Fetal and Embryonic Haemoglobins P

Total Page:16

File Type:pdf, Size:1020Kb

Fetal and Embryonic Haemoglobins P Review Article J Med Genet: first published as 10.1136/jmg.10.1.50 on 1 March 1973. Downloaded from Journal of Medical Genetics (1973). 10, 50. Fetal and Embryonic Haemoglobins P. A. LORKIN MRC Abnormal Haemoglobin Unit, University Department of Biochemistry, Cambridge Haemoglobin has been the subject of intensive form a nearly spherical molecule with extensive research for many years and is one of the most areas of contact between unlike chains; the two thoroughly understood of all protein molecules. main types of contact are denoted alp, and alg2 The amino-acid sequences of haemoglobins from The tetramer exhibits cooperative behaviour or many species of animals have been determined haem-haem interaction. As each haem combines (tabulated by Dayhoff, 1969) and the molecular with oxygen the affinity of successive haems in- structures of horse and human haemoglobins have creases. The oxygen affinity curve of the tetramer been determined in great detail by x-ray crystallo- is sigmoidal and may be represented approximately graphy (Perutz et al, 1968a and b; Perutz 1969). A by the Hill equation:* mechanism of action of haemoglobin has been pro- = kpo2n posed (Perutz, 1970a and b and 1972). The y haemoglobins of higher organisms share a common +kpo2n tetrameric structure built up of two pairs of unlike Oxygen affinity data are usually presented in copyright. chains; the a chains containing 141 amino-acid terms of P102, the partial pressure of oxygen re- residues and the non-a chains containing generally quired to attain half saturation with oxygen, and of 145 or 146 amino acids. In man, five types of n, the exponent of the Hill equation. These para- non-a chains have been recognized, /3, y, 8, E. and 4, meters respectively give measures of the oxygen corresponding to different stages of ontogenesis. affinity and of the degree of haem-haem interaction. The globin chains ofhaemoglobin and of myoglobin For normal haemoglobin n is approximately 3. have a similar overall tertiary structure composed of Myoglobin, isolated chains, and tetramers composed http://jmg.bmj.com/ segments of a helix interspersed with non-helical of one type of chain such as Hb H (4) show no regions forming a compact structure of great com- haem-haem interaction, their oxygen dissociation plexity. Amino-acid residues whose side chains curves are hyperbolic and the n value is 1. are of a polar nature, ie, those which bear an electric The haemoglobin tetramer has a lower oxygen charge or a strong dipole movement are located at affinity, more appropriate of its physiological func- the outer surface of the molecule in contact with the tion, than single chains. The cooperative behaviour whereas the of the tetramer renders it more efficient in releasing aqueous surroundings, non-polar on September 23, 2021 by guest. Protected hydrocarbon side chains are, in general, located oxygen in response to relatively small changes in within the interior of the molecule. The haem oxygen tension. The tetramer exhibits other groups are accommodated within deep cavities or physiologically advantageous properties; the oxygen pockets lined with non-polar side chains and are affinity varies with pH (Bohr effect) in such a manner anchored in position by links between the haem iron as to facilitate the release of oxygen in the tissues. and the imidazole side chains of histidines. The Haemoglobin binds CO2 at the N terminus of the non-aqueous environment of the haem promotes / chains (Kilmartin and Rossi-Bernardi, 1969) and reversible binding of oxygen and protects the iron assists its transport from the tissues to the lungs. from oxidation to the ferric form characteristic of Furthermore its oxygen affinity is reduced in methaemoglobin which is incapable of reversible the presence of organic phosphates particularly oxygen binding. 2,3 diphosphoglycerate (2,3 DPG) and inositol The four chains of the tetramer fit together to * Hill equation: y =fraction of haemoglobin in oxy form, P02 Received 27 November 1972. partial pressure of oxygen, k and n are constants. 50 Fetal and Embryonic Haemoglobins 51 J Med Genet: first published as 10.1136/jmg.10.1.50 on 1 March 1973. Downloaded from hexaphosphate (IHP) (Benesch and Benesch, 1969). postulated that a gradual divergence of the structure This provides an important method of regulating of the polypeptide chains led to their ability to the oxygen affinity in vivo. The properties can be associate with each other to form dimers and tetra- accounted for in terms of the molecular structure mers and the appearance of haem-haem interaction (Perutz, 1970a and b). and the Bohr effect. It seems likely that the Many species of animals contain multiple haemo- 'ancestral molecule' was probably longer than globins which can be separated by electrophoresis. modern globin chains because of the need to postu- The components