8.5 X12.5 Doublelines.P65

Total Page:16

File Type:pdf, Size:1020Kb

8.5 X12.5 Doublelines.P65 Cambridge University Press 978-0-521-87519-6 - Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, Second Edition Edited by Martin H. Steinberg, Bernard G. Forget, Douglas R. Higgs and David J. Weatherall Index More information anti-inflammatory therapy, 762–763 thalassemia-related complications, 779 sulfasalazine, nuclear factor (NF)-kB, 762 transplant-related complications, 778–779 targeting ET-1, 762–763 ␤S-linked haplotypes, African/Indo-European, anti-oxidant therapy targeting erythrocyte, 638–640 765–766 burst forming unit-erythroid (BFU-E), 10, 29 deferiprone, 765 oral glutamine, 765 calcium-activated potassium channel (Gardos oral N-acetyl-cysteine, 765–766 pathway), 167–168 anti-oxidant therapy targeting vascular, 763–765 capillary electrophoresis, 660 Index Apo A-I mimetics, 764 capillary IEF, 660 NO, 763–764 carbon monoxide poisoning, 613–616 statins, 764 clinical features, 615 xanthine oxidase inhibitors, 764–765 diagnosis, treatment, 615–616 anti-thrombotic therapy epidemiology, 613–614 ␤-thalassemia, 761–762 cardiac, arterial abnormalities, 151 sickle cell disease, 761–762 cardiac abnormalities, ATRX syndrome, 305 aortagonad-mesonephros (AGM), 6 cardiovascular disease, 652 Apo A-I mimetics, 764 cation content, cellular hydration, 164–172 apoptosis, vasculature permeability, 193–194 calcium-activated potassium channel, 167–168 assays, assay systems, 7, 142 cation permeability alterations, 166–167 ATMDS. See ␣ thalassemia-myelodysplastic cell calcium, calcium pump activity, 167 syndromes cell sodium, 165–167 ATR-16 syndrome, 296–304 CHC, 164 abnormal transcranial Doppler ultrasonography chromosome imbalance, 301–303 deoxygenation-induced cation leak, 165–167 (TCD) genetic abnormalities definition, 299–301 deoxygenation-induced cation permeability, acetylation, 132–133, 600 summary, 303–304 165–166 acute chest syndrome, 695 ATRX syndrome, 304–311 Gardos channel activity modulation, 168–169 acute myeloid leukemia, HbA2, 127 associated phenotype, 308 KCC, 169–172 acute splenic sequestration, 694 ATMDS, 315–316 activation, 172 acute stroke, 694–695. See also stroke cardiac abnormalities, 305 cellular magnesium, 170–171 adhesive bridging proteins, sickle red cell clinical findings, 304–305 deoxygenation, 170 adhesion, 144 disease gene identification, 306–307 molecular basis, 171–172 adult blood system, HSCs, 3 gene, protein product, 307–308 sodium/hydrogen exchange, 165–167 AGM. See aortagonad-mesonephros head circumference, brain size, 304–305 sodium permeability, cell sodium, 167 alkaline Bohr effect, HbF, 120 hematologic findings, 305–306 sodium-potassium ATPase, 165–167 allantois, 5, 25–26 mutations, functional consequences, 311 stress, oxidation, 166–167 alloimmunization, 700–701 neonates, 304 cation permeability alterations, 166–167 sickle cell disease, 700–701 normal functional role, 310–311 cation transport thalassemia, 700 phenotype relationship, 308–309 other hemoglobinopathies, 174 amphibians, 13 skeletal abnormalities, 305 thalassemia, 174 animal models, transgenic mice subject behavior, 305 CBC. See complete blood count genetic background, 225 summary, 311 CBF transcription, 17 HbC impact, 233 urogenital abnormalities, 305 cell adhesion, erythropoiesis, 34 induced hemoglobinopathies, 232 X-linked condition, 306 cell calcium, calcium pump activity, 167 knock-out, knock-in, 225 avian, 12–13 cell hemoglobin concentration (CHC), 164 MCHC, 233 embryonic hematopoietic hierarchy, 12–13 cell sodium, 165–167 mouse age, 233 erythroid development, chicken, 12–13 cellular control, hemoglobin switching, 86–88 sickle cell disease models, 227–232 developmental clock, 87–88 erythrocytes, 229 bacteremia, 649 models, 86–87 organ pathology, 230–232 basal promoters, 52–53 cellular heterogeneity, HbF, 121–122 brain, 232 BFU-E. See burst forming unit-erythroid cellular hydration. See cation content, cellular kidney, 230 biochemical purification, transcription factors, hydration liver, 231 63–64 cellular magnesium, KCC, 170–171 lung, 232 blood product choice, 692–693 CFU-C, 9–10 microcirculation, 230–231 blood transfusion, HbH disease, 