Fetal Hemoglobin in Sickle Cell Anemia: Genetic Determinants of Response to Hydroxyurea

Total Page:16

File Type:pdf, Size:1020Kb

Fetal Hemoglobin in Sickle Cell Anemia: Genetic Determinants of Response to Hydroxyurea The Pharmacogenomics Journal (2007) 7, 386–394 & 2007 Nature Publishing Group All rights reserved 1470-269X/07 $30.00 www.nature.com/tpj ORIGINAL ARTICLE Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea QMa1, DF Wyszynski1, The increase in fetal hemoglobin (HbF) in response to hydroxyurea (HU) 1 2 1 varies among patients with sickle cell anemia. Twenty-nine candidate genes JJ Farrell , A Kutlar , LA Farrer , within loci previously reported to be linked to HbF level (6q22.3–q23.2, 3,1 CT Baldwin and 8q11–q12 and Xp22.2–p22.3), involved in metabolism of HU and related to MH Steinberg1 erythroid progenitor proliferation were studied in 137 sickle cell anemia patients treated with HU. Three-hundred and twenty tagging single 1Department of Medicine, Boston University nucleotide polymorphisms (SNPs) for genotyping were selected based on School of Medicine, Boston, MA, USA; HapMap data. Multiple linear regression and the nonlinear regression 2Department of Medicine, Medical College of Georgia, Augusta, GA, USA and 3Center for Random Forest method were used to investigate the association between Human Genetics, Boston University School of SNPs and the change in HbF level after 2 years of treatment with HU. Both Medicine, Boston, MA, USA methods revealed that SNPs in genes within the 6q22.3–23.2 and 8q11–q12 linkage peaks, and also the ARG2, FLT1, HAO2 and NOS1 genes were Correspondence: Dr MH Steinberg, Center of Excellence in Sickle associated with the HbF response to HU. Polymorphisms in genes regulating Cell Disease, E248, Boston Medical Center, 88 HbF expression, HU metabolism and erythroid progenitor proliferation might E. Newton Street, Boston, MA 02118, USA. modulate the patient response to HU. E-mail: [email protected] The Pharmacogenomics Journal (2007) 7, 386–394; doi:10.1038/sj.tpj.6500433; published online 13 February 2007 Keywords: SNPs; association analysis; sickle cell; fetal hemoglobin; hydroxyurea Introduction Fetal hemoglobin (HbF) inhibits the polymerization of sickle hemoglobin (HbS).1 As many of the complications of sickle cell anemia (homozygosity for HBB, glu6val), like osteonecrosis, acute chest syndrome and painful episode, are associated with the level of HbF, and, HbF is inversely associated with mortality, investigators have assiduously sought pharmacological means of increasing HbF production.2–6 Hydroxyurea (HU), a ribonucleotide reductase inhibitor, is one drug that increases HbF concentration in patients with sickle cell anemia7–10 and it is the sole FDA-approved agent for treating sickle cell anemia. Most, but not all patients respond to HU treatment with an increase in HbF, but as with the baseline HbF concentration, which varies widely among patients, the magnitude of the HbF response to HU is also variable.10–13 The regulation of HbF level might be a complex genetic trait governed by genetic elements linked to the b-globin gene-like cluster and quantitative trait loci (QTL) present on chromosomes 6, 8 and on the X-chromosome; other regulatory loci are also likely to exist and epigenetic and cellular factors could also have regulatory roles.14–27 It is possible that these and other regulatory elements also modulate the HbF response to HU. Received 6 June 2006; revised 19 September 2006; accepted 6 November 2006; published Accordingly, we hypothesized that single nucleotide polymorphisms (SNPs) online 13 February 2007 in candidate genes or QTL with putative roles in the regulation of HbF SNPs, hydroxyurea and HbF in sickle cell anemia QMaet al 387 production might modulate the HbF response to treatment SNP in a gene showing an association when the P-value for with HU. We therefore studied the association of SNPs in significance was set at 0.05. Tables 2 and 3 present the these loci with response to HU in patients who participated statistically significant results of the quantitative trait in the Multicenter Study of Hydroxyurea (MSH), a trial analysis for single SNP association with the change of HbF designed to evaluate the efficacy of this drug in sickle cell level after a 2-year treatment, expressed as percentage of anemia. total hemoglobin and as the absolute HbF level, expressed as g/dl, respectively. An analysis was also performed expressing the increment in HbF after HU treatment as F-cells. Results Seventeen SNPs were significantly associated with the change in percent HbF (Table 2). They included two in The distribution of HbF for 137 patients enrolled in this MAP3K5, five in TOX, two in NOS1, three in FLT1, two in study is shown as Figure 1. The change of HbF after HU ARG2 and two in