are often present in unequal pro- late deletions and the fact that the globin chains of portions eg, in man Hb A and Hb A2 are present in more primitive animals eg, lamprey are longer than the ratio of about 40: 1. Some of the components those of higher animals. It is a matter of contro- may be chemically modified forms of other com- versy whether the differences in amino-acid se- ponents; for example the minor component Hb A,, quences of haemoglobin chains of different animals of human blood consists of Hb A modified by may be attributed to the action of Darwinian natural attachment of a carbohydrate residue at the N selection or to the action of genetic drift and the terminus of the chain (Bookchin and Gallop, fixation in different species of amino-acid substitu- 1968). Other multiple components represent the tions which cause no significant change in the pro- products of separate gene loci and contain globin perties of the haemoglobin and are selectively chains which differ by one or more amino-acid neutral (review by Harris, 1971). Some parts of substitutions, thus the : and 8 chains ofhuman Hb A the amino-acid sequence of the globin chain show and Hb A2 differ by 10 amino-acid substitutions. much less interspecies variability than others and Fingerprinting has revealed differences between some residues are invariant in all species. In the haemoglobins of different species (Muller, 1961) general, the amino acids whose side chains form the and in many cases the exact amino-acid sequences lining of the haem pocket and the surfaces of the have been determined (Dayhoff, 1969). In general ail92 interface show very little variability and any each species has one or more haemoglobin compon- substitutions are of a conservative nature ie, one ents unique to itself. The more closely related two amino acid is replaced by another of a similar charac- species are, the more similar are their haemoglobins. ter. In contrast, amino acids located at the outer In man and chimpanzee the major adult haemo- surface of the molecule show wide variability. copyright. globin Hb A is identical and the minor component In studying the haemoglobins of animals it is Hb A2 differs by only one amino-acid substitution practicable to examine the specimens from only a (de Jong, 1971). In various species of the genus small number of animals. The situation is different Equus haemoglobin components differ by one with the human population where blood samples amino-acid substitution (Kitchen and Easley, 1969). from many people have been examined by electro- When the amino-acid sequences of the globin chains phoresis during the course of routine haematological http://jmg.bmj.com/ of haemoglobins and myoglobins from many species examinations and surveys. are compared they show a great degree of homology These studies have given a measure of the degree if gaps are introduced at the appropriate positions ofintraspecic variation ofhaemoglobin in the human (Braunitzer et al, 1964). population and have led to the discovery of over 160 Such comparisons of globins and other proteins, different mutant forms ofhaemoglobin (reviewed by especially cytochrome c (Dayhoff, 1969), have pro- Huehns and Shooter, 1965; Lehmann and Carrell, vided a novel basis for the construction of phylo- 1969; Lehmann, 1972). The study of human genetic trees based on data quite independent of haemoglobin mutants has afforded much valuable on September 23, 2021 by guest. Protected conventional zoological characteristics. Further- information. Studies of the inheritance of abnor- more these comparisons have lent support to the mal haemoglobins showed that the a and f chains speculation that the haemoglobin and myoglobin were specified by separate gene loci, and this is also chains may themselves have diverged and evolved true for y and 8 chains and presumably also for the from a more primitive 'ancestral molecule'. The E and 4 chains. Some recent evidence (discussed general manner in which this may have come about below) suggests that, at least in some individuals, has been outlined by Ingram (1961), who postulated the a-chain locus is duplicated. The y-chain locus that an initial single gene locus specifying a globin is also duplicated and the polypeptide chains speci- chain may have undergone duplication followed by a fied by different loci differ by at least one amino- gradual divergence of the two genes by independent acid substitution (Schroeder et al, 1968). mutations and deletions. Successive duplications The study of rare pathological haemoglobins in may have given rise to the genes for the families of which the physiological functions are impaired has polypeptide chains observed in each species. It is played an important role in the understanding of 52 P. A. Lorkin J Med Genet: first published as 10.1136/jmg.10.1.50 on 1 March 1973. Downloaded from the normal functioning of haemoglobin (Perutz and at 12 months (summarized by Huehns and Beaven, Lehmann, 1968).