278–279 CFU-E. See colony forming units-erythroid pulmonary hypertension, 232 BMP-4, 16 CFU-S, 10 retina, 230 bone disease, 652 CHC. See cell hemoglobin concentration spleen, 232 bone marrow transplantation, thalassemia chelation therapy objectives, 710–721. See also sickle transgenic mice, 227–229 patient iron overload, chelation therapy strains, 225 effect, 778–780 harmful iron species detoxification, 711 technology, 225 endocrine dysfunction, 780 iron balance, 710 thalassemic mice, 225–227 hepatitis, 779–780 safe tissue iron concentrations maintenance, transgenic expression, 233 iron overload, 779 710–711 animal research, 3 mixed chimeric state, 778 chelator design constraints, 713–714 antenatal diagnosis, 681–682 patient selection, 777–778 ChIP analysis. See chromatin anti-adhesion therapy, sickle cell disease, risk classification, 777–778 immunoprecipitation analysis 759–761 thalassemia recurrence, 778 chloride binding, HbF, 120 815 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-87519-6 - Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, Second Edition Edited by Martin H. Steinberg, Bernard G. Forget, Douglas R. Higgs and David J. Weatherall Index More information 816 Index chorion, 5 effect on heart, 726 myelopoiesis, 8–9 chromatin conformation, EKLF, 38 heart, 726 neonatal repopulating hematopoietic stem chromatin immunoprecipitation (ChIP) analysis, pharmacology, 725 cells, 10 64–65 serum ferritin, liver iron, 725 T, B lymphoid lineage, mouse populations, 9 chromatin structure remodelling, EKLF, 72 treatment safety, 726 tyrosine c-kit receptor, 8 chromosomal organization, human globin genes, efficacy, 722–724 epigenetic factors, 17–18 47–50 heart, 723–724 PcG proteins, 17 chromosome imbalance, ATR-16 syndrome, iron excretion, balance, 722 trxG, 17–18 301–303 liver iron, 722–723 extraembryonic ␣0 chromosome, 248–250 neutropenia, agranulocytosis, 724 allantois, 5 chronic transfusion therapy indications, 697–699 recommended dosing, 724 chorion, 5 other proposed indications, 699 serum ferritin, 722 placenta, 5 pregnancy, 698 unwanted effects, 724 yolk sac, 4–5 pulmonary hypertension, 698–699 deferoximine, 714–721 intraembryonic, PAS/AGM, 5–6 recurrent acute chest pain, 698–699 chemistry, pharmacology, 715 mesoderm induction, 3–4 recurrent painful episodes, 699 efficacy, 715–717 molecular interactions, 14 recurrent splenic sequestration, 699 heart, 716–717 secondary territories silent cerebral infarcts, 698 historical perspective, 714–715 bone marrow, 6–7 stroke, 697 iron balance, liver iron, 715–716 liver, 6–7 TCD long-term effects on survival, 716 signalling pathways, 14–16 c-kit/SF signalling, 16 other long-term effects on morbidity, 717 BMP-4, 16 clinical applications, developmental serum ferritin, 716 c-kit/SF signalling, 16 hematopoiesis, 18 sickle cell disease, 720–721 hedgehog signalling, 15 coagulation, spleen, intravascular hemolysis, thalassemia intermedia, 721 TGF-␤ superfamily, 14–16 209–211 tolerability, 717–719 VEFG/Flk-1 axis, 16 CO2 binding, HbF, 120 auditory toxicity, 718 visceral endoderm contact, 15 colonization theory, developmental delivery methods, 719–720 transcription factors, 16–17 hematopoiesis, 3, 6 general, 717 CBF, 17 colony forming units-erythroid (CFU-E), 29 growth, bone, 718 GATA-2, 16–17 common vs. lineage-specific globin gene infections, 718 Runx1 haploinsufficiency, 17 regulation, 51–52 injection site reactions, 717–718 SCL, 16 complete blood count (CBC), 664–668 miscellaneous effects, 718–719 differential phylogenetic footprints, human globin automated methods, 665 rinal toxicity, 718 genes, 51 cell heterogeneity measures, 666–667 thalassemia major, 719–720 distal enhancers, human globin genes, 56–58 globin chain synthesis, 667–668 rescue therapy, 719 DLP. See dorsal lateral plate hemoglobin S polymerization, 668 standard therapy, 719 DNA diagnosis, 669–682 manual methods, 664 deoxygenation, KCC, 170 abnormal hemoglobins, 679–681 per cent HbS polymer, 668 deoxygenation-induced cation leak, 165–167 HbC, 679 rate of sickling, 668 deoxygenation-induced cation permeability, HbE, 679 reticulocyte count, 665–666 165–166 Hb O-Arab, 679 compound phenotypes, integrated measures, 651 