Fetal and Embryonic Haemoglobins P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Your Baby Has Hemoglobin E Or Hemoglobin O Trait for Parents
NEW HAMPSHIRE NEWBORN SCREENING PROGRAM Your Baby Has Hemoglobin E or Hemoglobin O Trait For Parents All infants born in New Hampshire are screened for a panel of conditions at birth. A small amount of blood was collected from your baby’s heel and sent to the laboratory for testing. One of the tests looked at the hemoglobin in your baby’s blood. Your baby’s test found that your baby has either hemoglobin E trait or hemoglobin O trait. The newborn screen- ing test cannot tell the difference between hemoglobin E and hemoglobin O so we do not know which one your baby has. Both hemoglobin E trait and hemoglobin O trait are common and do not cause health problems. Hemoglobin E trait and hemoglobin O trait will never develop to disease. What is hemoglobin? Hemoglobin is the part of the blood that carries oxygen to all parts of the body. There are different types of hemoglobin. The type of hemoglobin we have is determined from genes that we inherit from our parents. Genes are the instructions for how our body develops and functions. We have two copies of each gene; one copy is inherited from our mother in the egg and one copy is inherited from our father in the sperm. What are hemoglobin E trait and hemoglobin O trait? The normal, and most common, type of hemoglobin is called hemoglobin A. Hemoglobin E trait is when a baby inherited one gene for hemoglobin A from one parent and one gene for hemoglobin E from the other parent. -
Linkage of Genes for Adult A-Globin and Embryonic Aulike Globin Chains (Hemoglobin H/Thalassemia/Embryonic Hemoglobin/Mice) J
Proc. Natl. Acad. Sci. USA Vol. 77, No. 2, pp. 1087-1090, February 1980 Genetics Linkage of genes for adult a-globin and embryonic aulike globin chains (hemoglobin H/thalassemia/embryonic hemoglobin/mice) J. BARRY WHITNEY III* AND ELIZABETH S. RUSSELL The Jackson Laboratory, Bar Harbor, Maine 04609 contributed by Elizabeth S. Russell, November 19, 1979 ABSTRACT In a-thalassemia, the genetic locus for the a (Hbaa) female mouse and a triethylene-melamine-treated male chains of adult hemoglobin is not expressed. We have examined that carried a different, doublet, Hba haplotype (5). In this the hemoglobins of a number of individual mouse embryos affected a-thalassemic offspring of the treated male, only the heterozygous for a particular a-thalassemia (Hba th-J) and find n'o.'ecrease in the proportion of hemoglobins containing the Hbaa haplotype inherited from the C57BL/6J mother was a chain as compared to the hemoglobin containing the a-like expressed. The hemoglobins of this mouse were found by embryonic globin chain. This result suggests that the locus for electrophoresis after cystamine treatment (6) to be unusual in this embryonic a-like chain is inactivated or deleted in these that they contained a lower than normal proportion of the he- embryos as well. Because a single mutational event inactivated moglobin containing the diffuse-major:/ chain, a condition also adult and embryonic loci, we conclude that they are probably reported for the x-ray-induced mouse a-thalassemia discovered closely linked to one another on the same chromosome. We also present evidence that an unusual hemoglobin in the blood of at the Oak Ridge National Laboratory (7). -
Alpha Thalassemia Trait
Alpha Thalassemia Trait Alpha Thalassemia Trait Produced by St. Jude Children’s Research Hospital, Departments of Hematology, Patient Education, 1 and Biomedical Communications. Funds were provided by St. Jude Children’s Research Hospital, ALSAC, and a grant from the Plough Foundation. This document is not intended to replace counseling by a trained health care professional or genetic counselor. Our aim is to promote active participation in your care and treatment by providing information and education. Questions about individual health concerns or specific treatment options should be discussed with your doctor. For general information on sickle cell disease and other blood disorders, please visit our Web site at www.stjude.org/sicklecell. Copyright © 2009 St. Jude Children’s Research