Recommended publications
  • Your Baby Has Hemoglobin E Or Hemoglobin O Trait for Parents
    NEW HAMPSHIRE NEWBORN SCREENING PROGRAM Your Baby Has Hemoglobin E or Hemoglobin O Trait For Parents All infants born in New Hampshire are screened for a panel of conditions at birth. A small amount of blood was collected from your baby’s heel and sent to the laboratory for testing. One of the tests looked at the hemoglobin in your baby’s blood. Your baby’s test found that your baby has either hemoglobin E trait or hemoglobin O trait. The newborn screen- ing test cannot tell the difference between hemoglobin E and hemoglobin O so we do not know which one your baby has. Both hemoglobin E trait and hemoglobin O trait are common and do not cause health problems. Hemoglobin E trait and hemoglobin O trait will never develop to disease. What is hemoglobin? Hemoglobin is the part of the blood that carries oxygen to all parts of the body. There are different types of hemoglobin. The type of hemoglobin we have is determined from genes that we inherit from our parents. Genes are the instructions for how our body develops and functions. We have two copies of each gene; one copy is inherited from our mother in the egg and one copy is inherited from our father in the sperm. What are hemoglobin E trait and hemoglobin O trait? The normal, and most common, type of hemoglobin is called hemoglobin A. Hemoglobin E trait is when a baby inherited one gene for hemoglobin A from one parent and one gene for hemoglobin E from the other parent.
    [Show full text]
  • Linkage of Genes for Adult A-Globin and Embryonic Aulike Globin Chains (Hemoglobin H/Thalassemia/Embryonic Hemoglobin/Mice) J
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 2, pp. 1087-1090, February 1980 Genetics Linkage of genes for adult a-globin and embryonic aulike globin chains (hemoglobin H/thalassemia/embryonic hemoglobin/mice) J. BARRY WHITNEY III* AND ELIZABETH S. RUSSELL The Jackson Laboratory, Bar Harbor, Maine 04609 contributed by Elizabeth S. Russell, November 19, 1979 ABSTRACT In a-thalassemia, the genetic locus for the a (Hbaa) female mouse and a triethylene-melamine-treated male chains of adult hemoglobin is not expressed. We have examined that carried a different, doublet, Hba haplotype (5). In this the hemoglobins of a number of individual mouse embryos affected a-thalassemic offspring of the treated male, only the heterozygous for a particular a-thalassemia (Hba th-J) and find n'o.'ecrease in the proportion of hemoglobins containing the Hbaa haplotype inherited from the C57BL/6J mother was a chain as compared to the hemoglobin containing the a-like expressed. The hemoglobins of this mouse were found by embryonic globin chain. This result suggests that the locus for electrophoresis after cystamine treatment (6) to be unusual in this embryonic a-like chain is inactivated or deleted in these that they contained a lower than normal proportion of the he- embryos as well. Because a single mutational event inactivated moglobin containing the diffuse-major:/ chain, a condition also adult and embryonic loci, we conclude that they are probably reported for the x-ray-induced mouse a-thalassemia discovered closely linked to one another on the same chromosome. We also present evidence that an unusual hemoglobin in the blood of at the Oak Ridge National Laboratory (7).