developmental abnormalities, 296 HbS, 679 cooperative binding, 101 developmental hematopoiesis, 3–7 other variants, 679–681 CpG islands, human globin genes, 50 animal research, 3 Hb Lepore, 679 Cre-ERT. See Cre recombinase clinical application, 18 HPFH, 679 Cre-lox recombination system, 13 colonization theory, 3, 6 preimplantation diagnosis, 670–671 Cre recombinase (Cre-ERT), 14 current research, 3 ␣ thalassemia, 671–673 cutaneous leg ulceration, 212 developmental subsets, 14 deletion mutations by PCR diagnosis,671–672 ␤-93 cysteine, sickle cell hemoglobin (HbS), 110 embryonic hematopoietic hierarchy, 3, 7–14 diagnostic strategy, 671 cytochrome b5 deficiency, 608–610 amphibians, 13 point mutations by PCR diagnosis, 672–673 assays, 7 ␤ thalassemia, 673–679 deferasirox (ICL670, Exjade), 726–727 avian, 12–13 allele-specific oligonucleotide PCR, 673–674 chemistry, pharmacology, 726–727 Cre-ERT, 14 ␤-globin gene haplotype analysis, 678–679 effects on heart, 727 Cre-lox recombination system, 13 diagnostic strategy, 673 effects on iron balance, LIC, ferritin, 727 erythroid-myeloid-lymphoid multipotential gap-PCR, MLPA analysis, 677 historical perspective, 726 progenitors, 10 oligonucleotide microarrays, 674 unwanted
Recommended publications
  • The Developmental Genetics of Hemoglobin Synthesis in Chironomus Darrel Starr English Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 The developmental genetics of hemoglobin synthesis in Chironomus Darrel Starr English Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation English, Darrel Starr, "The developmental genetics of hemoglobin synthesis in Chironomus " (1968). Retrospective Theses and Dissertations. 3660. https://lib.dr.iastate.edu/rtd/3660 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 8-14,785 ENGLISH, Barrel Starr, 1936- THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS. Iowa State University, Ph.D., 1968 Biology- Genetics University Microfilms, Inc., Ann Arbor, Michigan THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS by Darrel Starr English A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Genetics Approved: Signature was redacted for privacy. In Charge of MajdA Work Signature was redacted for privacy. Head ^ Major Department Signature was redacted for privacy.
    [Show full text]
  • A Distant Gene Deletion Affects Beta-Globin Gene Function in an Atypical Gamma Delta Beta-Thalassemia
    A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. P Curtin, … , A D Stephens, H Lehmann J Clin Invest. 1985;76(4):1554-1558. https://doi.org/10.1172/JCI112136. Research Article We describe an English family with an atypical gamma delta beta-thalassemia syndrome. Heterozygosity results in a beta-thalassemia phenotype with normal hemoglobin A2. However, unlike previously described cases, no history of neonatal hemolytic anemia requiring blood transfusion was obtained. Gene mapping showed a deletion that extended from the third exon of the G gamma-globin gene upstream for approximately 100 kilobases (kb). The A gamma-globin, psi beta-, delta-, and beta-globin genes in cis remained intact. The malfunction of the beta-globin gene on a chromosome in which the deletion is located 25 kb away suggests that chromatin structure and conformation are important for globin gene expression. Find the latest version: https://jci.me/112136/pdf A Distant Gene Deletion Affects ,8-Globin Gene Function in an Atypical '6y5-Thalassemia Peter Curtin, Mario Pirastu, and Yuet Wai Kan Howard Hughes Medical Institute and Department ofMedicine, University of California, San Francisco, California 94143 John Anderson Gobert-Jones Department ofPathology, West Suffolk County Hospital, Bury St. Edmunds IP33-2QZ, Suffolk, England Adrian David Stephens Department ofHaematology, St. Bartholomew's Hospital, London ECIA-7BE, England Herman Lehmann Department ofBiochemistry, University ofCambridge, Cambridge CB2-lQW, England Abstract tologic picture of f3-thalassemia minor in adult life. Globin syn- thetic studies reveal a ,3 to a ratio of -0.5, but unlike the usual We describe an English family with an atypical 'yS6-thalassemia fl-thalassemia heterozygote, the levels of HbA2 (and HbF) are syndrome.
