Quality Control for Expanded Tsetse Production, Sterilization and Field Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphometric Characterization of Three Tsetse Fly Species - Glossina M
International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-3, Issue-1, Jan-Feb- 2018 http://dx.doi.org/10.22161/ijeab/3.1.30 ISSN: 2456-1878 Morphometric characterization of three Tsetse Fly Species - Glossina M. Morsitans, G. P. Palpalis and G. Tachinoides (Diptera: Glossinidae) from Ghana Edwin Idriss Mustapha1,2*, Maxwell Kelvin Billah3, Alexander Agyir- Yawson4 1African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon-Accra, Ghana 2Sierra Leone Agricultural Research Institute, (SLARI) PMB 1313, Tower Hill, Freetown, Sierra Leone 3Animal Biology and Conservation Science, University of Ghana, Box LG 67, Legon-Accra Ghana 4Ghana Atomic Energy Commission, Accra, Ghana Abstract– Tsetse flies (Diptera: Glossinidae) are the main distinguished fly populations into four groups, Northern, vectors of Human African Trypanosomiasis (HAT), or Eastern, Western and the lab colony; this is an indication sleeping sickness and Animal African Trypanosomiasis, that hind tibia/wing length is a good morphometric feature (AAT) or Nagana in Sub Saharan Africa. In Ghana, whilst which can be used to discriminate flies from different HAT is no longer a major public health issue, AAT is still regions of Ghana. widely reported and causes considerable losses in the The principal components and canonical variates as well as livestock sector resulting in major impacts on agricultural Mahalanobis squared distances confirmed linear and ratio production, livelihoods and food security in the country. separations. Therefore based on these differences in Application of morphometric techniques can reveal the morphometric characters observed, the three tsetse species existing level of population differentiation in tsetse flies, were distinguished from each other. -
Spatial Distribution of Glossina Sp. and Trypanosoma Sp. in South-Western
Duguma et al. Parasites & Vectors (2015) 8:430 DOI 10.1186/s13071-015-1041-9 RESEARCH Open Access Spatial distribution of Glossina sp. and Trypanosoma sp. in south-western Ethiopia Reta Duguma1,2, Senbeta Tasew3, Abebe Olani4, Delesa Damena4, Dereje Alemu3, Tesfaye Mulatu4, Yoseph Alemayehu5, Moti Yohannes6, Merga Bekana1, Antje Hoppenheit7, Emmanuel Abatih8, Tibebu Habtewold2, Vincent Delespaux8* and Luc Duchateau2 Abstract Background: Accurate information on the distribution of the tsetse fly is of paramount importance to better control animal trypanosomosis. Entomological and parasitological surveys were conducted in the tsetse belt of south-western Ethiopia to describe the prevalence of trypanosomosis (PoT), the abundance of tsetse flies (AT) and to evaluate the association with potential risk factors. Methods: The study was conducted between 2009 and 2012. The parasitological survey data were analysed by a random effects logistic regression model, whereas the entomological survey data were analysed by a Poisson regression model. The percentage of animals with trypanosomosis was regressed on the tsetse fly count using a random effects logistic regression model. Results: The following six risk factors were evaluated for PoT (i) altitude: significant and inverse correlation with trypanosomosis, (ii) annual variation of PoT: no significant difference between years, (iii) regional state: compared to Benishangul-Gumuz (18.0 %), the three remaining regional states showed significantly lower PoT, (iv) river system: the PoT differed significantly between the river systems, (iv) sex: male animals (11.0 %) were more affected than females (9.0 %), and finally (vi) age at sampling: no difference between the considered classes. Observed trypanosome species were T. congolense (76.0 %), T. -
Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2015 The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Shuangmei Ding China Agricultural University Xuankun Li China Agricultural University Ning Wang China Agricultural University Stephen L. Cameron Queensland University of Technology Meng Mao University of Wollongong, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Ding, Shuangmei; Li, Xuankun; Wang, Ning; Cameron, Stephen L.; Mao, Meng; Wang, Yuyu; Xi, Yuqiang; and Yang, Ding, "The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes" (2015). Faculty of Science, Medicine and Health - Papers: part A. 3178. https://ro.uow.edu.au/smhpapers/3178 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Abstract Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc)e ar both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. -
External Parasites Around Animal Facilities1 P
ENY-255 External Parasites around Animal Facilities1 P. E. Kaufman, P. G. Koehler, and J. F. Butler2 Flies Several kinds of non-biting flies can be found in and around animal facilities. These flies can be harmful to animal health and cause annoyance and discomfort. All filth flies have an egg, larva (maggot), pupa, and adult stage in their life cycle. The adult fly has 2 developed wings (the hind pair is reduced to a knobbed balancing organ). Filth flies are usually scavengers in nature and many are capable of transmitting diseases to man. Filth flies can usu- ally be grouped according to their habits and appearance as house flies and their relatives; flesh flies, blow flies and bottle flies, filter flies, soldier flies, and vinegar (fruit) flies. Figure 1. Blow fly. Blow Flies and Bottle Flies Credits: J. F. Butler, UF/IFAS There are many species of blow flies (Figure 1) and bottle Blow flies and bottle flies can breed on dead rodents and flies which are found in and around animal facilities. The birds in attics or wall voids of barns. They usually breed greenbottle (Figure 2), bluebottle (Figure 3), and bronze- in meat scraps, animal excrement, and decaying animal bottle flies are particularly abundant in Florida. matter around houses. The adult flies are active inside and are strongly attracted to light. The mature larvae are often a The blow flies and bottle flies usually have a metallic blue problem when they migrate from breeding areas to pupate. or green color or both on the thorax and abdomen. -
Fanniidae, Anthomyiidae, Muscidae) Described by P
Muscoidea (Fanniidae, Anthomyiidae, Muscidae) described by P. J. M. Macquart (Insecta, Diptera) Adrian C. PONT Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW (United Kingdom) and Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom) [email protected] Pont A. C. 2012. – Muscoidea (Fanniidae, Anthomyiidae, Muscidae) described by P. J. M. Macquart (Insecta, Diptera). Zoosystema 34 (1): 39-111. DOI : http://dx.doi.org/10.5252/z2012n1a3 ABSTRACT This paper deals with the 185 new species-group taxa that P. J. M. Macquart described in the dipteran families Fanniidae, Anthomyiidae and Muscidae, together with a further 5 species-group taxa that belong to other families, 9 replacement names that he proposed, and 1 nomen nudum. Notes are provided on the Diptera collections on which Macquart worked. In the Fanniidae, there are 8 species (and 1 replacement name), in Anthomyiidae, 33 species (and 4 replacement names), and in Muscidae, 144 species (and 4 replacement names). 85 lectotypes are newly designated in order to fix the identity of the names. The following new synonyms are proposed: in Anthomyiidae: Chortophila angusta Macquart, 1835 = Botanophila striolata (Fallén, 1824); Pegomyia basilaris Macquart, 1835 = Pegomya solennis (Meigen, 1826); Anthomyia brunnipennis Macquart, 1835, and Anthomyia fuscipennis Macquart, 1835 = Pegoplata aestiva (Meigen, 1826); Hylemyia caesia Macquart, 1835 = Anthomyia liturata (Robineau-Desvoidy, 1830); Chortophila caesia Macquart, -
Attraction of the Tsetse Fly Glossina Morsitans Submorsitans to Acetone