NOS2A. The most significant association treatment did not follow a normal distribution and was observed with SNP rs2182008 (P ¼ 0.003) in FLT1 resembled a bimodal distribution with a large portion of (Fms-related tyrosine kinase 1), a vascular endothelial growth people with minor or no change (mean ¼ 0) and a small factor, which is involved in cell proliferation and differentia- portion of people with extreme change (mean 440). This tion. Twenty SNPs were significantly associated with the distribution suggested that categorizing these data, like change of absolute HbF (Table 3); a similar pattern of dividing subjects into quartiles by the HbF change, and association was observed and the most significant association comparing patients in lowest quartile group vs those was in SNP rs10483801 (P ¼ 0.0013) in ARG2 (arginase type II, patients in the highest quartile of change, might be an involved in drug metabolism of HU). Using F-cells as the alternative approach for analyzing these data. However, outcome measure gave similar results (data not shown). considering the relatively small sample size in our study, this For candidate genes with significant association in multi- approach provides very limited power for detecting genetic ple SNPs, haplotype associations were explored using associations. Haplo.stats (version 1.2.1) as given in the R library (available Three-hundred and twenty tagging SNPs in 29 candidate at http://cran.us.r-project.org).28 However, as these SNPs genes (Table 1) were examined in 137 sickle cell anemia studied here are tagging SNPs and most of them are not in patients treated with HU. We considered an SNP to have a linkage disequilibrium (LD) with each other, we did not find significant association with response to HU treatment when improved association by haplotype analysis in any genes the P-value was 0.01, unless there was more than one p (data not shown). The results of joint analysis of all the SNPs and covariates (age, sex and the a- and b-globin gene cluster haplotypes) using Random Forest analysis are shown in Figures 2 and 3. The relative importance of one independent variable (a SNP) is measured by %IncMSE (see Materials and methods for details), and the larger the value of %IncMSE, the higher importance that variable has for correct prediction of HbF response to HU. This analysis revealed that the most important variables for predicting the change of HbF level matched most of the SNPs identified by SNP association analysis. Interestingly, SNPs within ASS (arginino- succinate synthetase) and ARG1 (arginase, liver) were observed to have strong effect on the change of HbF level, which was not detected by single SNP association analysis. This suggests that these two genes might be involved in interaction with other genes to regulate the response to HU treatment. SNP rs2182008 in FLT1 showed a strong effect on response to HU treatment. This SNP was significantly associated with the change in HbF under a dominant model (P-value ¼ 0.003 for HbF in percentage and 0.002 for HbF in g/dl) and it was also a highly ranked predictor for response to HU from the Random Forest analysis (second for HbF in percentage and third for HbF in g/dl). The A allele of this SNP was associated with increased HbF level after HU treatment; there is no difference between AA and AG genotypes and the increase in HbF in subjects with these genotypes was on average 5.9 Figure 1 Distributions of HbF change (a) in percentage (%) and (b)in times higher than that in subjects with the GG genotype grams (g/dl). (Figure 4). The Pharmacogenomics Journal SNPs, hydroxyurea and HbF in sickle cell anemia QMaet al 388 Table 1 Candidate genes selected Gene Chromosomes Function Tagging SNPs Cytochrome P450, family 4, subfamily A, polypeptide 11 (CYP4A11) 1 Drug metabolism 4 Hydroxyacid oxidase 2 (long chain) (HAO2) 1 Drug metabolism 5 Kinase insert domain receptor (a type III receptor tyrosine kinase) (KDR) 4 Cell differentiation 17 Arginase, liver (ARG1) 6 Drug metabolism 3 Phosphodiesterase 7B (PDE7B) 6 Chr6 QTL 17 Microtubule-associated protein 7 (MAP7) 6 Chr6 QTL, cell differentiation 3 Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) 6 Chr6 QTL 10 Peroxisomal biogenesis factor 7 (PEX7) 6 Chr6 QTL 6 NADPH oxidase 3 (NOX3) 6 Drug metabolism 17 Met proto-oncogene (hepatocyte growth factor receptor) (MET) 7 Cell proliferation 5 Nitric oxide synthase 3 (endothelial cell) (NOS3) 7 NO production 4 Glutathione reductase (GSR) 8 Drug metabolism 6 CCAAT/enhancer binding protein (C/EBP), delta (CEBPD) 8 Regulation of DNA 2 transcription Transcription elongation factor A (SII), 1 (TCEA1) 8 Chr8 QTL, regulation of 3 DNA transcription SRY (sex determining region Y)-box 17 (SOX17) 8 Chr8 QTL, regulation of 3 DNA transcription Thymus high mobility group box protein TOX (TOX) 8 Chr8 QTL, regulation of 57 DNA transcription Argininosuccinate synthetase (ASS) 9 NO production 24 Cytochrome P450,