    [Show full text]
  • Newborn Screening Result for Bart's Hemoglobin
    NEWBORN SCREENING RESULT FOR BART’S HEMOGLOBIN Physician’s information sheet developed by the Nebraska Newborn Screening Program with review by James Harper, MD, Pediatric Hematologist with UNMC Follow-up program, and member of the Nebraska Newborn Screening Advisory Committee. BACKGROUND The alpha thalassemias result from the loss of alpha globin genes. There are normally four genes for alpha globin production so that the loss of one to four genes is possible. The lack of one gene causes alpha thalassemia 2 (silent carrier) with no clinically detectable problems but may cause small amounts of hemoglobin Barts to be present in newborn blood samples. Alpha thalassemia trait (Alpha thalassemia 1) results from loss of two genes and causes a mild microcytic anemia which may resemble iron deficiency anemia. The loss of three genes causes hemoglobin H diseases which is a moderately severe form of thalassemia. The lack of all four genes causes hydrops fetalis and is usually fatal in utero. In general, only the loss of one or two genes is seen in African Americans. Individuals from Southeast Asia and the Mediterranean may have all four types of alpha thalassemia. The percentage of hemoglobin Barts in the blood sample may indicate the number of alpha genes that have been lost. However, the percentage of hemoglobin Barts is not directly measurable with the current methodology used by the newborn screening laboratory. Only the presence of Barts hemoglobin in relation to fetal and adult hemoglobin, and variants S, C, D and E can be detected. RECOMMENDED WORK UP In addition to the standard newborn hemoglobinopathy confirmation (hemoglobin electrophoresis), to separate those patients with alpha thalassemia silent carrier from the patients with alpha thalassemia trait, we recommend that these babies have the following labs drawn at their 6 month well baby check: CBC with retic count, ferritin, and a hemoglobin electropheresis.
    [Show full text]
  • LOINC Top 2000++ Lab Observations V1.6 (PDF)
    LOINC Mapper's Guide to Top 2000++ US Lab Tests v1.6 June 2017 Page 1 of 112 B C EFGH I P LOINC # Long Common Name Class Rank Example Example Comments System Override UCUM UCUM Adjusted 1 Display 2 General Guidance 1) Ask your test kit and instrument manufacturer(s) and referral labs about which LOINC codes are relevant for their products. Increasingly, test kit and instrument manufacturers are requesting LOINC codes for their new test. Some of the larger manufacturers have mapped their routine tests done on to LOINC codes. Check with these in vitro diagnostic companies for the LOINC codes relevant for their tests. In addition, the largest referral laboratories in the US have mapped their high- to medium-volume tests to LOINC. Getting the LOINC mappings from either of these sources will save you time. 2) When mapping, search against the LOINC common test list. In RELMA and on search.loinc.org you can set the search parameters to only look at the common tests. Work through the mapping by lab section. Realize that LOINC does not encompass terms that may be used in your lab system for internal accounting or “diagnostic” variables that are provided as indicators that might be used to trigger a follow up test, but are not supposed to be reported to the ordering provider because the results are not reliable enough. Blood cell counters usually report such indicators. 3) Obtain a master list of tests for mapping. RELMA has a function that will convert a large set of HL7 result (ORU) messages into a database that carries the name of the order, the units of measure, and sample data that can be the source of frequency statistics for deciding which terms to tackle first.