Retour au menu Rev. Elev. Méd. vét. Pays trop., 1984, 37 (4) : 468-473. Attraction of the tsetse fly ~Glossina morsitans submorsitans to acetone, 1-octen-3-01, and the combination of these compounds in WeSt Africa par H. POLITZAR and P. MÉROT Centre T.E.M.V.T./G.T.Z. de Recherches sur les Trypanosomoses Animales (C.R.T.A.), B. P. 454, Bobo-Dioulasso, Burkina Faso. RÉSUMÉ SUMMARY POLITZAR (H.), MÉROT (P.). - Pouvoir attractif pour POLITZAR (H.), MÉROT (P.). - Attraction of the Glossina morsitans submorsitans de l’acétone, du l-octen- tsetse fly Glossina morsitans submorsitans to acetone, 3-01 seuls ou associés, en Afrique occidentale. Rev. Eh. 1-octen-3-01, and the combination of these compounds in Méd. vét. Pays trop., 1984, 37 (4) : 468-413. West Africa. Rev. Elev. Méd vét. Pqs trop., 1984, 31 (4) : 468-473. Le pouvoir attractif du 1-octen-3-01 (octenol) et de I’acé- tone ayant été montré au Zimbabwé pour G. pallidipes et 1-octen-3-01 (= octenol) and acetone that had proved to G. m. morsitans, ces deux produits ont été testés vis-à-vis be potent olfactory attractants in Zimbabwe for G. palli- de G. m. submorsitans au Burkina Faso. Les essais, faits dipes and G. m. morsitans were tested against G. m. successivement en saison des pluies puis en saison sèche, submorsitans in Burkina Faso. Experiments were carried ont été réalisés selon le protocole des carrés latins. out in the rainy season and in the dry season. TO compare L’analyse des résultats obtenus en saison des pluies a mis the efficacy of acetone, octenol, acetone-plus-octenol - en évidence un accroissement significatif des captures de baited and non baited traps, a series of randomised 4 x 4 6,7 fois lorsque les deux produits étaient associés au piège. -
The Distribution of the Vectors of African Pathogenic Trypanosomes*
Bull. Org. mond. Sante 1963, 2.8, 653-669 Bull. Wld Hth Org. I The Distribution of the Vectors of African Pathogenic Trypanosomes* J. FORD 1 The author lists the species, subspecies and races of tsetse fly now recognized in three morphologically distinct groups. The distribution of each group is mapped and described in relation to climate and vegetation, with some indication ofthe partplayed bypast climates and orogenies in determining the modern pattern. The importance of different species as vectors of human or bovine trypanosomiasis, or both, is noted, and examples are given of the part played by human settlement as a secondary limiting factor. The author suggests that many modern problems of control are the consequences of the recent invasion of the African ecosystem by the outside world. Although there are local exceptions, the broad pattern of Glossina distribution has not been significantly changed by the entomological approach to the trypanosomiasis problem. So little is known of the role of haematophagous belt of the Koalib Hills in Kordofan and at least insects other than tsetse flies as vectors of African six species in scattered foci in western and southern pathogenic trypanosomes that, although the so- Ethiopia. These relics have survived a southward called " mechanical transmission" occasionally expansion of the Sahara (see, for example, Huzayyin, assumes local importance, discussion must be con- 1956). fined to Glossina (Muscidae, Diptera). The genus Bursell (1960) has suggested that climates showing occurs only in Africa, between latitude 14°N and a mean temperatures for the length of a pupal period line drawn from Benguela to Durban which is of 16°C or less (three months) or of 32°C (three indented by the Bihe Plateau in Angola (Sousa Dias, weeks) provide limits to the distribution of G. -
The Evolution of Myiasis in Blowflies (Calliphoridae)