Recommended publications
  • The Developmental Genetics of Hemoglobin Synthesis in Chironomus Darrel Starr English Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 The developmental genetics of hemoglobin synthesis in Chironomus Darrel Starr English Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation English, Darrel Starr, "The developmental genetics of hemoglobin synthesis in Chironomus " (1968). Retrospective Theses and Dissertations. 3660. https://lib.dr.iastate.edu/rtd/3660 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 8-14,785 ENGLISH, Barrel Starr, 1936- THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS. Iowa State University, Ph.D., 1968 Biology- Genetics University Microfilms, Inc., Ann Arbor, Michigan THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS by Darrel Starr English A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Genetics Approved: Signature was redacted for privacy. In Charge of MajdA Work Signature was redacted for privacy. Head ^ Major Department Signature was redacted for privacy.
    [Show full text]
  • Fetal and Embryonic Haemoglobins P
    Review Article J Med Genet: first published as 10.1136/jmg.10.1.50 on 1 March 1973. Downloaded from Journal of Medical Genetics (1973). 10, 50. Fetal and Embryonic Haemoglobins P. A. LORKIN MRC Abnormal Haemoglobin Unit, University Department of Biochemistry, Cambridge Haemoglobin has been the subject of intensive form a nearly spherical molecule with extensive research for many years and is one of the most areas of contact between unlike chains; the two thoroughly understood of all protein molecules. main types of contact are denoted alp, and alg2 The amino-acid sequences of haemoglobins from The tetramer exhibits cooperative behaviour or many species of animals have been determined haem-haem interaction. As each haem combines (tabulated by Dayhoff, 1969) and the molecular with oxygen the affinity of successive haems in- structures of horse and human haemoglobins have creases. The oxygen affinity curve of the tetramer been determined in great detail by x-ray crystallo- is sigmoidal and may be represented approximately graphy (Perutz et al, 1968a and b; Perutz 1969). A by the Hill equation:* mechanism of action of haemoglobin has been pro- = kpo2n posed (Perutz, 1970a and b and 1972). The y haemoglobins of higher organisms share a common +kpo2n tetrameric structure built up of two pairs of unlike Oxygen affinity data are usually presented in copyright. chains; the a chains containing 141 amino-acid terms of P102, the partial pressure of oxygen re- residues and the non-a chains containing generally quired to attain half saturation with oxygen, and of 145 or 146 amino acids. In man, five types of n, the exponent of the Hill equation.
    [Show full text]
  • A Distant Gene Deletion Affects Beta-Globin Gene Function in an Atypical Gamma Delta Beta-Thalassemia
    A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. P Curtin, … , A D Stephens, H Lehmann J Clin Invest. 1985;76(4):1554-1558. https://doi.org/10.1172/JCI112136. Research Article We describe an English family with an atypical gamma delta beta-thalassemia syndrome. Heterozygosity results in a beta-thalassemia phenotype with normal hemoglobin A2. However, unlike previously described cases, no history of neonatal hemolytic anemia requiring blood transfusion was obtained. Gene mapping showed a deletion that extended from the third exon of the G gamma-globin gene upstream for approximately 100 kilobases (kb). The A gamma-globin, psi beta-, delta-, and beta-globin genes in cis remained intact. The malfunction of the beta-globin gene on a chromosome in which the deletion is located 25 kb away suggests that chromatin structure and conformation are important for globin gene expression. Find the latest version: https://jci.me/112136/pdf A Distant Gene Deletion Affects ,8-Globin Gene Function in an Atypical '6y5-Thalassemia Peter Curtin, Mario Pirastu, and Yuet Wai Kan Howard Hughes Medical Institute and Department ofMedicine, University of California, San Francisco, California 94143 John Anderson Gobert-Jones Department ofPathology, West Suffolk County Hospital, Bury St. Edmunds IP33-2QZ, Suffolk, England Adrian David Stephens Department ofHaematology, St. Bartholomew's Hospital, London ECIA-7BE, England Herman Lehmann Department ofBiochemistry, University ofCambridge, Cambridge CB2-lQW, England Abstract tologic picture of f3-thalassemia minor in adult life. Globin syn- thetic studies reveal a ,3 to a ratio of -0.5, but unlike the usual We describe an English family with an atypical 'yS6-thalassemia fl-thalassemia heterozygote, the levels of HbA2 (and HbF) are syndrome.