    [Show full text]
  • Alpha Thalassemia Trait
    Alpha Thalassemia Trait Alpha Thalassemia Trait Produced by St. Jude Children’s Research Hospital, Departments of Hematology, Patient Education, 1 and Biomedical Communications. Funds were provided by St. Jude Children’s Research Hospital, ALSAC, and a grant from the Plough Foundation. This document is not intended to replace counseling by a trained health care professional or genetic counselor. Our aim is to promote active participation in your care and treatment by providing information and education. Questions about individual health concerns or specific treatment options should be discussed with your doctor. For general information on sickle cell disease and other blood disorders, please visit our Web site at www.stjude.org/sicklecell. Copyright © 2009 St. Jude Children’s Research Hospital Alpha thalassemia trait All red blood cells contain hemoglobin (HEE muh glow bin), which carries oxygen from your lungs to all parts of your body. Alpha thalassemia (thal uh SEE mee uh) trait is a condition that affects the amount of hemo- globin in the red blood cells. • Adult hemoglobin (hemoglobin A) is made of alpha and beta globins. • Normally, people have 4 genes for alpha globin with 2 genes on each chromosome (aa/aa). People with alpha thalassemia trait only have 2 genes for alpha globin, so their bodies make slightly less hemoglobin than normal. This trait was passed on from their parents, like hair color or eye color. A trait is different from a disease 2 Alpha thalassemia trait is not a disease. Normally, a trait will not make you sick. Parents who have alpha thalassemia trait can pass it on to their children.
    [Show full text]
  • Fact Sheettrait Result: Screening Program Blood Spot Screen Result Notification
    Family Minnesota Newborn Fact SheetTRAIT Result: Screening program Blood Spot Screen Result Notification FAC - Hemoglobin C Trait What was found on the newborn screen? How do you know if your baby actually has The newborn screen that was collected at birth hemoglobin C trait? found that your baby has fetal hemoglobin (F), adult A simple blood test called a hemoglobin electrophoresis hemoglobin (A), and abnormal hemoglobin (C). can tell if your baby has hemoglobin C trait. This test will likely be performed when your baby is between nine and What does this mean? twelve months of age. Talk with your baby’s doctor about This means your baby likely has hemoglobin C trait (AC). plans for testing and any questions you have about it. The fetal hemoglobin goes away as babies get older. Why is it important to know? What is hemoglobin C trait? When a baby has hemoglobin C trait, we know that Hemoglobin C trait is not a disease and can never at least one parent has it too. Trait is passed on from become a disease. Hemoglobin C trait does not cause parent to child like other genes for eye color and height. health problems. You may have hemoglobin C trait and If only one parent has trait, it is not a problem. However, not know it. People with hemoglobin C trait will always if one parent has hemoglobin C trait and the other has have it; you cannot grow out of it. hemoglobin C trait or sickle cell (S) trait, each pregnancy can result in the child having sickle cell disease.
    [Show full text]
  • Hemoglobin C Trait What Does This Mean for My Baby, Me and My Family?
    My Baby Has Hemoglobin C Trait What does this mean for my baby, me and my family? Your baby's newborn screening test showed tell them their chance to have a baby with a that he or she has hemoglobin C trait (this is hemoglobin disease. also referred to as being a “hemoglobin C carrier”). Babies who have hemoglobin C trait What does having a baby with hemoglobin are no more likely to get sick than any other C trait mean for me, my partner and for baby. They do not need any special medical future pregnancies? treatment. Hemoglobin C trait will not change Since your baby has hemoglobin C trait, this into a disease later on. means that either you or your partner or both of you have hemoglobin C trait. In almost all What causes hemoglobin C trait? cases, ONLY ONE OF YOU will have Hemoglobin C trait happens when the part of hemoglobin C trait. the red blood cell that carries oxygen throughout the body is changed. This part that Most people do not know that they have is changed is called hemoglobin. Hemoglobin hemoglobin C trait. Now that your baby is is important because it picks up oxygen in the known to have hemoglobin C trait, both you lungs and carries it to the other parts of the and your partner have the option of being body. tested. Testing involves a blood test. People usually have one type of hemoglobin. IF ONLY ONE OF YOU HAS HEMOGLOBIN This is called hemoglobin A. Babies with C TRAIT, in every pregnancy there is a: hemoglobin C trait have a second type of • 1 in 2 (50%) chance to have a baby with hemoglobin called hemoglobin C, as well as only the usual hemoglobin A.