International Journal for Parasitology 33 (2003) 1105–1113 www.parasitology-online.com The evolution of myiasis in blowflies (Calliphoridae) Jamie R. Stevens* School of Biological Sciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK Received 31 March 2003; received in revised form 8 May 2003; accepted 23 May 2003 Abstract Blowflies (Calliphoridae) are characterised by the ability of their larvae to develop in animal flesh. Where the host is a living vertebrate, such parasitism by dipterous larvae is known as myiasis. However, the evolutionary origins of the myiasis habit in the Calliphoridae, a family which includes the blowflies and screwworm flies, remain unclear. Species associated with an ectoparasitic lifestyle can be divided generally into three groups based on their larval feeding habits: saprophagy, facultative ectoparasitism, and obligate parasitism, and it has been proposed that this functional division may reflect the progressive evolution of parasitism in the Calliphoridae. In order to evaluate this hypothesis, phylogenetic analysis of 32 blowfly species displaying a range of forms of ectoparasitism from key subfamilies, i.e. Calliphorinae, Luciliinae, Chrysomyinae, Auchmeromyiinae and Polleniinae, was undertaken using likelihood and parsimony methods. Phylogenies were constructed from the nuclear 28S large subunit ribosomal RNA gene (28S rRNA), sequenced from each of the 32 calliphorid species, together with suitable outgroup taxa, and mitochondrial cytochrome oxidase subunit I and II (COI þ II) sequences, derived primarily from published data. Phylogenies derived from each of the two markers (28S rRNA, COI þ II) were largely (though not completely) congruent, as determined by incongruence-length difference and Kishino-Hasegawa tests. -
Lancs & Ches Muscidae & Fanniidae
The Diptera of Lancashire and Cheshire: Muscoidea, Part I by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] Version 1.0 21 December 2020 Summary This report provides a new regional checklist for the Diptera families Muscidae and Fannidae. Together with the families Anthomyiidae and Scathophagidae these constitute the superfamily Muscoidea. Overall statistics on recording activity are given by decade and hectad. Checklists are presented for each of the three Watsonian vice-counties 58, 59, and 60 detailing for each species the number of occurrences and the year of earliest and most recent record. A combined checklist showing distribution by the three vice-counties is also included, covering a total of 241 species, amounting to 68% of the current British checklist. Biodiversity metrics have been used to compare the pre-1970 and post-1970 data both in terms of the overall number of species and significant declines or increases in individual species. The Appendix reviews the national and regional conservation status of species is also discussed. Introduction manageable group for this latest regional review. Fonseca (1968) still provides the main This report is the fifth in a series of reviews of the identification resource for the British Fanniidae, diptera records for Lancashire and Cheshire. but for the Muscidae most species are covered by Previous reviews have covered craneflies and the keys and species descriptions in Gregor et al winter gnats (Brighton, 2017a), soldierflies and (2002). There have been many taxonomic changes allies (Brighton, 2017b), the family Sepsidae in the Muscidae which have rendered many of the (Brighton, 2017c) and most recently that part of names used by Fonseca obsolete, and in some the superfamily Empidoidea formerly regarded as cases erroneous. -
Original Article
Available online at http://www.journalijdr.com ISSN: 2230-9926 International Journal of Development Research Vol. 08, Issue, 01, pp.18459-18464, January, 2018 ORIGINAL RESEARCH ARTICLEORIGINAL RESEARCH ARTICLE OPEN ACCESS STUDY OF DISTRIBUTION AND ABUNDANCE OF TSETSE FLY (GLOSSINA SP.) IN GASHAKA-GUMTI NATIONAL PARK, NIGERIA 1,*Wama B. E., 2Naphtali, R.S., 1Houmsou, R.S., 1Joseph J., 2Alo, E. B. 1Department of Biological Sciences, Taraba State University, Jalingo, Nigeria 2Department of Zoology, Modibbo Adama University of Technology Yola, Adamawa State, Nigeria ARTICLE INFO ABSTRACT Article History: A study on the distribution and abundance of tsetse flies was conducted between November, 2016 Received 25th October, 2017 and January, 2017 at Gashaka-Gumti National Park (GGNP), Nigeria. The aim of the study was to Received in revised form determine the distribution and abundance of the