    [Show full text]
  • 8.5 X12.5 Doublelines.P65
    Cambridge University Press 978-0-521-87519-6 - Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, Second Edition Edited by Martin H. Steinberg, Bernard G. Forget, Douglas R. Higgs and David J. Weatherall Index More information anti-inflammatory therapy, 762–763 thalassemia-related complications, 779 sulfasalazine, nuclear factor (NF)-kB, 762 transplant-related complications, 778–779 targeting ET-1, 762–763 ␤S-linked haplotypes, African/Indo-European, anti-oxidant therapy targeting erythrocyte, 638–640 765–766 burst forming unit-erythroid (BFU-E), 10, 29 deferiprone, 765 oral glutamine, 765 calcium-activated potassium channel (Gardos oral N-acetyl-cysteine, 765–766 pathway), 167–168 anti-oxidant therapy targeting vascular, 763–765 capillary electrophoresis, 660 Index Apo A-I mimetics, 764 capillary IEF, 660 NO, 763–764 carbon monoxide poisoning, 613–616 statins, 764 clinical features, 615 xanthine oxidase inhibitors, 764–765 diagnosis, treatment, 615–616 anti-thrombotic therapy epidemiology, 613–614 ␤-thalassemia, 761–762 cardiac, arterial abnormalities, 151 sickle cell disease, 761–762 cardiac abnormalities, ATRX syndrome, 305 aortagonad-mesonephros (AGM), 6 cardiovascular disease, 652 Apo A-I mimetics, 764 cation content, cellular hydration, 164–172 apoptosis, vasculature permeability, 193–194 calcium-activated potassium channel, 167–168 assays, assay systems, 7, 142 cation permeability alterations, 166–167 ATMDS. See ␣ thalassemia-myelodysplastic cell calcium, calcium pump activity, 167 syndromes cell sodium,
    [Show full text]
  • Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore
    Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore Grace G. Eddison, … , Robin W. Briehl, Helen M. Ranney J Clin Invest. 1964;43(12):2323-2331. https://doi.org/10.1172/JCI105106. Research Article Find the latest version: https://jci.me/105106/pdf Journal of Clinical Investigation Vol. 43, No. 12, 1964 Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore * GRACE G. EDDISON,t ROBIN W. BRIEHL,$ AND HELEN M. RANNEY (From the Departments of Medicine and Physiology of the Albert Einstein College of Medi- cine and the Bronx Municipal Hospital Center, New York, N. Y.) Human hemoglobin provides a model for studies the oxygen equilibria of erythrocytes obtained concerned with the relationships of structure and from an adult in whom hemoglobin F comprised biologic function of proteins. Older evidence for 69%o of the total pigment resembled the oxygen conformational differences between oxygenated equilibria of normal adult blood rather than that and deoxygenated normal hemoglobin (1) has of cord blood. These workers (8) suggested that recently been confirmed and extended by X-ray differences between the fetal and adult red cell crystallographic studies (2) and by comparison of other than the type of hemoglobin must be con- the dissociation (3) and of the hybridization (4) cerned in the oxygenation function of whole blood of the oxygenated and deoxygenated pigments. obtained from newborn infants. Normal and abnormal human hemoglobins have Although hemolysates containing large pro- been utilized in the past by other workers for in- portions of hemoglobins F or A can be studied di- vestigation of relationships between structure and rectly, isolation procedures must be utilized to oxygen equilibria.