Hospital Alpha thalassemia trait All red blood cells contain hemoglobin (HEE muh glow bin), which carries oxygen from your lungs to all parts of your body. Alpha thalassemia (thal uh SEE mee uh) trait is a condition that affects the amount of hemo- globin in the red blood cells. • Adult hemoglobin (hemoglobin A) is made of alpha and beta globins. • Normally, people have 4 genes for alpha globin with 2 genes on each chromosome (aa/aa). People with alpha thalassemia trait only have 2 genes for alpha globin, so their bodies make slightly less hemoglobin than normal. This trait was passed on from their parents, like hair color or eye color. A trait is different from a disease 2 Alpha thalassemia trait is not a disease. Normally, a trait will not make you sick. Parents who have alpha thalassemia trait can pass it on to their children. -
Fact Sheettrait Result: Screening Program Blood Spot Screen Result Notification
Family Minnesota Newborn Fact SheetTRAIT Result: Screening program Blood Spot Screen Result Notification FAC - Hemoglobin C Trait What was found on the newborn screen? How do you know if your baby actually has The newborn screen that was collected at birth hemoglobin C trait? found that your baby has fetal hemoglobin (F), adult A simple blood test called a hemoglobin electrophoresis hemoglobin (A), and abnormal hemoglobin (C). can tell if your baby has hemoglobin C trait. This test will likely be performed when your baby is between nine and What does this mean? twelve months of age. Talk with your baby’s doctor about This means your baby likely has hemoglobin C trait (AC). plans for testing and any questions you have about it. The fetal hemoglobin goes away as babies get older. Why is it important to know? What is hemoglobin C trait? When a baby has hemoglobin C trait, we know that Hemoglobin C trait is not a disease and can never at least one parent has it too. Trait is passed on from become a disease. Hemoglobin C trait does not cause parent to child like other genes for eye color and height. health problems. You may have hemoglobin C trait and If only one parent has trait, it is not a problem. However, not know it. People with hemoglobin C trait will always if one parent has hemoglobin C trait and the other has have it; you cannot grow out of it. hemoglobin C trait or sickle cell (S) trait, each pregnancy can result in the child having sickle cell disease. -
Hemoglobin C Trait What Does This Mean for My Baby, Me and My Family?
My Baby Has Hemoglobin C Trait What does this mean for my baby, me and my family? Your baby's newborn screening test showed tell them their chance to have a baby with a that he or she has hemoglobin C trait (this is hemoglobin disease. also referred to as being a “hemoglobin C carrier”). Babies who have hemoglobin C trait What does having a baby with hemoglobin are no more likely to get sick than any other C trait mean for me, my partner and for baby. They do not need any special medical future pregnancies? treatment. Hemoglobin C trait will not change Since your baby has hemoglobin C trait, this into a disease later on. means that either you or your partner or both of you have hemoglobin C trait. In almost all What causes hemoglobin C trait? cases, ONLY ONE OF YOU will have Hemoglobin C trait happens when the part of hemoglobin C trait. the red blood cell that carries oxygen throughout the body is changed. This part that Most people do not know that they have is changed is called hemoglobin. Hemoglobin hemoglobin C trait. Now that your baby is is important because it picks up oxygen in the known to have hemoglobin C trait, both you lungs and carries it to the other parts of the and your partner have the option of being body. tested. Testing involves a blood test. People usually have one type of hemoglobin. IF ONLY ONE OF YOU HAS HEMOGLOBIN This is called hemoglobin A. Babies with C TRAIT, in every pregnancy there is a: hemoglobin C trait have a second type of • 1 in 2 (50%) chance to have a baby with hemoglobin called hemoglobin C, as well as only the usual hemoglobin A. -
ZNF410 Represses Fetal Globin by Devoted Control of CHD4/Nurd