fly (Glossina sp.) in the Park. Thirty (30) 06th November, 2017 Biconical traps (Charlier and Laviessiere, 1973) were used to trap the tsetse flie in three locations Accepted 20th December, 2017 (Kwano, Gashaka and Mayo-kam). A total of six hundredand ninety eight (698) flies were caught st Published online 31 January, 2018 during the study period. Kwano, Gashaka and Mayo-kam had 372 (53.3%), 168 (24.1%) and 158 (22.6%) respectively. Location of the traps varied significantly with tsetse catch (χ2 = 250.150; Key Words: P<0.000). Glossina tachinoides. Glossina palpalis, Glossina morsitans and Glossina fuscipes were Distribution, trapped in the area. Overall, Glossina tachinoides had higher frequency of 476 (68.2%) and least Abundance, from Glossina fuscipes 6 (0.9%). -
Molecular Phylogenetic Analysis of Nycteribiid and Streblid Bat Flies (Diptera: Brachycera, Calyptratae): Implications for Host
Molecular Phylogenetics and Evolution 38 (2006) 155–170 www.elsevier.com/locate/ympev Molecular phylogenetic analysis of nycteribiid and streblid bat Xies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins Katharina Dittmar a,¤, Megan L. Porter b, Susan Murray c, Michael F. Whiting a a Department of Integrative Biology, Brigham Young University, 401 WIDB, Provo, UT 84602, USA b Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA c Department of Biology, Boston University, Boston, MA, USA Received 1 April 2005; revised 25 May 2005; accepted 6 June 2005 Available online 8 August 2005 Abstract Bat Xies are a small but diverse group of highly specialized ectoparasitic, obligatory bloodsucking Diptera. For the Wrst time, the phylogenetic relationships of 26 species and Wve subfamilies were investigated using four genes (18S rDNA, 16S rDNA, COII, and cytB) under three optimality criteria (maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference). Tree topol- ogy tests of previous hypotheses were conducted under likelihood (Shimodaira–Hasegawa test). Major Wndings include the non- monophyly of the Streblidae and the recovery of an Old World- and a New World-Clade of bat Xies. These data ambiguously resolve basal relationships between Hippoboscidae, Glossinidae, and bat Xies. Recovered phylogenies resulted in either monophyly (Bayes- ian approach) or paraphyly (MP/ML topologies) of the bat Xies, thus obscuring the potential number of possible associations with bats throughout the history of this group. Dispersal-vicariance analysis suggested the Neotropical region as the possible ancestral distribution area of the New World Streblidae and the Oriental region for the Old World bat Xies. -
The Glossina Genome Cluster: Comparative Genomic Analysis of the Vectors of African
bioRxiv preprint doi: https://doi.org/10.1101/531749; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Glossina Genome Cluster: Comparative Genomic Analysis of the Vectors of African 2 Trypanosomes 3 Authorship: 4 Geoffrey M. Attardo, ([email protected]) *22; Adly M.M. Abd-Alla, (a.m.m.abd- 5 [email protected])13; Alvaro Acosta-Serrano, ([email protected])16; James E. 6 Allen, ([email protected])6; Rosemary Bateta, ([email protected])2; Joshua B. Benoit, 7 ([email protected])24; Kostas Bourtzis, ([email protected])13; Jelle Caers, 8 ([email protected])15; Guy Caljon, ([email protected])21; Mikkel B. Christensen, 9 ([email protected])6; David W. Farrow, ([email protected])24; Markus Friedrich, 10 ([email protected])33; Aurélie Hua-Van, ([email protected])5; Emily C. 11 Jennings, ([email protected])24; Denis M. Larkin, ([email protected])19; Daniel Lawson, 12 ([email protected])10; Michael J. Lehane, ([email protected])16; Vasileios 13 P. Lenis, ([email protected])30; Ernesto Lowy-Gallego, ([email protected])6; 14 Rosaline W. Macharia, ([email protected], [email protected])27,12; Anna R. Malacrida, 15 ([email protected])29; Heather G. Marco, ([email protected])23; Daniel Masiga, 16 ([email protected])12; Gareth L. Maslen, ([email protected])6; Irina Matetovici, 17 ([email protected])11; Richard P.