    [Show full text]
  • Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore
    Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore Grace G. Eddison, … , Robin W. Briehl, Helen M. Ranney J Clin Invest. 1964;43(12):2323-2331. https://doi.org/10.1172/JCI105106. Research Article Find the latest version: https://jci.me/105106/pdf Journal of Clinical Investigation Vol. 43, No. 12, 1964 Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore * GRACE G. EDDISON,t ROBIN W. BRIEHL,$ AND HELEN M. RANNEY (From the Departments of Medicine and Physiology of the Albert Einstein College of Medi- cine and the Bronx Municipal Hospital Center, New York, N. Y.) Human hemoglobin provides a model for studies the oxygen equilibria of erythrocytes obtained concerned with the relationships of structure and from an adult in whom hemoglobin F comprised biologic function of proteins. Older evidence for 69%o of the total pigment resembled the oxygen conformational differences between oxygenated equilibria of normal adult blood rather than that and deoxygenated normal hemoglobin (1) has of cord blood. These workers (8) suggested that recently been confirmed and extended by X-ray differences between the fetal and adult red cell crystallographic studies (2) and by comparison of other than the type of hemoglobin must be con- the dissociation (3) and of the hybridization (4) cerned in the oxygenation function of whole blood of the oxygenated and deoxygenated pigments. obtained from newborn infants. Normal and abnormal human hemoglobins have Although hemolysates containing large pro- been utilized in the past by other workers for in- portions of hemoglobins F or A can be studied di- vestigation of relationships between structure and rectly, isolation procedures must be utilized to oxygen equilibria.
    [Show full text]
  • Regulations Governing the Classification of Medical Devices (Draft)
    Regulations Governing the Classification of Medical Devices (Draft) Article 1 These Regulations are enacted pursuant to Paragraph 2, Article 3 of the Medical Devices Act (hereinafter “this Act”). Article 2 Medical devices are classified into the following categories according to their function, intended use, operating instructions, and working principle, depending on the applicable medical specialty: 1. Clinical chemistry and clinical toxicology devices 2. Hematology and pathology devices 3. Immunology and microbiology devices 4. Anesthesiology devices 5. Cardiovascular devices 6. Dental devices 7. Ear, nose, and throat devices 8. Gastroenterology and urology devices 9. General and plastic surgery devices 10. General hospital and personal use devices 11. Neurological devices 12. Obstetrical and gynecological devices 13. Ophthalmic devices 14. Orthopedic devices 15. Physical medicine devices 16. Radiology devices Article 3 Medical devices are classified into the following classes according to their risk level: 1. Class I: Low risk 2. Class II: Medium risk 3. Class III: High risk 1 Article 4 Product items of the medical device classification are specified in the Annex. In addition to rules stated in the Annex, medical devices whose function, intended use, or working principle are special may have their classification determined according to the following rules: 1. If two or more categories, classes, or product items are applicable to the same medical device, the highest class of risk level is assigned. 2. The accessory to a medical device, intended specifically by the manufacturer for use with a particular medical device, is classified the same as the particular medical device, unless otherwise specified in the Annex. 3.
    [Show full text]
  • Code Lists Page 1
    Code lists Page 1 Code lists AESEV Page 2 AESEV Codelist Name: Severity/Intensity Scale for Adverse Events Description: A scale that defines the degree or state of disease existing in a patient as a result of the occurrence of an adverse event. (NCI) C41338,1; Grade 1 C41339,2; Grade 2 C41340,3; Grade 3 AGEU Page 3 AGEU Codelist Name: Age Unit Description: Those units of time that are routinely used to express the age of a subject. C25301,Days C25529,Hours; h; hr C29846,Month C29844,Week C29848,Year CMDOSFRM Page 4 CMDOSFRM Codelist Name: Concomitant Medication Dose Form Description: A terminology subset of the CDISC SDTM Pharmaceutical Dosage Form codelist created for CDASH Concomitant Medication Dose Form codelist. (NCI) C42887,AEROSOL; aer C25158,CAPSULE; cap C28944,CREAM; C42933,GAS; C42934,GEL; C42966,OINTMENT; oint C42968,PATCH; C42972,POWDER; C42989,SPRAY; C42993,SUPPOSITORY; supp C42994,SUSPENSION; susp C42998,TABLET; tab CMDOSFRQ Page 5 CMDOSFRQ Codelist Name: Concomitant Medication Dosing Frequency per Interval Description: A terminology subset of the CDISC SDTM Frequency codelist created for CDASH Concomitant Medication Dosing Frequency per Interval codelist. (NCI) C64496,BID; BD; Twice per day C64499,PRN; As needed C25473,QD; Daily C64530,QID; 4 times per day C64498,QM; Every Month; Per Month C64525,QOD; Every other day C64527,TID; 3 times per day C17998,UNKNOWN; U; UNK; Unknown CMDOSU Page 6 CMDOSU Codelist Name: Concomitant Medication Dose Units Description: A terminology subset of the CDISC SDTM Unit codelist created for CDASH Concomitant Medication Dose Units codelist. (NCI) C48480,CAPSULE; Capsule Dosing Unit; cap C48155,g; Gram C48579,IU; IE; International Unit C28253,mg; Milligram C28254,mL; Milliliter; cm3 C65060,PUFF; Puff Dosing Unit C48542,TABLET; Tablet Dosing Unit; tab C48152,ug; Microgram; mcg CMROUTE Page 7 CMROUTE Codelist Name: Concomitant Medication Route of Administration Description: A terminology subset of the CDISC SDTM Route codelist created for CDASH Concomitant Medication Route of Administration codelist.