    [Show full text]
  • Regulations Governing the Classification of Medical Devices (Draft)
    Regulations Governing the Classification of Medical Devices (Draft) Article 1 These Regulations are enacted pursuant to Paragraph 2, Article 3 of the Medical Devices Act (hereinafter “this Act”). Article 2 Medical devices are classified into the following categories according to their function, intended use, operating instructions, and working principle, depending on the applicable medical specialty: 1. Clinical chemistry and clinical toxicology devices 2. Hematology and pathology devices 3. Immunology and microbiology devices 4. Anesthesiology devices 5. Cardiovascular devices 6. Dental devices 7. Ear, nose, and throat devices 8. Gastroenterology and urology devices 9. General and plastic surgery devices 10. General hospital and personal use devices 11. Neurological devices 12. Obstetrical and gynecological devices 13. Ophthalmic devices 14. Orthopedic devices 15. Physical medicine devices 16. Radiology devices Article 3 Medical devices are classified into the following classes according to their risk level: 1. Class I: Low risk 2. Class II: Medium risk 3. Class III: High risk 1 Article 4 Product items of the medical device classification are specified in the Annex. In addition to rules stated in the Annex, medical devices whose function, intended use, or working principle are special may have their classification determined according to the following rules: 1. If two or more categories, classes, or product items are applicable to the same medical device, the highest class of risk level is assigned. 2. The accessory to a medical device, intended specifically by the manufacturer for use with a particular medical device, is classified the same as the particular medical device, unless otherwise specified in the Annex. 3.
    [Show full text]
  • ZNF410 Represses Fetal Globin by Devoted Control of CHD4/Nurd
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title ZNF410 represses fetal globin by devoted control of CHD4/NuRD Authors Divya S. Vinjamur1, Qiuming Yao1,2, Mitchel A. Cole1, Connor McGuckin1, Chunyan Ren1, Jing Zeng1, Mir Hossain1, Kevin Luk3, Scot A. Wolfe3, Luca Pinello2, Daniel E. Bauer1,4 1Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA 2Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA 3Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA 4Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Major effectors of adult-stage fetal globin silencing include the transcription factors (TFs) BCL11A and ZBTB7A/LRF and the NuRD chromatin complex, although each has potential on- target liabilities for rational �-hemoglobinopathy therapeutic inhibition.
    [Show full text]
  • Analysis of Genetic Determinants Associated with Persistent Synthesis of Fetal Hemoglobin
    UNIVERSITÀ DEGLI STUDI DI SASSARI PhD School in Biomolecular and Biotechnological Sciences Curriculum: Biochemistry and Molecular Biology Director: Prof. Claudia Crosio “XXVI Ciclo” Analysis of genetic determinants associated with Persistent Synthesis of Fetal Hemoglobin Supervisor: Monica Pirastru, PhD Director: Prof. Claudia Crosio PhD Student: Sandro Trova ................................................................................................................................................. INDEX INDEX ABSTRACT ................................................................................... 3 INTRODUCTION ......................................................................... 4 1. Hemoglobin .......................................................................................... 4 1.1 Structure and function of Hemoglobin ........................................ 4 1.2 Structure of globin genes and their cluster organization ............. 5 1.3 Genomic context of the α– and β–globin gene clusters .............. 9 2. Globin gene switching ....................................................................... 12 2.1 Regulatory regions and transcription factors of globin genes ... 13 2.2 The β–Globin Locus Control Region (β–LCR) role in globin expression ....................................................................... 20 2.3 Chromatin role in β–like globin gene expression: the PYR role .............................................................................. 25 2.4 Summary on the fetal to adult switch .......................................
    [Show full text]
  • Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
    cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
    [Show full text]
  • Hematology Notes Blood/ Hematology Danil Hammoudi.MD
    Hematology notes Blood/ Hematology Danil Hammoudi.MD HTTP://Sinoemedicalassociation.or/AP2/ Page | 1 Blood is a connective tissue whose matrix is fluid. It is composed of: 1. red corpuscles, 2. white cells, 3. platelets, 4. blood plasma. It is transported throughout the body within blood vessels. • Blood is sometimes considered to be a fluid connective tissue because of the mesenchymal origin of its cells and a low ratio of cells to liquid intercellular substance, the blood plasma. • In human adults about 5 liter of blood contribute 7-8 % to the body weight of the individual. • The contribution of red blood cells (erythrocytes) to the total volume of the blood (haematocrit) is about 43%. • Erythrocytes are the dominant (99%) but not the only type of cells in the blood. • We also find leukocytes and, in addition, blood platelets. Erythrocytes, leukocytes and blood platelets are also being referred to as the formed elements of the blood. • Erythrocytes and blood platelets perform their functions exclusively in the blood stream. • In contrast, leukocytes reside only temporarily in the blood. • Leukocytes can leave the blood stream through the walls of capillaries and venules and enter either connective or lymphoid tissues. Hematology notes Page | 2 Hematology notes Page | 3 Blood facts • Approximately 8% of an adult's body weight is made up of blood. • Females have around 4-5 litres, while males have around 5-6 litres. This difference is mainly due to the differences in body size between men and women. • Its mean temperature is 38 degrees Celcius. • It has a pH of 7.35-7.45, making it slightly basic (less than 7 is considered acidic).