    [Show full text]
  • ZNF410 Represses Fetal Globin by Devoted Control of CHD4/Nurd
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title ZNF410 represses fetal globin by devoted control of CHD4/NuRD Authors Divya S. Vinjamur1, Qiuming Yao1,2, Mitchel A. Cole1, Connor McGuckin1, Chunyan Ren1, Jing Zeng1, Mir Hossain1, Kevin Luk3, Scot A. Wolfe3, Luca Pinello2, Daniel E. Bauer1,4 1Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA 2Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA 3Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA 4Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.272856; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Major effectors of adult-stage fetal globin silencing include the transcription factors (TFs) BCL11A and ZBTB7A/LRF and the NuRD chromatin complex, although each has potential on- target liabilities for rational �-hemoglobinopathy therapeutic inhibition.
    [Show full text]
  • Analysis of Genetic Determinants Associated with Persistent Synthesis of Fetal Hemoglobin
    UNIVERSITÀ DEGLI STUDI DI SASSARI PhD School in Biomolecular and Biotechnological Sciences Curriculum: Biochemistry and Molecular Biology Director: Prof. Claudia Crosio “XXVI Ciclo” Analysis of genetic determinants associated with Persistent Synthesis of Fetal Hemoglobin Supervisor: Monica Pirastru, PhD Director: Prof. Claudia Crosio PhD Student: Sandro Trova ................................................................................................................................................. INDEX INDEX ABSTRACT ................................................................................... 3 INTRODUCTION ......................................................................... 4 1. Hemoglobin .......................................................................................... 4 1.1 Structure and function of Hemoglobin ........................................ 4 1.2 Structure of globin genes and their cluster organization ............. 5 1.3 Genomic context of the α– and β–globin gene clusters .............. 9 2. Globin gene switching ....................................................................... 12 2.1 Regulatory regions and transcription factors of globin genes ... 13 2.2 The β–Globin Locus Control Region (β–LCR) role in globin expression ....................................................................... 20 2.3 Chromatin role in β–like globin gene expression: the PYR role .............................................................................. 25 2.4 Summary on the fetal to adult switch .......................................
    [Show full text]
  • Increasing Fetal Hemoglobin As a Possible Key for Improvement of Hypoxia and Saving Last Breath in COVID-19 Patient: “Postulating a Hypothesis” Muhamed A
    Abdelzaher et al. The Egyptian Journal of Bronchology (2021) 15:33 The Egyptian Journal https://doi.org/10.1186/s43168-021-00078-7 of Bronchology COMMENTARY Open Access Increasing fetal hemoglobin as a possible key for improvement of hypoxia and saving last breath in COVID-19 patient: “postulating a hypothesis” Muhamed A. Abdelzaher1, Ashraf E. S. Ibrahim2 and Essamedin M. Negm3* Abstract Background: COVID-19 patients normally experience mild cold-like symptoms that progress from the early viral response phase through the lung phase to the hyper-inflammation phase. Acute respiratory distress syndrome (ARDS) characterizes the most critical stage of the illness with progressive respiratory failure. Hypoxemia is the most dangerous and challenging problem. We suggest an inductive study approach to postulate a hypothesis and synthesis of supporting evidence as a trial to resolve hypoxia in patients with COVID-19 by increasing the volume of fetal hemoglobin which has a high affinity for oxygen using methods for hypothesis related research evidence synthesis. Conclusion: We recommend involving umbilical cord fetal blood transfusion or the use of hydroxyl urea as a clinical trial on COVID-19 patients and also for all other types of ARDS to determine its efficacy in correction of hypoxemia, controlling progression of the disease, and increasing survival rate. Keywords: COVID-19, Hypoxia, Fetal hemoglobin, Fetal blood, Hydroxyurea Background Mortality are as high as 46% in critically ill patients re- In December 2019, a sudden public health incident (the quiring intensive care unit admission and oxygen ther- corona virus disease [COVID-19] epidemic) occurred in apy [4], suggesting an urgent need to try therapeutic Wuhan, China [1].
