. Image from: http://www.sierrapotomac.org/W_Needham/MeanderingRivers.htm Part I: Meandering Rivers: Figure 1 shows several terms used to describe meandering rivers. We are going to focus on wavelength, amplitude, and sinuosity. Sinuosity is the ratio of river length (distance traveled if you floated down the river) divided by straight length line (bird’s flight distance, i.e. from point A to B). The greater the number, the more tortuous (strongly meandering) the path the river takes. 1. Fly to Yakeshi, China. Just north of the city is a beautiful series of scroll bars (former point bars that have been abandoned) formed by the meandering river moving across the landscape. 1a. Describe the features you see. What “age” river is this (young, mature, old)? How are the meanders moving over time? Is the river becoming straighter or more curved? 1b. Find an area where the current river channel and clear meanders are easy to see (i.e. 49o18’30”N, 120o35’45”E). Measure the wavelength, amplitude and sinuosity of the river in this area. To measure straight line paths for wavelength, amplitude, and bird’s flight distance, go to Tools Ruler Line. Use kilometers. Click and drag your cursor across the area of interest. -
The Form of a Channel
23 GEOMORPHOLOGY 201 READER The bankfull discharge is that flow at which the channel is completely filled. Wide variations are seen in the frequency with which the bankfull discharge occurs, although it generally has a return period of one to two years for many stable alluvial rivers. The geomorphological work carried out by a given flow depends not only on its size but also on its frequency of occurrence over a given period of time. The flow in river channels exerts hydraulic forces on the boundary (bed and banks). An important balance exists between the erosive force of the flow (driving force) and the resistance of the boundary to erosion (resisting force). This determines the ability of a river to adjust and modify the morphology of its channel. One of the main factors influencing the erosive power of a given flow is its discharge: the volume of flow passing through a given cross-section in a given time. Discharge varies both spatially and temporally in natural river channels, changing in a downstream direction and fluctuating over time in response to inputs of precipitation. Characteristics of the flow regime of a river include seasonal variations in discharge, the size and frequency of floods and frequency and duration of droughts. The characteristics of the flow regime are determined not only by the climate but also by the physical and land use characteristics of the drainage basin. Valley setting Channel processes are driven by flow and sediment supply, although the range of channel adjustments that are possible are often restricted by the valley setting. -
Fluvial Geomorphology
East Branch Delaware River Stream Corridor Management Plan Volume 2 Fluvial Geomorphology: the Hydrology: the science study of riverine landforms and dealing with the properties, the processes that create them distribution, and circulation of water on and below the earth’s surface and in the atmosphere (Merriam-Webster Online 09/12/07) An understanding of both hydrology and fluvial geomorphology is essential when approaching stream management at any level. This section is intended to serve as an overview of both aspects of stream science, as well as their relation to management practices past and present. Applied fluvial geomorphology utilizes the relationships and principles developed through the study of rivers and streams and how they function within their landscape to preserve and restore stream systems. In landscapes unchanged by human activities, streams reflect the regional climate, biology and geology. Bedrock and glacial deposits influence the stream system within its drainage basin. The “dendritic” (formed like the branches of a tree, Figure 3.1) stream pattern of the East Branch Delaware River watershed developed because horizontally bedded, sedimentary Figure 3.1 Stream Ordering (NRCS) and the bedrock had a gently sloping regional Depiction of a Dendritic Stream System dip at the time the initial drainage channels began forming16. The bedrock’s jointing pattern (the pattern of deep, vertical fractures) also influence stream pattern formation. The region’s geologic history has favored the development of non-symmetric drainage basins in the East Branch basin. As rivers flow across the landscape, they generally increase in size, merging with other rivers. This increase in size brings about a concept known as stream order.