    [Show full text]
  • Iron Deficiency Anemia (IRIDA) • Rare
    Iron Deficiency: Review Melinda Wu, MD, MCR Oregon Health & Science University OHSU10/17/2019 Disclosure Information: a) Moderators/panelists/presenters: Melinda Wu has nothing to disclose. OHSUb) Funding sources: NIH/NHLBI- K08 HL133493 Objectives 1) To review iron body homeostasis 2) To review the etiologies of iron deficiency OHSU3) To review various treatment options of iron deficiency Part I: Review of Iron Body OHSUHomeostasis Iron Balance in the Body Iron is required for growth of all cells, not just hemoglobin! Heme proteins: cytochromes, catalase, peroxidase, cytochrome oxidase Flavoproteins: cytochrome C reductase, succinic dehydrogenase, NADH oxidase, xanthine oxidase Too little Too much Not enough for essential Accumulates in organs proteins: Promotes the formation of: • Hemoglobin • Oxygen radicals •OHSURibonucleotide reductase • Lipid peroxidation (DNA synthesis) • DNA damage • Cytochromes • Tissue fibrosis • Oxidases Iron Economy • The average adult has 4-5 g of body iron. • ~10% of dietary iron absorbed, exclusively in duodenum • Varies with: • Iron content of diet • Bioavailability of dietary iron • Iron stores in body • Erythropoietic demand • Hypoxia • Inflammation • More than half is incorporated into erythroid precursors/mature erythrocytes OHSU• Only ~1-2 mg of iron enters and leaves the body in a day on average. • About 1 mg of iron is lost daily in menstruating women. Lesjak, M.; K. S. Srai, S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals 2019 Systemic Iron Regulation: Absorption Iron status is regulated entirely at the level of absorption! • Heme iron (30-70%) > non-heme iron (<5%) • 2 stable oxidation states: Ferrous (Fe 2+) > Ferric (Fe 3+) • Elemental iron must be reduced to Fe2+ iron to be absorbed 1.
    [Show full text]
  • Studies on Hemoglobin Biosynthesis: Asynchronous Synthesis of Hemoglobin a and Hemoglobin A2 by Erythrocyte Precursors * RONALD F
    Journal of Clinical Investigation Vol. 44, No. 1, 1965 Studies on Hemoglobin Biosynthesis: Asynchronous Synthesis of Hemoglobin A and Hemoglobin A2 by Erythrocyte Precursors * RONALD F. RIEDER AND DAVID J. WEATHERALL (From the Department of Medicine, The Johns Hopkins University School of Medicine and Hospital, Baltimore, Md.) Hemoglobin A2 comprises less than 3.3% of solution containing glucose, amino acids, penicillin G, the total hemoglobin of normal adults (1, 2). and streptomycin sulfate as described by Borsook (10). Ferrous sulfate was omitted. Elevated levels are found in many individuals In experiments employing leucine-C' the final incuba- with thalassemia minor (3, 4), in some patients tion medium was made by drying samples (0.5 to 1 ml) with pernicious anemia in relapse (5), and in per- of a solution of uniformly labeled leucine-C' containing sons heterozygous for hemoglobin Zurich (6). 100 /Ac per ml (representing 348 /Ag of leucine) in the Reduced levels are encountered in the newborn incubation flask and then adding 4 to 8 ml of leucine- free modified Krebs-Henseleit solution without serum. child (3), in some patients with anemia due to Reticulocyte-rich heparinized blood was centrifuged, iron deficiency (5), and in persons with hereditary and the plasma, leukocytes, and platelets were re- persistence of fetal hemoglobin (7, 8). In the moved. The red cells were washed three times with study to be described, measurements were made of 0.85% NaCl; then 1 vol of cells was added to 2 to 4 the relative rates of synthesis of hemoglobins A vol of incubation mixture. The cells were incubated at and by red cell precursors of patients with 370 C in a Dubnoff-type shaking water bath.
    [Show full text]