    [Show full text]
  • Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
    cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
    [Show full text]
  • WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070364 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) C07K 16/18 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C07K 16/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US20 16/057942 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 20 October 2016 (20.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/244,655 2 1 October 2015 (21. 10.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: QOOLABS, INC. [US/US]; 4186 Sorrento TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Valley Blvd., Suite D/E, San Diego, CA 92121 (US).
    [Show full text]
  • Sourcebook in Forensic Serology, Immunology, and Biochemistry
    UNIT VII. HEMOGLOBIN, SERUM GROUP SYSTEMS, HLA AND OTHER GENETIC MARKERS Hemoglobin SECTION 38. HEMOGLOBIN 38.1 Introduction Hemoglobin (Hb)is the major protein of human red cells, forth. Hemoglobins exist which contain only one kind of comprising about 95% of their dry weight. Adult human chain: Hb H is B4, for example, and Hb Bart's is 7,. blood normally contains from about 4 million to 6.5 million Jones (1961) pointed out that hemoglobin structural red cells per mm3 blood, the average figure being slightly heterogeneity can be classified as follows: (1) Maturation higher for men. Hemoglobin itself is present in concentra- heterogeneity, which refers to the fact that different tions of about 14 to 16 g per 100 mP blood. It is the oxygen hemoglobins are normally synthesized during different transporting protein in higher animals; without a molecule stages of development. There are embryonic, fetal and adult having its properties, complex multicellular aerobic life as hemoglobins. (2) Minor hemoglobin heterogeneity, which we know it would not be possible. refers to the presence of small amounts of structurally dif- Hemoglobin is one of the most extensively studied of all ferent but normal hemoglobins along with the major proteins, and its literature fills many volumes. As noted in component characteristic of a particular stage of develop- section 5.1, it acquired its present name over 100 years ago ment; and (3) genetic heterogeneity, which refers to the (Hoppe-Seyler, 1864). In forensic serology, hemoglobiin is various "abnormal" hemoglobin variants. Many of these important in two principal contexts: (1) Blood is normally are thought to be the result of point mutations, and with a idenad in questioned samples by procedures designed to few exceptions, variant hemoglobins are very rare.
    [Show full text]
  • Research Article Sickle Cell Anemia Patients in Use Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Disease Markers Volume 2018, Article ID 6105691, 11 pages https://doi.org/10.1155/2018/6105691 Research Article Sickle Cell Anemia Patients in Use of Hydroxyurea: Association between Polymorphisms in Genes Encoding Metabolizing Drug Enzymes and Laboratory Parameters 1,2 1 Sètondji Cocou Modeste Alexandre Yahouédéhou, Magda Oliveira Seixas Carvalho, 1 1 1 Rodrigo Mota Oliveira, Rayra Pereira Santiago, Caroline Conceição da Guarda, 1 1 1 Suellen Pinheiro Carvalho, Júnia Raquel Dutra Ferreira, Milena Magalhães Aleluia, 2 1,2 Elisângela Vitória Adorno, and Marilda de Souza Gonçalves 1Laboratório de Hematologia, Genética e Biologia Computacional (LHGB), Fiocruz Bahia-Instituto Gonçalo Moniz (IGM), Rua Waldemar Falcão 121, Candeal, 40296-710 Salvador, BA, Brazil 2Laboratório de Pesquisa em Anemia (LPA), Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão do Jeremoabo 147, Ondina, 40170-115 Salvador, BA, Brazil Correspondence should be addressed to Marilda de Souza Gonçalves; mari@bahia.fiocruz.br Received 12 August 2017; Revised 25 November 2017; Accepted 4 December 2017; Published 28 January 2018 Academic Editor: Fabrizia Bamonti Copyright © 2018 Sètondji Cocou Modeste Alexandre Yahouédéhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study investigated associations between SNPs in genes encoding metabolizing drug enzymes and laboratory parameters in sickle cell anemia patients under hydroxyurea (SCA-HU+). We evaluated hematologic and biochemical parameters by electronic − methods and SNPs by PCR-RFLP and multiplex PCR in 35 SCA-HU+ patients and 67 SCA-HU patients.
    [Show full text]