    [Show full text]
  • Hematology Notes Blood/ Hematology Danil Hammoudi.MD
    Hematology notes Blood/ Hematology Danil Hammoudi.MD HTTP://Sinoemedicalassociation.or/AP2/ Page | 1 Blood is a connective tissue whose matrix is fluid. It is composed of: 1. red corpuscles, 2. white cells, 3. platelets, 4. blood plasma. It is transported throughout the body within blood vessels. • Blood is sometimes considered to be a fluid connective tissue because of the mesenchymal origin of its cells and a low ratio of cells to liquid intercellular substance, the blood plasma. • In human adults about 5 liter of blood contribute 7-8 % to the body weight of the individual. • The contribution of red blood cells (erythrocytes) to the total volume of the blood (haematocrit) is about 43%. • Erythrocytes are the dominant (99%) but not the only type of cells in the blood. • We also find leukocytes and, in addition, blood platelets. Erythrocytes, leukocytes and blood platelets are also being referred to as the formed elements of the blood. • Erythrocytes and blood platelets perform their functions exclusively in the blood stream. • In contrast, leukocytes reside only temporarily in the blood. • Leukocytes can leave the blood stream through the walls of capillaries and venules and enter either connective or lymphoid tissues. Hematology notes Page | 2 Hematology notes Page | 3 Blood facts • Approximately 8% of an adult's body weight is made up of blood. • Females have around 4-5 litres, while males have around 5-6 litres. This difference is mainly due to the differences in body size between men and women. • Its mean temperature is 38 degrees Celcius. • It has a pH of 7.35-7.45, making it slightly basic (less than 7 is considered acidic).
    [Show full text]
  • WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) C07K 16/18 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/057942 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 20 October 2016 (20.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/244,655 2 1 October 2015 (21. 10.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: QOOLABS, INC. [US/US]; 4186 Sorrento TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Valley Blvd., Suite D/E, San Diego, CA 92121 (US).
    [Show full text]
  • Iron Deficiency Anemia (IRIDA) • Rare
    Iron Deficiency: Review Melinda Wu, MD, MCR Oregon Health & Science University OHSU10/17/2019 Disclosure Information: a) Moderators/panelists/presenters: Melinda Wu has nothing to disclose. OHSUb) Funding sources: NIH/NHLBI- K08 HL133493 Objectives 1) To review iron body homeostasis 2) To review the etiologies of iron deficiency OHSU3) To review various treatment options of iron deficiency Part I: Review of Iron Body OHSUHomeostasis Iron Balance in the Body Iron is required for growth of all cells, not just hemoglobin! Heme proteins: cytochromes, catalase, peroxidase, cytochrome oxidase Flavoproteins: cytochrome C reductase, succinic dehydrogenase, NADH oxidase, xanthine oxidase Too little Too much Not enough for essential Accumulates in organs proteins: Promotes the formation of: • Hemoglobin • Oxygen radicals •OHSURibonucleotide reductase • Lipid peroxidation (DNA synthesis) • DNA damage • Cytochromes • Tissue fibrosis • Oxidases Iron Economy • The average adult has 4-5 g of body iron. • ~10% of dietary iron absorbed, exclusively in duodenum • Varies with: • Iron content of diet • Bioavailability of dietary iron • Iron stores in body • Erythropoietic demand • Hypoxia • Inflammation • More than half is incorporated into erythroid precursors/mature erythrocytes OHSU• Only ~1-2 mg of iron enters and leaves the body in a day on average. • About 1 mg of iron is lost daily in menstruating women. Lesjak, M.; K. S. Srai, S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals 2019 Systemic Iron Regulation: Absorption Iron status is regulated entirely at the level of absorption! • Heme iron (30-70%) > non-heme iron (<5%) • 2 stable oxidation states: Ferrous (Fe 2+) > Ferric (Fe 3+) • Elemental iron must be reduced to Fe2+ iron to be absorbed 1.