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title ZNF410 represses fetal globin by devoted control of CHD4/NuRD Authors Divya S. Vinjamur1, Qiuming Yao1,2, Mitchel A. Cole1, Connor McGuckin1, Chunyan Ren1, Jing Zeng1, Mir Hossain1, Kevin Luk3, Scot A. Wolfe3, Luca Pinello2, Daniel E. Bauer1,4 1Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA 2Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA 3Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA 4Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Major effectors of adult-stage fetal globin silencing include the transcription factors (TFs) BCL11A and ZBTB7A/LRF and the NuRD chromatin complex, although each has potential on- target liabilities for rational �-hemoglobinopathy therapeutic inhibition. -
Analysis of Genetic Determinants Associated with Persistent Synthesis of Fetal Hemoglobin
UNIVERSITÀ DEGLI STUDI DI SASSARI PhD School in Biomolecular and Biotechnological Sciences Curriculum: Biochemistry and Molecular Biology Director: Prof. Claudia Crosio “XXVI Ciclo” Analysis of genetic determinants associated with Persistent Synthesis of Fetal Hemoglobin Supervisor: Monica Pirastru, PhD Director: Prof. Claudia Crosio PhD Student: Sandro Trova ................................................................................................................................................. INDEX INDEX ABSTRACT ................................................................................... 3 INTRODUCTION ......................................................................... 4 1. Hemoglobin .......................................................................................... 4 1.1 Structure and function of Hemoglobin ........................................ 4 1.2 Structure of globin genes and their cluster organization ............. 5 1.3 Genomic context of the α– and β–globin gene clusters .............. 9 2. Globin gene switching ....................................................................... 12 2.1 Regulatory regions and transcription factors of globin genes ... 13 2.2 The β–Globin Locus Control Region (β–LCR) role in globin expression ....................................................................... 20 2.3 Chromatin role in β–like globin gene expression: the PYR role .............................................................................. 25 2.4 Summary on the fetal to adult switch ....................................... -
Increasing Fetal Hemoglobin As a Possible Key for Improvement of Hypoxia and Saving Last Breath in COVID-19 Patient: “Postulating a Hypothesis” Muhamed A
Abdelzaher et al. The Egyptian Journal of Bronchology (2021) 15:33 The Egyptian Journal https://doi.org/10.1186/s43168-021-00078-7 of Bronchology COMMENTARY Open Access Increasing fetal hemoglobin as a possible key for improvement of hypoxia and saving last breath in COVID-19 patient: “postulating a hypothesis” Muhamed A. Abdelzaher1, Ashraf E. S. Ibrahim2 and Essamedin M. Negm3* Abstract Background: COVID-19 patients normally experience mild cold-like symptoms that progress from the early viral response phase through the lung phase to the hyper-inflammation phase. Acute respiratory distress syndrome (ARDS) characterizes the most critical stage of the illness with progressive respiratory failure. Hypoxemia is the most dangerous and challenging problem. We suggest an inductive study approach to postulate a hypothesis and synthesis of supporting evidence as a trial to resolve hypoxia in patients with COVID-19 by increasing the volume of fetal hemoglobin which has a high affinity for oxygen using methods for hypothesis related research evidence synthesis. Conclusion: We recommend involving umbilical cord fetal blood transfusion or the use of hydroxyl urea as a clinical trial on COVID-19 patients and also for all other types of ARDS to determine its efficacy in correction of hypoxemia, controlling progression of the disease, and increasing survival rate. Keywords: COVID-19, Hypoxia, Fetal hemoglobin, Fetal blood, Hydroxyurea Background Mortality are as high as 46% in critically ill patients re- In December 2019, a sudden public health incident (the quiring intensive care unit admission and oxygen ther- corona virus disease [COVID-19] epidemic) occurred in apy [4], suggesting an urgent need to try therapeutic Wuhan, China [1]. -
Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology. -
WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) C07K 16/18 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/057942 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 20 October 2016 (20.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/244,655 2 1 October 2015 (21. 10.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: QOOLABS, INC. [US/US]; 4186 Sorrento TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Valley Blvd., Suite D/E, San Diego, CA 92121 (US). -
Sourcebook in Forensic Serology, Immunology, and Biochemistry
UNIT VII. HEMOGLOBIN, SERUM GROUP SYSTEMS, HLA AND OTHER GENETIC MARKERS Hemoglobin SECTION 38. HEMOGLOBIN 38.1 Introduction Hemoglobin (Hb)is the major protein of human red cells, forth. Hemoglobins exist which contain only one kind of comprising about 95% of their dry weight. Adult human chain: Hb H is B4, for example, and Hb Bart's is 7,. blood normally contains from about 4 million to 6.5 million Jones (1961) pointed out that hemoglobin structural red cells per mm3 blood, the average figure being slightly heterogeneity can be classified as follows: (1) Maturation higher for men. Hemoglobin itself is present in concentra- heterogeneity, which refers to the fact that different tions of about 14 to 16 g per 100 mP blood. It is the oxygen hemoglobins are normally synthesized during different transporting protein in higher animals; without a molecule stages of development. There are embryonic, fetal and adult having its properties, complex multicellular aerobic life as hemoglobins. (2) Minor hemoglobin heterogeneity, which we know it would not be possible. refers to the presence of small amounts of structurally dif- Hemoglobin is one of the most extensively studied of all ferent but normal hemoglobins along with the major proteins, and its literature fills many volumes. As noted in component characteristic of a particular stage of develop- section 5.1, it acquired its present name over 100 years ago ment; and (3) genetic heterogeneity, which refers to the (Hoppe-Seyler, 1864). In forensic serology, hemoglobiin is various "abnormal" hemoglobin variants. Many of these important in two principal contexts: (1) Blood is normally are thought to be the result of point mutations, and with a idenad in questioned samples by procedures designed to few exceptions, variant hemoglobins are very rare. -
Research Article Sickle Cell Anemia Patients in Use Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Disease Markers Volume 2018, Article ID 6105691, 11 pages https://doi.org/10.1155/2018/6105691 Research Article Sickle Cell Anemia Patients in Use of Hydroxyurea: Association between Polymorphisms in Genes Encoding Metabolizing Drug Enzymes and Laboratory Parameters 1,2 1 Sètondji Cocou Modeste Alexandre Yahouédéhou, Magda Oliveira Seixas Carvalho, 1 1 1 Rodrigo Mota Oliveira, Rayra Pereira Santiago, Caroline Conceição da Guarda, 1 1 1 Suellen Pinheiro Carvalho, Júnia Raquel Dutra Ferreira, Milena Magalhães Aleluia, 2 1,2 Elisângela Vitória Adorno, and Marilda de Souza Gonçalves 1Laboratório de Hematologia, Genética e Biologia Computacional (LHGB), Fiocruz Bahia-Instituto Gonçalo Moniz (IGM), Rua Waldemar Falcão 121, Candeal, 40296-710 Salvador, BA, Brazil 2Laboratório de Pesquisa em Anemia (LPA), Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão do Jeremoabo 147, Ondina, 40170-115 Salvador, BA, Brazil Correspondence should be addressed to Marilda de Souza Gonçalves; mari@bahia.fiocruz.br Received 12 August 2017; Revised 25 November 2017; Accepted 4 December 2017; Published 28 January 2018 Academic Editor: Fabrizia Bamonti Copyright © 2018 Sètondji Cocou Modeste Alexandre Yahouédéhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study investigated associations between SNPs in genes encoding metabolizing drug enzymes and laboratory parameters in sickle cell anemia patients under hydroxyurea (SCA-HU+). We evaluated hematologic and biochemical parameters by electronic − methods and SNPs by PCR-RFLP and multiplex PCR in 35 SCA-HU+ patients and 67 SCA-HU patients.