    [Show full text]
  • Studies on Hemoglobin Biosynthesis: Asynchronous Synthesis of Hemoglobin a and Hemoglobin A2 by Erythrocyte Precursors * RONALD F
    Journal of Clinical Investigation Vol. 44, No. 1, 1965 Studies on Hemoglobin Biosynthesis: Asynchronous Synthesis of Hemoglobin A and Hemoglobin A2 by Erythrocyte Precursors * RONALD F. RIEDER AND DAVID J. WEATHERALL (From the Department of Medicine, The Johns Hopkins University School of Medicine and Hospital, Baltimore, Md.) Hemoglobin A2 comprises less than 3.3% of solution containing glucose, amino acids, penicillin G, the total hemoglobin of normal adults (1, 2). and streptomycin sulfate as described by Borsook (10). Ferrous sulfate was omitted. Elevated levels are found in many individuals In experiments employing leucine-C' the final incuba- with thalassemia minor (3, 4), in some patients tion medium was made by drying samples (0.5 to 1 ml) with pernicious anemia in relapse (5), and in per- of a solution of uniformly labeled leucine-C' containing sons heterozygous for hemoglobin Zurich (6). 100 /Ac per ml (representing 348 /Ag of leucine) in the Reduced levels are encountered in the newborn incubation flask and then adding 4 to 8 ml of leucine- free modified Krebs-Henseleit solution without serum. child (3), in some patients with anemia due to Reticulocyte-rich heparinized blood was centrifuged, iron deficiency (5), and in persons with hereditary and the plasma, leukocytes, and platelets were re- persistence of fetal hemoglobin (7, 8). In the moved. The red cells were washed three times with study to be described, measurements were made of 0.85% NaCl; then 1 vol of cells was added to 2 to 4 the relative rates of synthesis of hemoglobins A vol of incubation mixture. The cells were incubated at and by red cell precursors of patients with 370 C in a Dubnoff-type shaking water bath.
    [Show full text]
  • Spectroscopic Study on Oxidative Reactions of Normal and Pathogenic Hemoglobin Molecules
    SPECTROSCOPIC STUDY ON OXIDATIVE REACTIONS OF NORMAL AND PATHOGENIC HEMOGLOBIN MOLECULES M.A. IBRAHIM*#, M.I. EL-GOHARY**, N.A. SALEH**, M.Y. ELASHRY* *Physics Department, Faculty of science, Suez Canal University, Ismailia, Egypt **Biophysics Branch, Faculty of Science, Al-Azhar University, Cairo, Egypt #Present address: Physics Department, Faculty of Science, King Abdulaziz University, Arar, KSA. E-mail: [email protected] Abstract. Hemoglobin (Hb) of normal erythrocytes undergoes oxidative reactions with constant rate. In anemia, hemoglobin is exposed to oxidative denaturation. Oxidation of oxy- – hemoglobin gives O 2 and met-hemoglobin (met-Hb). If the globin structure of hemoglobin molecule is destabilized, met-hemoglobin can be converted to hemichrome. Reaction of hemoglobin with radical or oxidant-generating system and structure denaturation can be followed by spectral analysis. In this study, different oxidation products of hemoglobin were measured in three types of anemia; severe iron deficiency, glucose-6-phosphate dehydrogenase deficiency and β-thalassemia. The results showed that hemoglobin suffers from an increase in the auto-oxidation rate in case of anemia followed by an enhancement in both met-hemoglobin and hemichrome levels and a decrease in the oxy-hemoglobin concentration. Key words: anemia, hemoglobin, absorbance, oxidation. INTRODUCTION Hemoglobin readily undergoes oxidation and reduction and it can act as a – source of sink of free radicals. Auto-oxidation of hem groups produces O 2 and, indirectly, hydrogen peroxide (H2O2) [23]. The reaction of excess H2O2 with oxy- hemoglobin (oxy-Hb) forms ferryl species as an intermediate, but the final product is met-hemoglobin [22]. Hemoglobin also interacts with redox-active xenobiotic and metabolites, forming the xenobiotic radical and initiates a series of reactions that generate other radicals and oxidant species and often result in oxidative – denaturation of Hb [3].
    [Show full text]